To see the other types of publications on this topic, follow the link: Numberd Theory.

Journal articles on the topic 'Numberd Theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Numberd Theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

C.S., Harisha. "Graph Theory Approach to Number Theory Theorems." Journal of Advanced Research in Dynamical and Control Systems 12, no. 01-Special Issue (2020): 568–72. http://dx.doi.org/10.5373/jardcs/v12sp1/20201105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maslov, V. P. "Large negative numbers in number theory, thermodynamics, information theory, and human thermodynamics." Russian Journal of Mathematical Physics 23, no. 4 (2016): 510–28. http://dx.doi.org/10.1134/s1061920816040075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steele, G. Ander. "Carmichael numbers in number rings." Journal of Number Theory 128, no. 4 (2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Quadling, Douglas, Bob Burn, and Amanda Chetwynd. "A Cascade of Numbers: An Introduction to Number Theory." Mathematical Gazette 81, no. 491 (1997): 329. http://dx.doi.org/10.2307/3619238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shiu, P., and Paulo Ribenboim. "My Numbers, My Friends. Popular Lectures on Number Theory." Mathematical Gazette 85, no. 504 (2001): 540. http://dx.doi.org/10.2307/3621797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marshall, John U. "The Löschian Numbers As a Problem in Number Theory." Geographical Analysis 7, no. 4 (2010): 421–26. http://dx.doi.org/10.1111/j.1538-4632.1975.tb01054.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stakhov, A. "The “Golden” Number Theory and New Properties of Natural Numbers." British Journal of Mathematics & Computer Science 11, no. 6 (2015): 1–15. http://dx.doi.org/10.9734/bjmcs/2015/21385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Timberlake, Todd. "Random numbers and random matrices: Quantum chaos meets number theory." American Journal of Physics 74, no. 6 (2006): 547–53. http://dx.doi.org/10.1119/1.2198883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Daileda, Ryan C., Raju Krishnamoorthy, and Anton Malyshev. "Maximal class numbers of CM number fields." Journal of Number Theory 130, no. 4 (2010): 936–43. http://dx.doi.org/10.1016/j.jnt.2009.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Koninck, J. M., N. Doyon, and I. Kátai. "Counting the number of twin Niven numbers." Ramanujan Journal 17, no. 1 (2008): 89–105. http://dx.doi.org/10.1007/s11139-008-9127-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fellows, Michael R., Serge Gaspers, and Frances A. Rosamond. "Parameterizing by the Number of Numbers." Theory of Computing Systems 50, no. 4 (2011): 675–93. http://dx.doi.org/10.1007/s00224-011-9367-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Perucca, Antonella, and Pietro Sgobba. "Kummer theory for number fields and the reductions of algebraic numbers." International Journal of Number Theory 15, no. 08 (2019): 1617–33. http://dx.doi.org/10.1142/s179304211950091x.

Full text
Abstract:
For all number fields the failure of maximality for the Kummer extensions is bounded in a very strong sense. We give a direct proof (without relying on the Bashmakov–Ribet method) of the fact that if [Formula: see text] is a finitely generated and torsion-free multiplicative subgroup of a number field [Formula: see text] having rank [Formula: see text], then the ratio between [Formula: see text] and the Kummer degree [Formula: see text] is bounded independently of [Formula: see text]. We then apply this result to generalize to higher rank a theorem of Ziegler from 2006 about the multiplicative
APA, Harvard, Vancouver, ISO, and other styles
13

Lefevre, Adam. "Number Theory." Grand Street, no. 59 (1997): 99. http://dx.doi.org/10.2307/25008125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Scourfield, E. J. "NUMBER THEORY." Bulletin of the London Mathematical Society 17, no. 1 (1985): 93–94. http://dx.doi.org/10.1112/blms/17.1.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Balasubramanian, K. "Number Theory." Journal of Mathematical Chemistry 36, no. 2 (2004): 167. http://dx.doi.org/10.1023/b:jomc.0000038791.72217.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Schroeder, M. R. "Number theory." IEEE Potentials 8, no. 3 (1989): 14–17. http://dx.doi.org/10.1109/45.41531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Perucca, Antonella, and Pietro Sgobba. "Kummer Theory for Number Fields and the Reductions of Algebraic Numbers II." Uniform distribution theory 15, no. 1 (2020): 75–92. http://dx.doi.org/10.2478/udt-2020-0004.

Full text
Abstract:
AbstractLet K be a number field, and let G be a finitely generated and torsion-free subgroup of K×. For almost all primes p of K, we consider the order of the cyclic group (G mod 𝔭), and ask whether this number lies in a given arithmetic progression. We prove that the density of primes for which the condition holds is, under some general assumptions, a computable rational number which is strictly positive. We have also discovered the following equidistribution property: if ℓe is a prime power and a is a multiple of ℓ (and a is a multiple of 4 if ℓ =2), then the density of primes 𝔭 of K such th
APA, Harvard, Vancouver, ISO, and other styles
18

Xavier, G. Britto Antony, V. Chandrasekar, and S. Gokulakrishnan. "Generalized Stirling numbers of third kind and its applications in number theory." International Journal of Mathematical Analysis 9 (2015): 897–906. http://dx.doi.org/10.12988/ijma.2015.5383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zazkis, Rina, and Jeffrey Truman. "From Trigonometry to Number Theory… and Back: Extending LCM to Rational Numbers." Digital Experiences in Mathematics Education 1, no. 1 (2015): 79–86. http://dx.doi.org/10.1007/s40751-015-0001-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Agarwal, Ravi P. "Pythagoreans Figurative Numbers: The Beginning of Number Theory and Summation of Series." Journal of Applied Mathematics and Physics 09, no. 08 (2021): 2038–113. http://dx.doi.org/10.4236/jamp.2021.98132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chang, Ku-Young, and Soun-Hi Kwon. "The imaginary abelian number fields with class numbers equal to their genus class numbers." Journal de Théorie des Nombres de Bordeaux 12, no. 2 (2000): 349–65. http://dx.doi.org/10.5802/jtnb.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gómez-Torrente, Mario. "On the Essence and Identity of Numbers." THEORIA. An International Journal for Theory, History and Foundations of Science 30, no. 3 (2015): 317–29. http://dx.doi.org/10.1387/theoria.14099.

Full text
Abstract:
Taking as premises some intuitions about the essences of natural numbers, pluralities and sets, the paper offers an argument that the natural numbers could not be the “Zermelo numbers”, the “Von Neumann numbers”, the “Kripke numbers”, or the “positions in the ω-structure”, among other things. The argument’s conclusion is thus Benacerrafian in form, but it is emphasized that the argument is anti-Benacerrafian in substance, as it is perfectly compatible and in fact congenial with some views on which the numbers could be things of certain other kinds.
APA, Harvard, Vancouver, ISO, and other styles
23

Daileda, Ryan C. "Non-abelian number fields with very large class numbers." Acta Arithmetica 125, no. 3 (2006): 215–55. http://dx.doi.org/10.4064/aa125-3-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Banerjee, Soumyarup, Manav Batavia, Ben Kane, et al. "Fermat's polygonal number theorem for repeated generalized polygonal numbers." Journal of Number Theory 220 (March 2021): 163–81. http://dx.doi.org/10.1016/j.jnt.2020.05.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Peide, Sepehr Hendiani, Morteza Bagherpour, Seyed Farid Ghannadpour, and Amin Mahmoudi. "Utility-Numbers Theory." IEEE Access 7 (2019): 56994–7008. http://dx.doi.org/10.1109/access.2019.2912922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ehrlich, Philip. "Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers." Journal of Symbolic Logic 66, no. 3 (2001): 1231–58. http://dx.doi.org/10.2307/2695104.

Full text
Abstract:
Introduction. In his monograph On Numbers and Games [7], J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many other numbers including ω, ω, /2, 1/ω, and ω − π to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered “number” fields—be individually definable in terms of sets of von Neumann-Bernays-Gödel set theory with Global Choice, henceforth NBG [cf. 21, Ch. 4], it may be said to contain “All Numbers Great
APA, Harvard, Vancouver, ISO, and other styles
27

Brüdern, Jörg, Hugh Montgomery, Robert Vaughan, and Trevor Wooley. "Analytic Number Theory." Oberwolfach Reports 10, no. 4 (2013): 2963–3037. http://dx.doi.org/10.4171/owr/2013/51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Brüdern, Jörg, Hugh Montgomery, Robert Vaughan, and Trevor Wooley. "Analytic Number Theory." Oberwolfach Reports 13, no. 4 (2017): 2975–3030. http://dx.doi.org/10.4171/owr/2016/53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brüdern, Jörg, Kaisa Matomäki, Robert Vaughan, and Trevor Wooley. "Analytic Number Theory." Oberwolfach Reports 16, no. 4 (2020): 3141–205. http://dx.doi.org/10.4171/owr/2019/50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bowen, Alan C. "Boethian Number Theory." Ancient Philosophy 9, no. 1 (1989): 137–43. http://dx.doi.org/10.5840/ancientphil19899136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shiu, P., Gareth A. Jones, and J. Mary Jones. "Elementary Number Theory." Mathematical Gazette 82, no. 495 (1998): 534. http://dx.doi.org/10.2307/3619931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Blackmore, G. W., I. N. Stewart, and D. O. Tall. "Algebraic Number Theory." Mathematical Gazette 73, no. 463 (1989): 65. http://dx.doi.org/10.2307/3618234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Grosswald, Emil, Charles Vanden Eynden, and Kenneth H. Rosen. "Elementary Number Theory." American Mathematical Monthly 96, no. 5 (1989): 460. http://dx.doi.org/10.2307/2325169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Snapp, Bart, and Chris Snapp. "Automotive Number Theory." Math Horizons 17, no. 1 (2009): 26–27. http://dx.doi.org/10.1080/10724117.2009.11974839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Snapp, Bart, and Chris Snapp. "Automotive Number Theory." Math Horizons 17, no. 1 (2009): 26–27. http://dx.doi.org/10.4169/194762109x468328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Iwaniec, Henryk. "Automorphic Number Theory." Current Developments in Mathematics 2003, no. 1 (2003): 35–52. http://dx.doi.org/10.4310/cdm.2003.v2003.n1.a2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tokuo, Kenji. "Quantum Number Theory." International Journal of Theoretical Physics 43, no. 12 (2004): 2461–81. http://dx.doi.org/10.1007/s10773-004-7711-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Kwang-Seob, and John C. Miller. "Class numbers of large degree nonabelian number fields." Mathematics of Computation 88, no. 316 (2018): 973–81. http://dx.doi.org/10.1090/mcom/3335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rajasekaran, Aayush, Jeffrey Shallit, and Tim Smith. "Additive Number Theory via Automata Theory." Theory of Computing Systems 64, no. 3 (2019): 542–67. http://dx.doi.org/10.1007/s00224-019-09929-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

EHRLICH, PHILIP, and ELLIOT KAPLAN. "NUMBER SYSTEMS WITH SIMPLICITY HIERARCHIES: A GENERALIZATION OF CONWAY’S THEORY OF SURREAL NUMBERS II." Journal of Symbolic Logic 83, no. 2 (2018): 617–33. http://dx.doi.org/10.1017/jsl.2017.9.

Full text
Abstract:
AbstractIn [16], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\bf{No}}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field to be isomorphic to an initial subfield of ${\bf{No}}$, i.e., a subfield of ${\bf{No}}$ that is an initial subtree of ${\bf{No}}$. In this sequel to [16], analogous results for ordered abelian groups and ordered domains are established which in turn are employed to characterize the convex subgroups and convex subdomains of initial subfields of ${\bf
APA, Harvard, Vancouver, ISO, and other styles
41

Byeon, Dongho. "Class Numbers and Iwasawa Invariants of Certain Totally Real Number Fields." Journal of Number Theory 79, no. 2 (1999): 249–57. http://dx.doi.org/10.1006/jnth.1999.2433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wagner, Stephan G. "Numbers with fixed sum of digits in linear recurrent number systems." Ramanujan Journal 14, no. 1 (2006): 43–68. http://dx.doi.org/10.1007/s11139-006-0001-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

PETERSEN, KATHLEEN L., and CHRISTOPHER D. SINCLAIR. "EQUIDISTRIBUTION OF ALGEBRAIC NUMBERS OF NORM ONE IN QUADRATIC NUMBER FIELDS." International Journal of Number Theory 07, no. 07 (2011): 1841–61. http://dx.doi.org/10.1142/s1793042111004666.

Full text
Abstract:
Given a fixed quadratic extension K of ℚ, we consider the distribution of elements in K of norm one (denoted [Formula: see text]). When K is an imaginary quadratic extension, [Formula: see text] is naturally embedded in the unit circle in ℂ and we show that it is equidistributed with respect to inclusion as ordered by the absolute Weil height. By Hilbert's Theorem 90, an element in [Formula: see text] can be written as [Formula: see text] for some [Formula: see text], which yields another ordering of [Formula: see text] given by the minimal norm of the associated algebraic integers. When K is
APA, Harvard, Vancouver, ISO, and other styles
44

Boyd, David W., Karma Dajani, and Cor Kraaikamp. "Ergodic Theory of Numbers." American Mathematical Monthly 111, no. 7 (2004): 633. http://dx.doi.org/10.2307/4145181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Williams, Patricia J., and Ruth Colker. "Theory by the Numbers." Women's Review of Books 12, no. 9 (1995): 9. http://dx.doi.org/10.2307/4022086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nadler, Sam B. "Continuum Theory and Graph Theory: Disconnection Numbers." Journal of the London Mathematical Society s2-47, no. 1 (1993): 167–81. http://dx.doi.org/10.1112/jlms/s2-47.1.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gode, Deepak Bhalchandra. "Complex Number Theory without Imaginary Number (i)." OALib 01, no. 07 (2014): 1–13. http://dx.doi.org/10.4236/oalib.1100856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bergelson, Vitaly, Nikos Frantzikinakis, Terence Tao, and Tamar Ziegler. "Arbeitsgemeinschaft: Ergodic Theory and Combinatorial Number Theory." Oberwolfach Reports 9, no. 4 (2012): 2985–3059. http://dx.doi.org/10.4171/owr/2012/50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ammari, Habib, Liliana Borcea, Thorsten Hohage, and Barbara Kaltenbacher. "Arbeitsgemeinschaft: Ergodic Theory and Combinatorial Number Theory." Oberwolfach Reports 9, no. 4 (2012): 3061–127. http://dx.doi.org/10.4171/owr/2012/51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Volovich, Igor V. "Number theory as the ultimate physical theory." P-Adic Numbers, Ultrametric Analysis, and Applications 2, no. 1 (2010): 77–87. http://dx.doi.org/10.1134/s2070046610010061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!