Dissertations / Theses on the topic 'Numbers and Geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Numbers and Geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rivard-Cooke, Martin. "Parametric Geometry of Numbers." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38871.
Full textLandstedt, Erik. "Parametric Geometry of Numbers and Exponents of Diophantine Approximation." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388506.
Full textHolmin, Samuel. "Geometry of numbers, class group statistics and free path lengths." Doctoral thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177888.
Full textQC 20151204
Thiel, Carsten [Verfasser], and Martin [Akademischer Betreuer] Henk. "Adelic convex geometry of numbers / Carsten Thiel. Betreuer: Martin Henk." Magdeburg : Universitätsbibliothek, 2014. http://d-nb.info/1054638128/34.
Full textPham, Van Anh. "Loop Numbers of Knots and Links." TopSCHOLAR®, 2017. http://digitalcommons.wku.edu/theses/1952.
Full textHahn, Marvin Anas Verfasser], and Hannah [Akademischer Betreuer] [Markwig. "Combinatorics and degenerations in algebraic geometry : Hurwitz numbers, Mustafin varieties and tropical geometry / Marvin Anas Hahn ; Betreuer: Hannah Markwig." Tübingen : Universitätsbibliothek Tübingen, 2018. http://d-nb.info/1199355968/34.
Full textConley, Randolph M. "A survey of the Minkowski?(x) function." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=3055.
Full textMohammed, Dilbak. "Generalised Frobenius numbers : geometry of upper bounds, Frobenius graphs and exact formulas for arithmetic sequences." Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/98161/.
Full textShaughnessy, John F. "Finding Zeros of Rational Quadratic Forms." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/849.
Full textJohnson, Jamie. "Continued Radicals." TopSCHOLAR®, 2005. http://digitalcommons.wku.edu/theses/240.
Full textAlbuquerque, JoÃo Victor Maximiano. "Finitude do grupo das classes de um corpo de nÃmeros via empacotamentos reticulados." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11247.
Full textEste trabalho à baseado no artigo Finiteness of the class group of a number field via lattice packings. Daremos aqui uma prova alternativa da finitude do grupo das classes de um corpo de nÃmeros de grau n. Ela à baseada apenas no fato de que a densidade de centro de um empacotamento reticulado n-dimensional à limitado fora do infinito.
This work is based on the article Finiteness of the class group of a number field via lattice packings. An alternative proof of the finiteness of the class group of a number field of the degree n is presented. It is based solely on the fact that the center density of an n-dimensional lattice packing is bounded away from infinity.
Sengupta, Indranath. "Betti Numbers, Grobner Basis And Syzygies For Certain Affine Monomial Curves." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/271.
Full textLima, Claudio Woerle [UNESP]. "Representações dos números racionais e a medição de segmentos: possibilidades com tecnologias informáticas." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/91103.
Full textSee-Sp
Essa pesquisa investiga as contribuições que a exploração dos números racionais como medidas de segmentos, em um programa de geometria dinâmica, podem trazer ao entendimento de frações, decimais e da reta numérica entre outras representações dos racionais. A pesquisa se fundamenta em evidências históricas e resultados de pesquisas que mostram a importância do significado de medida para o entendimento dos números. Através das tecnologias informáticas viu-se uma alternativa para a exploração da medida de segmentos. Essa pesquisa é baseada no processo de medição de segmentos, em teorias sobre visualização, experimentação e representações múltiplas. Também se inspira em preceitos construcionistas. Essa investigação qualitativa se baseou na metodologia de experimentos de ensino, em que foram formados dois grupos com alunos de 6ª série / 7º ano do ensino fundamental de uma escola pública estadual do interior de São Paulo. Esses grupos participaram de encontros em que foram desenvolvidas atividades que envolviam: divisão de segmentos; frações como medidas de segmentos; operações de adição e subtração de frações utilizando os segmentos; processo de medição para criação dos números decimais; relações entre decimais e frações; adição e subtração dos números decimais; adição e subtração de frações e decimais. As atividades realizadas se basearam nos recursos de visualização e experimentação proporcionadas pelo software de geometria dinâmica Régua e Compasso. O trabalho evidenciou a importância da aprendizagem das representações múltiplas dos números racionais e como as tecnologias informáticas (computadores, software de geometria e calculadoras) podem atuar nessa aprendizagem. A pesquisa também evidência que a utilização de recursos tecnológicos pode modificar a matemática da sala de aula, proporcionando aos estudantes...
This research investigates the contributions that the exploration of rational numbers as measure of segments, using geometry dynamic software, can introduce into the understanding of fractions, decimal numbers and the number line, amongst other rational number representations. The research is motivated by both historical evidence and evidence from the research literature showing the importance of the measure meaning to the understanding of rational numbers. Digital technologies offer an alternative method for the exploration of segments measure, as yet underexplored in the field of mathematics education. This research is based on an approach to numbers as measurements of segments, which draws from theories emphasizing the role of visualization, experimentation and multiple representations in mathematics learning. It is also inspired by a constructionist perspective. The qualitative investigation made use of the teaching experiment methodology, in that two groups were formed with students of 6th grade / 7th year within an elementary school of a public school in the state of São Paulo. These groups took part in research sessions where they developed activities that involve: division of segments; fractions as measure of segments; operations of addition and subtraction of fraction using segments; measurement for decimal numbers creation; relations between decimal numbers and fractions; addition and subtraction of decimal numbers; addition and subtraction of fractions and decimal numbers. The activities exploited the resources visualization and experimentation proportioned by the dynamic geometry software “Compass and Rule”. Analyses of the data collected pointed to the importance of the understanding of multiple representations for rational numbers and to the role that digital technologies (computers, geometry software and calculators) can play in this learning. This research, also, ... (Complete abstract click electronic access below)
Koc, Betul. "From Numbers To Digits: On The Changing Role Of Mathematics In Architecture." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609645/index.pdf.
Full texts affiliation with mathematics and geometry both as practical instrument and theoretical reference. The thesis claims that mathematics and its methodological structure provided architects with an ultimate foundation and a strong reference outside architecture itself ever since the initial formations of architectural discourse. However, the definitive assumptions and epistemological consequences of this grounding in mathematical clarity, methodological certainty and instrumental precision gain a new insight with the introduction of digital technologies. Since digital technologies offer a new formation for this affiliation either with their claim of a better geometric representation or mathematical controllability of physical reality (space), the specific focus on these newly emerging technologies will be developed within a theoretical frame presenting the significant points of mathematics in architecture.
Oliveira, Stanley Borges de. "Números complexos e geometria." Universidade Estadual da Paraíba, 2014. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2340.
Full textApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-06-13T20:37:16Z (GMT) No. of bitstreams: 2 PDF - Stanley Borges de Oliveira.pdf: 3340773 bytes, checksum: de816c79a26915787dd60d54ce472134 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2016-07-21T20:49:44Z (GMT). No. of bitstreams: 2 PDF - Stanley Borges de Oliveira.pdf: 3340773 bytes, checksum: de816c79a26915787dd60d54ce472134 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-07-25
In the presentdissertation we study complex numbers with a special attention to the geometric aspect. Many geometric problems can be answered using the algebraic notation of complex numbers with their rich geometric interpretations with relative ease. The geometric aspects of the complex numbers are often not taught in high school, not even the trigonometric form (or polar form). Therefore, students do not apply the knowledge of complex numbers to solve geometric problems. In this paper we will approach the complex numbers applied to solve both geometric as algebraic problems, making relate geometric concepts with algebraic concepts of complex numbers, and launched as a proposal to develop the ability of students to relate mathematical content offering opportunity of even better fix the concepts of complex numbers.
No presente trabalho de conclusão de curso trataremos sobre os números complexos com uma atenção especial ao seu aspecto geométrico. Alguns problemas geométricos podem ser solucionados usando a notação algébrica dos números complexos com ajuda das suas ricas interpretações geométricas com certa facilidade. O aspecto geométrico dos números complexos muitas vezes não é ensinado no ensino médio, nem sequer a forma trigonométrica (ou polar). Por essa razão, os alunos não aplicam os conhecimentos de números complexos para resolver problemas geométricos. Em muitos casos, essa abordagem vem a facilitar a resolução das soluções. Neste trabalho faremos uma abordagem dos números complexos aplicados para resolver problemas, ora geométricos, ora algébricos, fazendo relacionar os conceitos geométricos com os conceitos algébricos dos números complexos e vice versa, e lançamos como proposta para desenvolver a habilidade dos alunos em relacionar os conteúdos matemáticos oferecendo oportunidade dos mesmo fixarem melhor conceitos dos números complexos.
Collazo, Antonio. "The Mathematical Landscape." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/cmc_theses/116.
Full textFeitosa, Laércio Francisco. "Aplicações dos números complexos na geometria." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7381.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The teaching of Complex Numbers is based almost exclusively on an algebraic approach, although the geometric approach of complex numbers is contemplated in the study of its polar form (or trigonometric). The purpose of this paper is to present some significant applications of complex numbers in plane geometry, making thus a contrast to this view strictly algebraic and formal, that has traditionally characterized the teaching of these numbers. We'll cover some classical theorems of geometry and some geometric problems, evaluating the efficiency of complex numbers as a tool to demonstrate the theorems and results relevant to the resolution of such problems. Some of the theorems selected in our study were: Napoleon's Theorem, the Circle of Nine Points and Simson Line.
O ensino dos números complexos baseia-se quase que exclusivamente em uma abordagem algébrica. Embora, a abordagem geométrica dos números complexos estejá contemplada no estudo da sua forma polar (ou trigonométrica).O propósito deste trabalho é apresentar algumas aplicações significativas dos números complexos na geometria plana, fazendo assim uma contraposição a essa visão estritamente algébrica e formal que tradicionalmente caracteriza o ensino dos números complexos. Com esse objetivo, vamos abordar alguns teoremas clássicos da geometria e alguns problemas geométricos, avaliando a eficiência dos números complexos como ferramenta para demonstrar os teoremas e os resultados pertinentes a resolução de tais problemas. Alguns dos teoremas selecionados foram : o Teorema de Napoleão, o Círculo dos Nove Pontos e a Reta de Simson.
Caldeira, Cláudia Rosana da Costa. "Números complexos : uma proposta geométrica." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/77729.
Full textThis master’s degree thesis shows the results from the application of a didactic sequence, which focused on the development of activities regarding Complex Numbers. The research was carried out during nine weekly meetings at the Instituto Federal Sul-rio-grandense in Pelotas/RS, in a 1st year class from the Secondary Technical School in Electronics. Initially, a review of the theme was carried out using the analysis of the National Curriculum Parameters for secondary schools not only from various course books but also from studies regarding the topic. In order to use the activities in the classroom, the association of ordered pairs and their respective points plan were considered as well as the association of the sum and subtraction of the ordered pairs with the sum and subtraction of vectors. The imaginary unit i was defined as point (0,1) and after this, the operations in algebraic form were dealt with. This work was based on Raymond Duval’s Semiotic Representation Register Theory, which deals with the cognitive aspects related to the acquisition of mathematical knowledge. The data collection was carried out using the notes made by the researcher, by filming the meetings and using the material produced by the students during the classes. After the 9 (nine) meetings, students carried out a written assessment in which the obtained results were considered satisfactory. The effort made by the students was also verified during the performance of different tasks, which supported this research.
Bougard, Nicolas. "Regular graphs and convex polyhedra with prescribed numbers of orbits." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210688.
Full text(s,a)=(1,0) si k=0,
(s,a)=(1,1) si k=1,
s=a>0 si k=2,
0< s <= 2a <= 2ks si k>2.
(resp.
(s,a)=(1,0) si k=0,
(s,a)=(1,1) si k=1 ou 2,
s-1<=a<=(k-1)s+1 et s,a>0 si k>2.)
Nous étudions les polyèdres convexes de R³ dans le second chapitre. Pour tout polyèdre convexe P, nous notons Isom(P) l'ensemble des isométries de R³ laissant P invariant. Si G est un sous-groupe de Isom(P), le f_G-vecteur de P est le triple d'entiers (s,a,f) tel que G ait exactement s orbites sur l'ensemble sommets de P, a orbites sur l'ensemble des arêtes de P et f orbites sur l'ensemble des faces de P. Remarquons que (s,a,f) est le f_{id}-vecteur (appelé f-vecteur dans la littérature) d'un polyèdre si ce dernier possède exactement s sommets, a arêtes et f faces. Nous généralisons un théorème de Steinitz décrivant tous les f-vecteurs possibles. Pour tout groupe fini G d'isométries de R³, nous déterminons l'ensemble des triples (s,a,f) pour lesquels il existe un polyèdre convexe ayant (s,a,f) comme f_G-vecteur. Ces résultats nous permettent de caractériser les triples (s,a,f) pour lesquels il existe un polyèdre convexe tel que Isom(P) a s orbites sur l'ensemble des sommets, a orbites sur l'ensemble des arêtes et f orbites sur l'ensemble des faces.
La structure d'incidence I(P) associée à un polyèdre P consiste en la donnée de l'ensemble des sommets de P, l'ensemble des arêtes de P, l'ensemble des faces de P et de l'inclusion entre ces différents éléments (la notion de distance ne se trouve pas dans I(P)). Nous déterminons également l'ensemble des triples d'entiers (s,a,f) pour lesquels il existe une structure d'incidence I(P) associée à un polyèdre P dont le groupe d'automorphismes a exactement s orbites de sommets, a orbites d'arêtes et f orbites de sommets.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Naves, Lígia Rodrigues Bernabé 1982. "A densidade de empacotamentos esfericos em reticulados." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306625.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-15T04:07:16Z (GMT). No. of bitstreams: 1 Naves_LigiaRodriguesBernabe_M.pdf: 1248780 bytes, checksum: a87e22d1d349ffc57557fdb83454f7d3 (MD5) Previous issue date: 2009
Resumo: Neste trabalho, estudamos a teoria de reticulados com foco na densidade de empacotamento, a qual possui várias aplicações e possibilita estabelecer interessantes conexões entre tópicos de álgebra linear, cálculo de várias variáveis e geometria discreta. No primeiro capítulo, introduzimos conceitos fundamentais sobre reticulados. No segundo capítulo, abordamos a densidade de empacotamentos esféricos e analisamos a importância e a dificuldade de se conhecer os empacotamentos mais densos. Discutimos também exemplos de reticulados com densidade máxima em suas dimensões. No terceiro capítulo, detalhamos a demonstração do teorema de Minkowski - Hlawka, que fornece um limitante inferior para a densidade de empacotamentos reticulados. Apresentamos também o problema dos fat struts, que tem origem em teoria de comunicação e que se relaciona com a busca de reticulados-projeção de densidade máxima
Abstract: This dissertation addresses the lattice theory with focus on packing density, which has many applications and allows to establish interesting connections between topics of linear algebra, calculus of several variables and discrete geometry. The first chapter is an introduction to the main concepts and properties of lattices. In the second chapter we discuss the sphere packing density problem, its importance and the difficulty in finding denser packings. Examples of lattices with maximum density are analyzed for lower dimensions. In the third chapter we detail the proof of the theorem of Min-kowski - Hlawka which provides a lower bound for lattice packing density of lattices in any dimension. We also present the problem of the fat struts which comes from communication theory and is related to the search for denser projection lattices
Mestrado
Geometria Topologia
Mestre em Matemática
Kloster, Gilmar. "NÚMEROS COMPLEXOS E GEOMETRIA PLANA." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2014. http://tede2.uepg.br/jspui/handle/prefix/1525.
Full textComplex numbers have applications both in mathematics and in other areas of knowledge. But in high school, at which time the student begins the study of this set of numbers, they are taught with emphasis on algebraic manipulations, leaving only the geometric applications reduced the representation of points in the complex plane. In many cases, even this geometric application is addressed. This work aims to address the set of complex numbers using the geometry, enhancing the visualization of some results in GeoGebra, to provide more meaningful to the student learning.
Os números complexos possuem aplicações tanto na matemática como em outras áreas do conhecimento. Porém no ensino médio, momento em que o aluno inicia o estudo deste conjunto numérico, eles são ensinados dando ênfase as manipulações algébricas, deixando as aplicações geométricas reduzidas apenas a representação de pontos no plano complexo. Em muitos casos, nem mesmo esta aplicação geométrica é abordada. Este trabalho tem por objetivo abordar o Conjunto dos Números complexos utilizando a geometria, valorizando a visualização de alguns resultados no GeoGebra, para proporcionar à aprendizagem mais significativa ao aluno.
Lima, Claudio Woerle. "Representações dos números racionais e a medição de segmentos : possibilidades com tecnologias informáticas /." Rio Claro : [s.n.], 2010. http://hdl.handle.net/11449/91103.
Full textBanca: Marcelo de Carvalho Borba
Banca: Siobhan Victoria Healy
Resumo: Essa pesquisa investiga as contribuições que a exploração dos números racionais como medidas de segmentos, em um programa de geometria dinâmica, podem trazer ao entendimento de frações, decimais e da reta numérica entre outras representações dos racionais. A pesquisa se fundamenta em evidências históricas e resultados de pesquisas que mostram a importância do significado de medida para o entendimento dos números. Através das tecnologias informáticas viu-se uma alternativa para a exploração da medida de segmentos. Essa pesquisa é baseada no processo de medição de segmentos, em teorias sobre visualização, experimentação e representações múltiplas. Também se inspira em preceitos construcionistas. Essa investigação qualitativa se baseou na metodologia de experimentos de ensino, em que foram formados dois grupos com alunos de 6ª série / 7º ano do ensino fundamental de uma escola pública estadual do interior de São Paulo. Esses grupos participaram de encontros em que foram desenvolvidas atividades que envolviam: divisão de segmentos; frações como medidas de segmentos; operações de adição e subtração de frações utilizando os segmentos; processo de medição para criação dos números decimais; relações entre decimais e frações; adição e subtração dos números decimais; adição e subtração de frações e decimais. As atividades realizadas se basearam nos recursos de visualização e experimentação proporcionadas pelo software de geometria dinâmica "Régua e Compasso". O trabalho evidenciou a importância da aprendizagem das representações múltiplas dos números racionais e como as tecnologias informáticas (computadores, software de geometria e calculadoras) podem atuar nessa aprendizagem. A pesquisa também evidência que a utilização de recursos tecnológicos pode modificar a matemática da sala de aula, proporcionando aos estudantes ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: This research investigates the contributions that the exploration of rational numbers as measure of segments, using geometry dynamic software, can introduce into the understanding of fractions, decimal numbers and the number line, amongst other rational number representations. The research is motivated by both historical evidence and evidence from the research literature showing the importance of the measure meaning to the understanding of rational numbers. Digital technologies offer an alternative method for the exploration of segments measure, as yet underexplored in the field of mathematics education. This research is based on an approach to numbers as measurements of segments, which draws from theories emphasizing the role of visualization, experimentation and multiple representations in mathematics learning. It is also inspired by a constructionist perspective. The qualitative investigation made use of the teaching experiment methodology, in that two groups were formed with students of 6th grade / 7th year within an elementary school of a public school in the state of São Paulo. These groups took part in research sessions where they developed activities that involve: division of segments; fractions as measure of segments; operations of addition and subtraction of fraction using segments; measurement for decimal numbers creation; relations between decimal numbers and fractions; addition and subtraction of decimal numbers; addition and subtraction of fractions and decimal numbers. The activities exploited the resources visualization and experimentation proportioned by the dynamic geometry software "Compass and Rule". Analyses of the data collected pointed to the importance of the understanding of multiple representations for rational numbers and to the role that digital technologies (computers, geometry software and calculators) can play in this learning. This research, also, ... (Complete abstract click electronic access below)
Mestre
Figueiredo, Marcelo Cunha. "Fundamentos da geometria euclidiana para o ensino dos números reais." Universidade Federal de Juiz de Fora, 2014. https://repositorio.ufjf.br/jspui/handle/ufjf/824.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-02-26T14:09:07Z (GMT) No. of bitstreams: 1 marcelocunhafigueiredo.pdf: 1448320 bytes, checksum: d5d065ce34898025ffe848fe7561fe67 (MD5)
Made available in DSpace on 2016-02-26T14:09:07Z (GMT). No. of bitstreams: 1 marcelocunhafigueiredo.pdf: 1448320 bytes, checksum: d5d065ce34898025ffe848fe7561fe67 (MD5) Previous issue date: 2014-02-27
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O presente trabalho tem por finalidade mostrar uma metodologia de ensino dos números reais com base em fundamentos da Geometria Euclidiana. A régua e o compasso serão instrumentos de grande importância na construção dos conjuntos numéricos. Partindo das imagens geométricas dos números naturais e das operações entre seus elementos, iremos, gradativamente, construindo o conjunto dos números inteiros e dos racionais. Provaremos a existência de números que não são racionais e uma característica desses números que os livros didáticos, em sua maioria, não abordam: a questão da densidade dos conjuntos dos números racionais e irracionais no conjunto dos reais. A geometria euclidiana como suporte nos números reais facilita o entendimento do aluno e traz dinâmica nas operações entre esses números. Apresentamos também uma possibilidade de continuação da proposta de trabalho.
This paper aims to show a teaching methodology of real numbers on the grounds of Euclidean geometry. The ruler and compass are instruments of great importance in the construction of numerical sets. Based on the geometric images of the natural numbers and operations between its elements, we will gradually building the set of integers and rational numbers. We prove the existence of numbers that are not rational and a propertie of those numbers that textbooks mostly do not address: the question of density of the sets of rational and irrational in the set of real numbers. Euclidean geometry as real numbers in support facilitates student understanding and produces dynamic operations between these numbers. We also present a possible continuation of the proposed work.
Xue, Fei [Verfasser], Martin [Akademischer Betreuer] Henk, Martin [Gutachter] Henk, Cifre María A. [Gutachter] Hernández, and Iskander [Gutachter] Aliev. "Convex geometry of numbers: covering, successive minima and Banach-Mazur distance / Fei Xue ; Gutachter: Martin Henk, María A. Hernández Cifre, Iskander Aliev ; Betreuer: Martin Henk." Berlin : Technische Universität Berlin, 2019. http://d-nb.info/1196688648/34.
Full textSantos, Júlio César Amaral dos. "Números complexos aplicados à geometria." Universidade Federal de Juiz de Fora, 2014. https://repositorio.ufjf.br/jspui/handle/ufjf/788.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-02-26T13:31:01Z (GMT) No. of bitstreams: 1 juliocesaramaraldossantos.pdf: 681712 bytes, checksum: a8cc889d8be4662ca3c5217acb432f41 (MD5)
Made available in DSpace on 2016-02-26T13:31:01Z (GMT). No. of bitstreams: 1 juliocesaramaraldossantos.pdf: 681712 bytes, checksum: a8cc889d8be4662ca3c5217acb432f41 (MD5) Previous issue date: 2014-08-09
Esse trabalho tem como propósito mostrar algumas aplicações básicas dos números complexos na geometria euclidiana plana. Aqui procuramos ilustrar como é possível trabalhar com os números complexos na sua forma geométrica e também vetorial, com o intuito de apresentar uma forma mais concreta de ensino desse conteúdo dentro da educação básica. A versatilidade e aplicabilidade dos números complexos são apresentadas de uma forma acessível tanto a professores quanto à alunos. A maioria das demonstrações geométricas sugeridas são simples e podem ser facilmente trabalhadas com alunos da educação básica, visto que os conceitos geométricos abordados se resumem ao conteúdo apresentado nas escolas durante o ensino fundamental. Buscamos em diversas situações estabelecer comparações entre o algébrico e o geométrico, com o intuito de que os alunos entendessem que essas duas áreas, ao contrário do que a maioria deles imagina, possuem diversas relações e podem ser facilmente trabalhadas juntas.
This work aims to show some basic applications of complex numbers in plane Euclidean geometry. Here we seek to illustrate how you can work with complex numbers on geometric and also vector form, in order to present a more concrete way of teaching that content in the basic education. The versatility and applicability of complex numbers are presented in an accessible way to both teachers and students. Most of the geometrical demonstrations suggested are simple and can be easily worked with elementary education students, since geometrical concepts discussed are summarized to the content presented in schools during elementary school. We seek to establish, in several situations, comparisons between the algebraic and geometric, with the intention that students understand that these two areas, unlike most of them think, have different relations and can be easily studied together.
Hedmark, Dustin g. "The Partition Lattice in Many Guises." UKnowledge, 2017. http://uknowledge.uky.edu/math_etds/48.
Full textSegarra, Escandón Jaime Rodrigo. "Pre-service teachers' mathematics teaching beliefs and mathematical content knowledge." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/671686.
Full textEl estudio del conocimiento matemático y las creencias de la eficacia de la enseñanza de las matemáticas en la formación inicial de los futuros maestros es fundamental, ya que influye en el rendimiento académico de los estudiantes. El objetivo de esta tesis es estudiar tanto el conocimiento matemático inicial de los futuros maestros como sus creencias sobre la eficacia matemática y su actitud hacia las matemáticas. Para cumplir con el objetivo se realiza varias investigaciones. Primero, se estudia los conocimientos iniciales de números y geometría de los estudiantes de primer año del Grado de Educación Primaria en la Universidad Rovira y Virgili (URV). En segundo lugar, se estudia las creencias de la eficacia de la enseñanza de las matemáticas de los futuros maestros a lo largo del grado. Tercero, esta Tesis compara la autoeficacia y la expectativa de resultados de la enseñanza de las matemáticas de futuros maestros, maestros novatos y maestros experimentados. Cuarto, se estudia la relación entre las creencias de la enseñanza de las matemáticas, la actitud hacia las matemáticas y su rendimiento académico. Quinto, se estudia la influencia de los factores experiencia docente, nivel de educación y nivel de enseñanza, sobre las creencias de la eficacia de la enseñanza de las matemáticas en maestros en servicio. Finalmente, se compara la autoeficacia de la enseñanza de las matemáticas entre los estudiantes de cuarto año del grado de maestro en la Universidad del Azuay y en la URV. Los resultados de esta Tesis ofrecen información potencialmente importante sobre el conocimiento matemático, las creencias, la autoeficacia de la enseñanza de las matemáticas y la actitud hacia las matemáticas de los futuros maestros y maestros en servicio. Estos resultados pueden ayudar a desarrollar políticas adecuadas para diseñar planes de estudios y también asesorar a los profesores de los grados de maestro en las instituciones de educación superior.
The study of mathematical content knowledge and teachers’ mathematics teaching beliefs of the pre-service teachers is fundamental, since it influences the academic performance of students. The objective of this Thesis is to study the initial mathematical knowledge of pre-service teachers and also their teachers’ mathematics teaching beliefs and their attitude towards mathematics. To meet the objective, various investigations are carried out. First, the initial knowledge of numbers and geometry of first-year students of the primary education degree at the Rovira and Virgili University (URV) is studied. Second, pre-service teachers’ mathematics teaching beliefs are studied throughout the grade. Third, this Thesis compares the self-efficacy and the expectation of results of the teaching of mathematics of pre-service teachers, novice in-service teachers and experienced in-service teachers. Fourth, the relationship between the teachers’ mathematics teaching beliefs, the attitude towards mathematics and their academic performance is studied. Fifth, the influence of the factors teaching level factor and level of training on the teachers’ mathematics teaching beliefs of in-service teachers is studied. Finally, the self-efficacy of mathematics teaching of fourth-year students at the Azuay University and at the URV is compared. The results of this Thesis offer potentially important information on the mathematical knowledge, beliefs, self-efficacy of mathematics teaching and the attitude towards mathematics of pre-service teachers and in-service teachers. These results can help develop policies for curriculum developers and teaching professors at institutes of higher education.
Silva, Hércules do Nascimento. "Poliedros Regulares no Ensino Médio." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/8042.
Full textMade available in DSpace on 2016-03-28T12:29:14Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 800250 bytes, checksum: 42e76ab05ea580b4fd24a3312b9b4212 (MD5) Previous issue date: 2014-08-29
In this work we present a study of the regular polyhedra, comparing and discussing the concepts and de nitions given in the study of regular polyhedra in textbooks most widely used in Brazilian high schools. We prove the theorem of Euler, we calculate surface areas and volumes of regular polyhedra. Finally, we present some mathematical software that can be used by students and mathematics teachers in the spatial geometry classes as auxiliary material in the teaching and learning of this subject in the classroom.
Neste trabalho apresentamos um estudo sobre os poliedros regulares, comparando e discutindo os conceitos e as de nições que são dadas no estudo dos poliedros regulares nos livros didáticos mais utilizados nas escolas brasileiras de Ensino Médio. Provamos o teorema de Euler, calculamos áreas de superfícies e os volumes dos poliedros regulares. Por m, apresentamos alguns softwares matemáticos que podem ser utilizados pelos alunos e professores de Matemática nas aulas de geometria espacial como material auxiliar no processo de ensino e aprendizagem deste tema em sala de aula.
Silva, Emerson José da. "As construções geométricas via geometria dinâmica do software régua e compasso." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/3982.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-01-28T12:58:40Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Emerson José da Silva - 2014.pdf: 7690015 bytes, checksum: 913769b0dd5913e4688da0ec1491b760 (MD5)
Made available in DSpace on 2015-01-28T12:58:40Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Emerson José da Silva - 2014.pdf: 7690015 bytes, checksum: 913769b0dd5913e4688da0ec1491b760 (MD5) Previous issue date: 2014-08-21
In this work we revisit the subject Geometric Constructions into ruler and compass, using the dynamic geometry software 'Ruler and Compass' as an auxiliary tool in the teaching and learning of geometry, building examples and suggestions for activities with the software. Brought to the fore the possibility of building into ruler and compass, solutions to several problems that can be presented as algebraic expressions. Yet addressed the possibility of constructing a number, using only ruler and compass and discuss the famous and historical problems of geometrical construction: doubling the cube, squaring the circle and the trisection of the angle. We add appendices which present other possible constructions and also bring suggestions for activities with ruler and compass software. Keywords
Neste trabalho revisitamos o assunto Construções Geométricas via régua e compasso, utilizando o software de Geometria Dinâmica ‘Régua e Compasso’ como uma ferramenta auxiliar no ensino e aprendizagem de Geometria, construindo exemplos e sugestões de atividades com o software. Trouxemos à tona a possibilidade da construção, via régua e compasso, de soluções para vários problemas que podem ser apresentados por expressões algébricas. Abordamos ainda a possibilidade da construção de um número, utilizando-se apenas a régua e o compasso e discutimos os célebres e históricos problemas de construção geométrica: duplicação do cubo, quadratura do círculo e trissecção do ângulo. Acrescemos ainda apêndices onde apresentamos outros tipos de construções possíveis e também trazemos sugestões de atividades com o software ‘Régua e Compasso’.
Poëls, Anthony. "Applications de la géométrie paramétrique des nombres à l'approximation diophantienne." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS115/document.
Full textGiven a real number ξ which is not algebraic of degree ≤ 2 one may defineseveral diophantine exponents which measure how “well” the vector (1, ξ, ξ ²) can be approximated by subspaces of fixed dimension defined over ℚ. This thesis is part of the study of these diophantine exponents and their spectra. Using the parametric geometry of numbers, we construct a new family of numbers – called numbers of sturmian type – and we provide an almost complete description of the associated 3-system. As a consequence, we determine the value of the classical exponents for numbers of sturmian type, and we obtain new information on their joint spectra. We also take into consideration a more general problem consisting in describing a 3-system associated with a vector (1, ξ, ξ²). For instance we formulate special constraints which do not exist for a general vector (1, ξ, η) and we also clarify connections between a 3-system which represents ξ and the sequence of minimal points associated to ξ. Under a specific recurrence relation hypothesis on the sequence of minimal points, we show that the previous 3-system has the shape of a 3-system associated to a number of sturmian type
Justino, Gildeci José. "A característica de Euler." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7471.
Full textApproved for entry into archive by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-18T18:15:19Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 13930019 bytes, checksum: d5e52fb67904848f89fafaf5ec93c06d (MD5)
Made available in DSpace on 2015-05-18T18:15:19Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 13930019 bytes, checksum: d5e52fb67904848f89fafaf5ec93c06d (MD5) Previous issue date: 2013-09-24
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This dissertation is focused on the Euler's theorem for polyhedra homeomorphic to the sphere. Present statements made by Cauchy, Poincaré and Legendre. As a consequence we show that there are only ve regular convex polyhedra, called polyhedra Plato.
Esta dissertação tem como tema central o Teorema de Euler para poliedros homeomorfos à esfera. Apresentamos demonstrações feitas por Cauchy, Poincaré e Legendre. Como consequência mostramos a existência de apenas cinco poliedros convexos regulares, os chamados poliedros de Platão.
Marnat, Antoine. "Sur le spectre des exposants d'approximation diophantienne classiques et pondérés." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD042/document.
Full textGiven a n-tuple of real numbers, seen as a point in the projective space, one can define for eachindex d between 0 and n-1 two exponents of diophantine approximation (an ordinary and auniform) which measure the approximability of this n-tuple by rational subspaces of dimension d inthe projective space. These 2n exponents are not independant. This thesis is part of the study fromthe spectrum of all or part of these exponents, which have been much studied recently. We userecent tools coming from the parametric geometry of numbers to study the spectrum of the uniformexponents, and deal with a twisted case in dimension two
Sezgin, S. "The unrestricted blocking number in convex geometry." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/19509/.
Full textCarroll, Kathleen Mary. "Determining the number of loops of regular polygons /." Norton, Mass. : Wheaton College, 2010. http://hdl.handle.net/10090/15512.
Full textGonçalves, Junior Eduardo Manuel. "Aspectos computacionais na geometria da espiral de Teodoro." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/7647.
Full textMade available in DSpace on 2015-11-25T14:11:47Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 21722062 bytes, checksum: bb67c86f0d2ae8a89632226cb61b3636 (MD5) Previous issue date: 2015-02-24
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The present work is a study of Teodoro spiral, for the geometric aspects of the curve. At rst, the construction of Teodoro spiral in two and three dimensions is made. And through the softwares, GeoGebra and wxMaxima were developed respectively, the geometric constructions and the necessary calculations. With the possession of the spiral of concatenation, observe the pattern of behavior of growth and position, the collared peccary in the n - th triangle. Going through measurements of Teodoro spiral with other spirals such as the Archimedean, we come to denote behavior patterns in expanding spiral. The following is an arithmetic study on the spiral obtained by the length of the branches of the same, both perfect and imperfect hits with square also spaced apart relationship between them allows us to observe numbers as the . The distribution of prime numbers is seen as the nal part of this study, where you see speculatively allowing the formation of new curves on the spiral, as parabolas.
O presente trabalho faz um estudo da espiral de Teodoro, no tocante aos aspectos geométricos da curva. De início, é feita a construção da espiral de Teodoro em duas e três dimensões. E por meio dos softwares, GeoGebra e wxMaxima, foram desenvolvidas respectivamente, as construções geométricas e os cálculos necessários. Com a posse da concatenação da espiral, observa-se o comportamento do padrão de crescimento e posição, do cateto no enésimo triângulo. Passando por aferições da espiral de Teodoro com outras espirais, como por exemplo a arquimediana, chega-se a denotar padrões de comportamento na expansão da espiral. A seguir, é mostrado um estudo aritmético na espiral, obtido através do comprimento dos ramos da mesma, que tanto atinge quadrados perfeitos e imperfeitos como também a relação de afastamento entre eles nos permite observar números como o . A distribuição dos números primos é vista como parte fi nal desse estudo, onde se vê de forma especulativa, possibilitando a formação de novas curvas sobre a espiral, como parábolas.
Svensson, Cecilia. "Taluppfattningens betydelse för elevers matematiska utveckling : En kvantitativ studie i åk 2 av sambandet mellan elevers taluppfattning och deras kunskapsnivå inom aritmetik respektive geometri." Thesis, Karlstads universitet, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-68945.
Full textAbstracts The aim of this study is to investigate the importance of students’ number sense on their geometry and arithmetic skills. The analyzes are based on comparisons of results, from tests in the regular teaching within the two mathematical branches, arithmetic and geometry, and the results from a test, for determining the students’ number sense, that was developed within this study. The survey method used to measure number sense skills were quantitative interviews, where 30 students in grade 2 participated. The interviews were designed as a math conversation based on an interview guide adapted for the age group concerned. The students gathered points by solving tasks at different levels of difficulty. The results were then compiled into an overall result. The results of the three tests were analyzed using statistical tools such as, point diagrams and determination of correlation coefficients. A positive correlation was demonstrated for the correlation between the result the students achieved in the test of number sense and their results in the tests in both arithmetic and geometry. The correlation in this study is stronger for the relationship number sense / geometry, correlation factor 0.73, than for the number sense / arithmetic, correlation factor 0.50. Through the positive correlation that is shown, the findings support the perception that number sense is of major importance to the students’ mathematical development, and this study showed that this relationship is valid not only in the pure counting skills, as arithmetic, but also for skills in geometry.
La, Haye Reuben N. "Quantitative Combinatorial Geometry with Applications to Number Theory and Optimization." Thesis, University of California, Davis, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10165904.
Full textThis dissertation contains a variety of results in quantitative combinatorial geometry, as well as applications to optimization and number theory.
We use Ehrhart theory, the study of the number of lattice points in polytopes, to prove a Rainbow Ramsey analogue of Richard Rado's 1933 result in Ramsey Theory. There were some conjectures as to what this analogue would be; they are disproven by our result. We also prove a few corollaries.
A portion of this dissertation contains new quantitative variants of classical convexity theorems: whereas the classical theorems have hypotheses and conclusions requiring certain sets to be nonempty, their quantitative variants require that the sets have a certain "size" (volume, diameter, etc). The three classical theorems we quantize are Carathéodory's Theorem, Helly's Theorem, and Tverberg's Theorem. The Helly portion contains new non-quantitative results as well. The Tverberg portion proves that any Helly-type theorem implies a corresponding Tverberg-type theorem.
A maximal 1-lattice polytope is a lattice polytope containing exactly one interior lattice point whose facets each contain at least one interior lattice point. In this dissertation, we bound the size of all maximal 1-lattice pyramids and prisms. These bounds may be used with a brute-force algorithm to quickly enumerate all maximal 1-lattice pyramids and prisms up to equivalence.
S-optimization, a generalization of continuous, integer, and mixed-integer optimization in which variables take values from a set S, is introduced and studied in the last part of this dissertation. We generalize two traditional optimization algorithms to S-optimization: the chance-constrained algorithm of Calafiore and Campi, and the sampling algorithm of Clarkson. Interestingly, the complexities of the generalized algorithms are dependent upon the same Helly numbers studied elsewhere in this dissertation.
Cavazza, Niccolò <1983>. "Estimating persistent Betti numbers for discrete shape analysis." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3468/.
Full textPrickett, Martin. "Saturation of Mordell-Weil groups of elliptic curves over number fields." Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/10052/.
Full textPariente, Cesar Alberto Bravo. "Um método probabilístico em combinatória." Universidade de São Paulo, 1996. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07052010-163719/.
Full textThe following work is an effort to present, in survey form, a collection of results that illustrate the application of a certain probabilistic method in combinatorics. We do not present new results in the area; however, we do believe that the systematic presentation of these results can help those who use probabilistic methods comprenhend this useful technique. The results we refer to have appeared over the last decade in the research literature and were used in the investigation of problems which have resisted other, more classical, approaches. Instead of theorizing about the method, we adopted the strategy of presenting three problems, using them as practical examples of the application of the method in question. Surpisingly, despite the difficulty of solutions to these problems, they share the characteristic of being able to be formulated very intuitively, as we will see in Chapter One. We should warn the reader that despite the fact that the problems which drive our discussion belong to such different fields as number theory, geometry and combinatorics, our goal is to place emphasis on what their solutions have in common and not on the subsequent implications that these problems have in their respective fields. Occasionally, we will comment on other potential applications of the tools utilized to solve these problems. The problems which we are discussing can be characterized by the decades-long wait for their solution: the first, from number theory, arose from the research in Fourier series conducted by Sidon at the beginning of the century and was proposed by him to Erdös in 1932. Since 1950, there have been diverse advances in the understanding of this problem, but the result we talk of comes from 1981. The second problem, from geometry, is a conjecture formulated in 1951 by Heilbronn and finally refuted in 1982. The last problem, from combinatorics, is a conjecture formulated by Erdös and Hanani in 1963 that was treated in several particular cases but was only solved in its entirety in 1985.
Nichols, Margaret E. "Intersection Number of Plane Curves." Oberlin College Honors Theses / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1385137385.
Full textGonzález, Alonso Víctor. "Hodge numbers of irregular varieties and fibrations." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/129172.
Full textRassart, Étienne 1975. "Geometric approaches to computing Kostka numbers and Littlewood-Richardson coefficients." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16632.
Full textIncludes bibliographical references (p. 119-125).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Using tools from combinatorics, convex geometry and symplectic geometry, we study the behavior of the Kostka numbers and Littlewood-Richardson coefficients (the type A weight multiplicities and Clebsch-Gordan coefficients). We sh w that both are given by piecewise polynomial functions in the entries of the partitions and compositions parametrizing them, and that the domains of polynomiality form a complex of cones. Interesting factorization patterns are found in the polyomials giving the Kostka numbers. The case of A3 is studied more carefully and involves computer proofs. We relate the description of the domains of polynomiality for the weight multiplicity function to that of the domains for the Duistermaat-Heckman measure from symplectic geometry (a continuous analogue of the weight multiplicity function). As an easy consequence of this work, one obtains simple proofs of the fact the Kostka numbers, and Littlewood-Richardson numbers are given by polynomial functions in the nonnegative integer variable N. Both these results were known previously but have non-elementary proofs involving fermionic formulas for Kostka-Foulkes polynomials and semi-invariants of quivers. Also investigated is a new q-analogue of the Kostant partition function, which is shown to be given by polynomial functions over the relative interiors of the cells of a complex of cones.
(cont.) It arises in the work of Guillemin, Sternberg and Weitsman on quantization with respect to the signature Dirac operator, where they give a formula for the multiplicities of weights in representations associated to twisted signatures of coadjoint orbits which is very similar to the Kostant multiplicity formula, but involves the q = 2 specialization of this q-analogue. We give an algebraic proof of this results, find an analogue of the Steinberg formula for these representations and, in type A, find a branching rule which we can iterate to obtain an analogue of Gelfand-Tsetlin theory.
by Etienne Rassart.
Ph.D.
Epstein, Peter Carleton University Dissertation Computer Science. "Generating geometric objects at random." Ottawa, 1992.
Find full textGusakova, Anna [Verfasser]. "Application of Probability Methods in Number Theory and Integral Geometry / Anna Gusakova." Bielefeld : Universitätsbibliothek Bielefeld, 2018. http://d-nb.info/1174670371/34.
Full textBury, Mark Eric. "Influence of Reynolds number and blade geometry on low pressure turbine performance." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/50310.
Full textPassuello, Alberto. "Semidefinite programming in combinatorial optimization with applications to coding theory and geometry." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00948055.
Full textVonk, Jan Bert. "The Atkin operator on spaces of overconvergent modular forms and arithmetic applications." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:081e4e46-80c1-41e7-9154-3181ccb36313.
Full textSentone, Francielle Gonçalves. "Paradoxos geométricos em sala de aula." Universidade Tecnológica Federal do Paraná, 2017. http://repositorio.utfpr.edu.br/jspui/handle/1/2701.
Full textApresentamos neste trabalho alguns paradoxos lógico-matemáticos, como o paradoxo de Galileu, e também alguns paradoxos geométricos, como os paradoxos de Curry, de Hooper e de Banach-Tarski. Empregamos os paradoxos de Curry e de Hooper para motivar o estudo de conceitos de Geometria e de Teoria dos Números, tais como área, semelhança de triângulos, o Teorema de Pitágoras, razões trigonométricas no triângulo retângulo, o coeficiente angular da reta e a sequência de Fibonacci, e organizamos atividades lúdicas para a sala de aula no Ensino Fundamental e no Ensino Médio.
We present in this work some logical-mathematical paradoxes, as Galileo's paradox, and also some geometric paradoxes, such as Curry's paradox, Hooper's paradox and the Banach-Tarski paradox. We employ the Curry and Hooper paradoxes to motivate the study of concepts of Geometry and Number Theory, such as area, triangle similarity, Pythagorean Theorem, trigonometric ratios in the right triangle, angular coefficient of the line, and Fibonacci sequence, and we organize recreation activities for the classroom in Elementary and High School.
Usatine, Jeremy. "Arithmetical Graphs, Riemann-Roch Structure for Lattices, and the Frobenius Number Problem." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/57.
Full text