To see the other types of publications on this topic, follow the link: Numbers.

Journal articles on the topic 'Numbers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Numbers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bisht, Swati, and Anand Singh Uniyal. "A Curious Connection between Fermats Number and Multiple Factoriangular Numbers." International Journal of Science and Research (IJSR) 10, no. 4 (2021): 539–40. https://doi.org/10.21275/sr21310103215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Montémont, Véronique. "Roubaud’s number on numbers." Journal of Romance Studies 7, no. 3 (2007): 111–21. http://dx.doi.org/10.3828/jrs.7.3.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carbó-Dorca, Ramon. "Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers." Applied Mathematics 13, no. 06 (2022): 538–43. http://dx.doi.org/10.4236/am.2022.136034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Steele, G. Ander. "Carmichael numbers in number rings." Journal of Number Theory 128, no. 4 (2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hofweber, T. "Number Determiners, Numbers, and Arithmetic." Philosophical Review 114, no. 2 (2005): 179–225. http://dx.doi.org/10.1215/00318108-114-2-179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chandrasekaran, Keerthivasan. "The Sequential Even and Odd Number Identification in Decimal Numbers by Formula." International Journal of Science and Research (IJSR) 11, no. 3 (2022): 1415–16. http://dx.doi.org/10.21275/sr22328213735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sudhakaraiah, A., A. Madhankumar, Pagidi Obulesu, and A. Lakshmi Sowjanya. "73 Is the Only Largest Prime Power Number and Composite Power Numbers." International Journal of Science and Research (IJSR) 12, no. 11 (2023): 1318–23. http://dx.doi.org/10.21275/sr231118184617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KÖKEN, Fikri, and Emre KANKAL. "Altered Numbers of Fibonacci Number Squared." Journal of New Theory, no. 45 (December 31, 2023): 73–82. http://dx.doi.org/10.53570/jnt.1368751.

Full text
Abstract:
We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$
APA, Harvard, Vancouver, ISO, and other styles
9

., Jyoti. "Rational Numbers." Journal of Advances and Scholarly Researches in Allied Education 15, no. 5 (2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boast, Carl A., and Paul R. Sanberg. "Locomotor behavior: numbers, numbers, numbers!" Pharmacology Biochemistry and Behavior 27, no. 3 (1987): 543. http://dx.doi.org/10.1016/0091-3057(87)90364-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jędrzejak, Tomasz. "Congruent numbers over real number fields." Colloquium Mathematicum 128, no. 2 (2012): 179–86. http://dx.doi.org/10.4064/cm128-2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fu, Ruiqin, Hai Yang, and Jing Wu. "The Perfect Numbers of Pell Number." Journal of Physics: Conference Series 1237 (June 2019): 022041. http://dx.doi.org/10.1088/1742-6596/1237/2/022041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Day, Sophie, Celia Lury, and Nina Wakeford. "Number ecologies: numbers and numbering practices." Distinktion: Journal of Social Theory 15, no. 2 (2014): 123–54. http://dx.doi.org/10.1080/1600910x.2014.923011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

AKTAŞ, KEVSER, and M. RAM MURTY. "On the number of special numbers." Proceedings - Mathematical Sciences 127, no. 3 (2017): 423–30. http://dx.doi.org/10.1007/s12044-016-0326-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Felka, Katharina. "Number words and reference to numbers." Philosophical Studies 168, no. 1 (2013): 261–82. http://dx.doi.org/10.1007/s11098-013-0129-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

De Koninck, Jean-Marie, and Florian Luca. "Counting the number of economical numbers." Publicationes Mathematicae Debrecen 68, no. 1-2 (2006): 97–113. http://dx.doi.org/10.5486/pmd.2006.3171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fellows, Michael R., Serge Gaspers, and Frances A. Rosamond. "Parameterizing by the Number of Numbers." Theory of Computing Systems 50, no. 4 (2011): 675–93. http://dx.doi.org/10.1007/s00224-011-9367-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Goddard, Cliff. "The conceptual semantics of numbers and counting." Functions of Language 16, no. 2 (2009): 193–224. http://dx.doi.org/10.1075/fol.16.2.02god.

Full text
Abstract:
This study explores the conceptual semantics of numbers and counting, using the natural semantic metalanguage (NSM) technique of semantic analysis (Wierzbicka 1996; Goddard & Wierzbicka (eds.) 2002). It first argues that the concept of a number in one of its senses (number1, roughly, “number word”) and the meanings of low number words, such as one, two, and three, can be explicated directly in terms of semantic primes, without reference to any counting procedures or practices. It then argues, however, that the larger numbers, and the productivity of the number sequence, depend on the conce
APA, Harvard, Vancouver, ISO, and other styles
19

Froman, Robin D. "Numbers, numbers everywhere?" Research in Nursing & Health 27, no. 3 (2004): 145–47. http://dx.doi.org/10.1002/nur.20020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bhutani, Kiran R., and Alexander B. Levin. "Graceful numbers." International Journal of Mathematics and Mathematical Sciences 29, no. 8 (2002): 495–99. http://dx.doi.org/10.1155/s0161171202007615.

Full text
Abstract:
We construct a labeled graphD(n)that reflects the structure of divisors of a given natural numbern. We define the concept of graceful numbers in terms of this associated graph and find the general form of such a number. As a consequence, we determine which graceful numbers are perfect.
APA, Harvard, Vancouver, ISO, and other styles
21

Ndiaye, Mady. "Origin of Sexy Prime Numbers, Origin of Cousin Prime Numbers, Equations from Supposedly Prime Numbers, Origin of the Mersenne Number, Origin of the Fermat Number." Advances in Pure Mathematics 14, no. 05 (2024): 321–32. http://dx.doi.org/10.4236/apm.2024.145018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Thompson, K., J. G. Hodgson, J. P. Grime, I. H. Rorison, S. R. Band, and R. E. Spencer. "Ellenberg numbers revisited." Phytocoenologia 23, no. 1-4 (1993): 277–89. http://dx.doi.org/10.1127/phyto/23/1993/277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Venkateswara Rao, V., and Y. Srinivasa Rao. "Numbers Occupying Universal." International Journal of Scientific Engineering and Research 6, no. 6 (2017): 1–4. https://doi.org/10.70729/ijser151497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kazda, Alexandr, and Petr Kùrka. "Representing real numbers in Möbius number systems." Actes des rencontres du CIRM 1, no. 1 (2009): 35–39. http://dx.doi.org/10.5802/acirm.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Smil, Vaclav. "Unemployment: Pick a number [Numbers Don't Lie]." IEEE Spectrum 54, no. 5 (2017): 24. http://dx.doi.org/10.1109/mspec.2017.7906894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Frougny, Christiane, and Karel Klouda. "Rational base number systems forp-adic numbers." RAIRO - Theoretical Informatics and Applications 46, no. 1 (2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Webb, William A. "The N-Number Game for Real Numbers." European Journal of Combinatorics 8, no. 4 (1987): 457–60. http://dx.doi.org/10.1016/s0195-6698(87)80053-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Daileda, Ryan C., Raju Krishnamoorthy, and Anton Malyshev. "Maximal class numbers of CM number fields." Journal of Number Theory 130, no. 4 (2010): 936–43. http://dx.doi.org/10.1016/j.jnt.2009.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kovács, B. "Representation of complex numbers in number systems." Acta Mathematica Hungarica 58, no. 1-2 (1991): 113–20. http://dx.doi.org/10.1007/bf01903553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jen-Shiun Chiang and Mi Lu. "Floating-point numbers in residue number systems." Computers & Mathematics with Applications 22, no. 10 (1991): 127–40. http://dx.doi.org/10.1016/0898-1221(91)90200-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chang, Ku-Young, and Soun-Hi Kwon. "Class numbers of imaginary abelian number fields." Proceedings of the American Mathematical Society 128, no. 9 (2000): 2517–28. http://dx.doi.org/10.1090/s0002-9939-00-05555-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Figotin, A., A. Gordon, J. Quinn, N. Stavrakas, and S. Molchanov. "Occupancy Numbers in Testing Random Number Generators." SIAM Journal on Applied Mathematics 62, no. 6 (2002): 1980–2011. http://dx.doi.org/10.1137/s0036139900366869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bertin, Marie José, and Toufik Zaïmi. "Complex Pisot numbers in algebraic number fields." Comptes Rendus Mathematique 353, no. 11 (2015): 965–67. http://dx.doi.org/10.1016/j.crma.2015.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

De Koninck, J. M., N. Doyon, and I. Kátai. "Counting the number of twin Niven numbers." Ramanujan Journal 17, no. 1 (2008): 89–105. http://dx.doi.org/10.1007/s11139-008-9127-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Caglayan, Günhan. "Covering a Triangular Number with Pentagonal Numbers." Mathematical Intelligencer 42, no. 1 (2019): 55. http://dx.doi.org/10.1007/s00283-019-09953-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chang, Ku-Young, and Soun-Hi Kwon. "The imaginary abelian number fields with class numbers equal to their genus class numbers." Journal de Théorie des Nombres de Bordeaux 12, no. 2 (2000): 349–65. http://dx.doi.org/10.5802/jtnb.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Adédji, Kouèssi Norbert, Japhet Odjoumani, and Alain Togbé. "Padovan and Perrin numbers as products of two generalized Lucas numbers." Archivum Mathematicum, no. 4 (2023): 315–37. http://dx.doi.org/10.5817/am2023-4-315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

DeGeorges, Kathie M. "Numbers, I Need Numbers!" AWHONN Lifelines 3, no. 2 (1999): 49–50. http://dx.doi.org/10.1111/j.1552-6356.1999.tb01082.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lee, Mercia. "Numbers, numbers all around." Practical Pre-School 2007, no. 75 (2007): 5–6. http://dx.doi.org/10.12968/prps.2007.1.75.38593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Locher, Helmut. "On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree." Acta Arithmetica 89, no. 2 (1999): 97–122. http://dx.doi.org/10.4064/aa-89-2-97-122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Deliang Shi. "A new binary number system for real numbers." Naturalis Scientias 01, no. 04 (2024): 286–302. https://doi.org/10.62252/nss.2024.1020.

Full text
Abstract:
A number system uses a set of digits and sign to represent all the numbers. Different number systems use different amount of digits and sign. To compare the leanness of a number system, the cardinality of the complete set of digits and sign are employed in this work. The 01 binary number system is used by almost all the modern computers. It can represent all the real numbers by two digits 0, 1 and a sign (-), which means its cardinality is 3. Thus, the 01 binary system is not a true binary system. After reviewing all the existing number systems it is found that no true binary system exists for
APA, Harvard, Vancouver, ISO, and other styles
42

Pokorna, Pavla, and Dick Tibboel. "Numbers, Numbers: Great, Great…But?!*." Pediatric Critical Care Medicine 21, no. 9 (2020): 844–45. http://dx.doi.org/10.1097/pcc.0000000000002371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hernon, Peter. "Numbers and “Damn” GPO Numbers." Government Information Quarterly 16, no. 1 (1999): 1–4. http://dx.doi.org/10.1016/s0740-624x(99)80012-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kulyabov, D. S., A. V. Korolkova, and M. N. Gevorkyan. "Hyperbolic numbers as Einstein numbers." Journal of Physics: Conference Series 1557 (May 2020): 012027. http://dx.doi.org/10.1088/1742-6596/1557/1/012027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Çelik, Songül, İnan Durukan, and Engin Özkan. "New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers." Chaos, Solitons & Fractals 150 (September 2021): 111173. http://dx.doi.org/10.1016/j.chaos.2021.111173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Trespalacios, Jesús, and Barbara Chamberline. "Pearl diver: Identifying numbers on a number line." Teaching Children Mathematics 18, no. 7 (2012): 446–47. http://dx.doi.org/10.5951/teacchilmath.18.7.0446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Geroldinger, A. "Factorization of natural numbers in algebraic number fields." Acta Arithmetica 57, no. 4 (1991): 365–73. http://dx.doi.org/10.4064/aa-57-4-365-373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Hong-Quan. "The number of squarefull numbers in an interval." Acta Arithmetica 64, no. 2 (1993): 129–49. http://dx.doi.org/10.4064/aa-64-2-129-149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Kwang-Wu. "Median Bernoulli Numbers and Ramanujan’s Harmonic Number Expansion." Mathematics 10, no. 12 (2022): 2033. http://dx.doi.org/10.3390/math10122033.

Full text
Abstract:
Ramanujan-type harmonic number expansion was given by many authors. Some of the most well-known are: Hn∼γ+logn−∑k=1∞Bkk·nk, where Bk is the Bernoulli numbers. In this paper, we rewrite Ramanujan’s harmonic number expansion into a similar form of Euler’s asymptotic expansion as n approaches infinity: Hn∼γ+c0(h)log(q+h)−∑k=1∞ck(h)k·(q+h)k, where q=n(n+1) is the nth pronic number, twice the nth triangular number, γ is the Euler–Mascheroni constant, and ck(x)=∑j=0kkjcjxk−j, with ck is the negative of the median Bernoulli numbers. Then, 2cn=∑k=0nnkBn+k, where Bn is the Bernoulli number. By using th
APA, Harvard, Vancouver, ISO, and other styles
50

Backelin, Jörgen. "On the number of semigroups of natural numbers." MATHEMATICA SCANDINAVICA 66 (June 1, 1990): 197. http://dx.doi.org/10.7146/math.scand.a-12304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!