Dissertations / Theses on the topic 'Numbus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Numbus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ho, Kwan-hung, and 何君雄. "On the prime twins conjecture and almost-prime k-tuples." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29768421.
Full textChan, Ching-yin, and 陳靖然. "On k-tuples of almost primes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/195967.
Full textAnderson, Crystal Lynn. "An Introduction to Number Theory Prime Numbers and Their Applications." Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2222.
Full textFransson, Jonas. "Generalized Fibonacci Series Considered modulo n." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-26844.
Full textEwers-Rogers, Jennifer. "Very young children's understanding and use of numbers and number symbols." Thesis, University College London (University of London), 2002. http://discovery.ucl.ac.uk/10007376/.
Full textBrown, Bruce J. L. "Numbers: a dream or reality? A return to objects in number learning." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-82378.
Full textBronder, Justin S. "The AKS Class of Primality Tests: A Proof of Correctness and Parallel Implementation." Fogler Library, University of Maine, 2006. http://www.library.umaine.edu/theses/pdf/BronderJS2006.pdf.
Full textKong, Yafang, and 孔亚方. "On linear equations in primes and powers of two." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50533769.
Full textpublished_or_final_version
Mathematics
Doctoral
Doctor of Philosophy
Ketkar, Pallavi S. (Pallavi Subhash). "Primitive Substitutive Numbers are Closed under Rational Multiplication." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.
Full textSpolaor, Silvana de Lourdes Gálio. "Números irracionais: e e." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-02102013-160720/.
Full textIn this thesis we present some properties of real numbers. We describe briefly the numerical sets N, Z, Q and R, and we present detailed proofs of irrationality of numbers \'pi\' and e. We also present a text about the number e less technical and more intuitive in an attempt to assist the teacher in preparing lessons about number e for High School students as well as for Teaching degree in Mathematics students
Müller, Dana. "The representation of numbers in space : a journey along the mental number line." Phd thesis, Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2007/1294/.
Full textDie vorliegende Arbeit beschäftigt sich mit der räumlichen Repräsentation von Zahlen. Generell wird angenommen, dass Zahlen in einer kontinuierlichen und analogen Art und Weise auf einem mentalen Zahlenstrahl repräsentiert werden. Dehaene, Bossini und Giraux (1993) zeigten, dass der mentale Zahlenstrahl eine räumliche Orientierung von links-nach-rechts aufweist. In einer Paritätsaufgabe fanden sie schnellere Links-hand Antworten auf kleine Zahlen und schnellere Rechts-hand Antworten auf große Zahlen. Dieser Effekt wurde Spatial Numerical Association of Response Codes (SNARC) Effekt genannt. In der ersten Studie der vorliegenden Arbeit ging es um den Einfluss der Schriftrichtung auf den SNARC Effekt. Eine strenge ontogenetische Sichtweise sagt vorher, dass der SNARC Effekt nur mit Effektoren, die unmittelbar in die Produktion und das Verstehen von Schriftsprache involviert sind, auftreten sollte (Hände und Augen). Um dies zu überprüfen, forderten wir Versuchspersonen auf, die Parität dargestellter Ziffern durch Tastendruck mit ihrem rechten oder linken Fuß anzuzeigen. Entgegen der strengen ontogenetischen Hypothese fanden wir den SNARC Effekt auch für Fußantworten, welcher sich in seiner Charakteristik nicht von dem manuellen SNARC Effekt unterschied. In der zweiten Studie gingen wir der Frage nach, ob dem SNARC Effekt eine Assoziation des nicht-körperbezogenen Raumes und Zahlen oder der Hände und Zahlen zugrunde liegt. Um dies zu untersuchen, variierten wir die räumliche Orientierung der Tasten zueinander (vertikal vs. horizontal) als auch die Instruktionen (hand-bezogen vs. knopf-bezogen). Bei einer vertikalen Knopfanordnung und einer knopf-bezogenen Instruktion fanden wir einen knopfbezogenen SNARC Effekt. Bei einer hand-bezogenen Instruktion fanden wir einen hand-bezogenen SNARC Effekt. Mit horizontal angeordneten Knöpfen gab es unabhängig von der Instruktion einen knopf-bezogenen SNARC Effekt. Die Ergebnisse dieser beiden ersten Studien wurden im Sinne einer schwachen ontogenetischen Sichtweise interpretiert. In der dritten Studie befassten wir uns mit dem funktionalen Ursprung des SNARC Effekts. Hierfür nutzten wir das Psychological Refractory Period (PRP) Paradigma. In einem ersten Experiment hörten Versuchspersonen zuerst einen Ton nach welchem eine Ziffer visuell präsentiert wurde (locus-of-slack Paradigma). In einem zweiten Experiment wurde die Reihenfolge der Stimuluspräsentation/Aufgaben umgedreht (effect-propagation Paradigma). Unsere Ergebnisse lassen vermuten, dass der SNARC Effekt während der zentralen Antwortselektion generiert wird. In unserer vierten Studie überprüften wir, ob Zahlen auch mit Zeit assoziiert werden. Wir forderten Versuchspersonen auf zwei seriell dargebotene Zahlen miteinander zu vergleichen. Versuchspersonen waren schneller zeitlich aufsteigende Zahlen (z.B. erst 2 dann 3) als zeitlich abfolgenden Zahlen (z.B. erst 3 dann 2) miteinander zu vergleichen. Unsere Ergebnisse wurden im Sinne unseres vorwärtsgerichteten Mechanismus des Zählens („1-2-3“) interpretiert.
Lozier, Stephane. "On simultaneous approximation to a real number and its cube by rational numbers." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28701.
Full textLoveless, Andrew David. "Extensions in the theory of Lucas and Lehmer pseudoprimes." Online access for everyone, 2005. http://www.dissertations.wsu.edu/Dissertations/Summer2005/a%5Floveless%5F070705.pdf.
Full textIuculano, T. "Good and bad at numbers : typical and atypical development of number processing and arithmetic." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1355958/.
Full textShahabi, Majid. "The distribution of the classical error terms of prime number theory." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2012, 2012. http://hdl.handle.net/10133/3252.
Full textWodzak, Michael A. "Entire functions and uniform distribution /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9823328.
Full textMaynard, James. "Topics in analytic number theory." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:3bf4346a-3efe-422a-b9b7-543acd529269.
Full textBorba, Rute Elizabete de Souza Rosa. "The effect of number meanings, conceptual invariants and symbolic representations on children's reasoning about directed numbers." Thesis, Oxford Brookes University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247603.
Full textEscardó, Martín H. "PCF extended with real numbers : a domain-theoretic approach to higher-order exact real number computation." Thesis, Imperial College London, 1997. http://hdl.handle.net/1842/509.
Full textAndersson, Carina. "Taluppfattning : En undersökning av elevers förståelse av decimaltal." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5820.
Full textI detta examensarbete har jag studerat hur elever i år 6 tänker vid decimalform inom taluppfattningens område. Begreppet taluppfattning är ett mycket brett område där det dessutom finns många olika uppfattningar om vad som ingår i begreppet. Därför har jag fokuserat mitt arbete på övergången från heltal till decimaltal. Syftet med undersökningen är att belysa vikten av att lärare har goda matematiska och metodiska kunskaper, hur elever utvecklar sin taluppfattning och förhoppningsvis ge lite tips och idéer som kan användas i undervisningen med elever. Studien omfattar en litteraturgenomgång som behandlar begreppet taluppfattning där jag delat upp kapitlet i tre underrubriker: Vad innebär det att elever har en grundläggande taluppfattning? Hur utvecklar elever en god taluppfattning? Vilka speciella svårigheter finns vid övergången från heltal till decimaltal? Under metoddelen skriver jag om hur pilot- och huvudundersökningen gjordes innan läsaren får ta del av undersökningarnas resultat. Resultatet av undersökningen är att många elever har svårt för övergången från heltal till decimaltal. Det finns tre moment i förståelsen av positionssystemet som tycks orsaka större svårigheter och det är platssiffrans värde, multiplikation med tal mindre än ett och uppskattning av rimligheten av svaret i en beräkning. Uppsatsen innehåller också ett avsnitt om vad vi lärare kan göra för att underlätta elevers förståelse för övergången från heltal till decimaltal.
Munter, Johan. "Number Recognition of Real-world Images in the Forest Industry : a study of segmentation and recognition of numbers on images of logs with color-stamped numbers." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39365.
Full textDeb, Dibyajyoti. "DIAGONAL FORMS AND THE RATIONALITY OF THE POINCARÉ SERIES." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/25.
Full textMahmood, Muhammad Yasir. "Inexact Programming." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4351.
Full textNarayanan, Ramaswamy Karthik. "ROLLBACK-ABLE RANDOM NUMBER GENERATORS FOR THE SYNCHRONOUS PARALLEL ENVIRONMENT FOR EMULATION AND DISCRETE-EVENT SIMULATION (SPE." Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4352.
Full textM.S.
Other
Engineering and Computer Science
Modeling and Simulation
Roy, George J. "Prospective teachers' development of whole number concepts and operations during a classroom teaching experiment." Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002398.
Full textSilva, Bruno Astrolino e. "Números de Fibonacci e números de Lucas." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-03032017-143706/.
Full textIn this work we explore the Fibonacci and Lucas numbers. The majority of the historical results are stated and proved. Along the text several identities concerning Fibonacci and Lucas numbers are shown valid for all integers. Generalized Fibonacci sequences, the relation between Fibonacci and Lucas numbers with the roots of the equation x2 -x -1 = 0 and the connection between Fibonacci and Lucas numbers with a class of matrices in M2(R) are also explored.
Henry, Michael A. "Various Old and New Results in Classical Arithmetic by Special Functions." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1524583992694218.
Full textSixtus, Elena [Verfasser], and Martin H. [Akademischer Betreuer] Fischer. "Subtle fingers – tangible numbers: The influence of finger counting experience on mental number representations / Elena Sixtus ; Betreuer: Martin H. Fischer." Potsdam : Universität Potsdam, 2018. http://d-nb.info/1218404140/34.
Full textLesani, Maryam Sadat. "The Correlation between the number of health/fitness club members and health/fitness numbers with Covid-19 prevalence and death." Thesis, Högskolan i Halmstad, Akademin för hälsa och välfärd, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-45088.
Full textGiacobello, Matteo. "Wake structure of a transversely rotating sphere at moderate Reynolds numbers." Online version, 2005. http://repository.unimelb.edu.au/10187/2840.
Full textShaughnessy, John F. "Finding Zeros of Rational Quadratic Forms." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/849.
Full textVlasic, Andrew. "A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4476/.
Full textNamasivayam, M. "Entropy numbers, s-numbers and embeddings." Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356519.
Full textNyqvist, Robert. "Algebraic Dynamical Systems, Analytical Results and Numerical Simulations." Doctoral thesis, Växjö : Växjö University Press, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1142.
Full textBjörkström, Angela. "Is it all in their heads? : A study of the strategies used in mental arithmetic by Swedish pupils in their last years of the obligatory school and in the upper secondary school." Thesis, Mälardalen University, School of Education, Culture and Communication, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-4615.
Full textCompetence in mental arithmetic is recognised by many as essential to be active participants in the fast flowing, high technological society we live in today. Many have noticed pupils’ unwillingness to set their calculators aside and practice this aspect of mathematics when possible. Furthermore, some studies show that pupils’ ability to compute mentally deteriorates as they pass through the school system. Through testing classes in a Swedish obligatory school and an upper secondary school, the aim of this thesis is to see if the goals set by The National [Swedish] Agency for Education regarding mental arithmetic, are being fulfilled. Through using questionnaires to collect the strategies and ideas of the pupils, a wide range of problematic mathematical misconceptions became evident. These are highlighted since they are important aspects teachers should be aware of. The results of this study show that the obligatory school classes are far from reaching the goals set for them whereas the upper secondary classes show good results. Furthermore, there is an apparent improvement in their progression, resulting in a fulfilment the official goals. Many pupils however, seem reluctant to rely on their mental arithmetic capabilities and resort to algorithmic strategies. Other problems to emerge are in carrying out table calculations and in a lack of number sense when deeming if the answers are reasonable.
Wilson, Keith Eirik. "Factoring Semiprimes Using PG2N Prime Graph Multiagent Search." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/219.
Full textMance, Bill. "Normal Numbers with Respect to the Cantor Series Expansion." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274431587.
Full textYelle, Céline. "Stack Number, Track Number, and Layered Pathwidth." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40348.
Full textSchadeberg, Thilo C. "Number in Swahili grammar." Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-91516.
Full textAllagan, Julian Apelete D. Johnson Peter D. "Choice numbers, Ohba numbers and Hall numbers of some complete k-partite graphs." Auburn, Ala, 2009. http://hdl.handle.net/10415/1780.
Full textNilsson, Marcus. "Monomial Dynamical Systems in the Fields of p-adic Numbers and Their Finite Extensions." Doctoral thesis, Växjö universitet, Matematiska och systemtekniska institutionen, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-403.
Full textHinkel, Dustin. "Constructing Simultaneous Diophantine Approximations Of Certain Cubic Numbers." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/338879.
Full textBongiovanni, Alex. "Problems with power-free numbers and Piatetski-Shapiro sequences." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1618331559201676.
Full textCrunk, Anthony Wayne. "A portable C random number generator." Thesis, Virginia Tech, 1985. http://hdl.handle.net/10919/45720.
Full textMaster of Science
Schmidtke, Maximilian [Verfasser], and Annette [Akademischer Betreuer] Huber. "On the motivic Tamagawa number of number fields." Freiburg : Universität, 2018. http://d-nb.info/1166559335/34.
Full textBuchanan, Dan Matthews. "Analytic Number Theory and the Prime Number Theorem." Youngstown State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1525451327211365.
Full textTomasini, Alejandro. "Wittgensteinian Numbers." Pontificia Universidad Católica del Perú - Departamento de Humanidades, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/112986.
Full textEn este trabajo reconstruyo la concepción tractariana de los números naturales. Muestro cómo Wittgenstein usa su aparato conceptual (operación, conceptoformal, propiedad interna, forma lógica) para elaborar una definición de número alternativa a la logicista. Por último, examino brevemente algunas de lascríticas que se han elevado en su contra.
Chipatala, Overtone. "Polygonal numbers." Kansas State University, 2016. http://hdl.handle.net/2097/32923.
Full textDepartment of Mathematics
Todd Cochrane
Polygonal numbers are nonnegative integers constructed and represented by geometrical arrangements of equally spaced points that form regular polygons. These numbers were originally studied by Pythagoras, with their long history dating from 570 B.C, and are often referred to by the Greek mathematicians. During the ancient period, polygonal numbers were described by units which were expressed by dots or pebbles arranged to form geometrical polygons. In his "Introductio Arithmetica", Nicomachus of Gerasa (c. 100 A.D), thoroughly discussed polygonal numbers. Other Greek authors who did remarkable work on the numbers include Theon of Smyrna (c. 130 A.D), and Diophantus of Alexandria (c. 250 A.D). Polygonal numbers are widely applied and related to various mathematical concepts. The primary purpose of this report is to define and discuss polygonal numbers in application and relation to some of these concepts. For instance, among other topics, the report describes what triangle numbers are and provides many interesting properties and identities that they satisfy. Sums of squares, including Lagrange's Four Squares Theorem, and Legendre's Three Squares Theorem are included in the paper as well. Finally, the report introduces and proves its main theorems, Gauss' Eureka Theorem and Cauchy's Polygonal Number Theorem.
Hostetler, Joshua. "Surreal Numbers." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2935.
Full textSvanström, Fredrik. "Properties of a generalized Arnold’s discrete cat map." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35209.
Full text