To see the other types of publications on this topic, follow the link: Numeri primi.

Dissertations / Theses on the topic 'Numeri primi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Numeri primi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Cammera, Caterina. "I numeri primi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/1584/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diomei, Francesco. "La distribuzione dei numeri primi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20693/.

Full text
Abstract:
La tesi si propone di mostrare i principali risultati riguardanti i numeri primi e la loro distribuzione. Nel primo capitolo si daranno delle prime stime, si vedranno gli algoritmi più elementari per la ricerca dei numeri primi e si mostreranno alcune congetture inerenti ai numeri primi e ad alcune particolari forme di numeri. Nel secondo capitolo si introdurranno le funzioni aritmetiche e moltiplicative e come queste si comportano con il prodotto di Dirichlet, poi si vedranno le principali proprietà delle funzioni aritmetiche più importanti. Nell'ultimo capitolo si affronterà lo studio dei numeri primi in maniera asintotica. Si daranno delle stime per i limiti delle funzioni aritmetiche. Poi, attraverso i risultati di Tschebysheff, si darà un'idea del percorso che portò alla dimostrazione del principale risultato sui numeri primi: il teorema dei numeri primi. In seguito introdurremo la funzione zeta di Riemann e come essa si lega alle funzioni aritmetiche. Infine parleremo della famosa ipotesi di Riemann, le conseguenze che ha sui numeri primi e ne vedremo pure delle formulazioni equivalenti.
APA, Harvard, Vancouver, ISO, and other styles
3

Ferrario, Davide Mauro. "Il teorema dei numeri primi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7929/.

Full text
Abstract:
In questa tesi si vede una dimostrazione elementare del teorema dei numeri primi. Dopo aver definito le funzioni aritmetiche di Tchebychev theta e psi, si utilizzano le loro proprietà per studiare il comportamento asintotico della funzione di Mertens e infine di pi(x). Inoltre si mostrano alcuni legami tra la zeta di Riemann e la teoria dei numeri e cenni ad altre dimostrazioni del teorema dei numeri primi.
APA, Harvard, Vancouver, ISO, and other styles
4

Blanco, Teresa. "Alcuni problemi additivi riguardanti i numeri primi." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6320/.

Full text
Abstract:
La tesi prende spunto da due laboratori del Piano di Lauree Scientifiche, "Numeri primi e crittografia" e "Giocare con i numeri". Si approfondiscono i problemi additivi riguardanti i numeri primi. Questi sono stati scelti per due principali motivi: la semplicità dei contenuti, che possono essere compresi dagli studenti di tutti i tipi di scuola, e la possibilità di prestarsi bene ad un approccio di tipo laboratoriale da parte degli studenti, adattabile alle diverse preparazioni matematiche e al tempo stesso in grado di stimolare curiosità su problemi ancora irrisolti. Si mostreranno metodi di risoluzione di tipo elementare ma anche metodi che coinvolgono l'analisi complessa.
APA, Harvard, Vancouver, ISO, and other styles
5

Benassi, Andrea. "Il Teorema dei Numeri Primi: l'approccio di Newman." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13562/.

Full text
Abstract:
Il risultato principale di questa tesi è fornire una dimostrazione dei teorema dei numeri primi (TNP). Nel primo capitolo introdurremo le proprietà di base delle funzioni aritmetiche, con particolare riguardo al prodotto di Dirichlet e alle funzioni di Möebius e di Von Mangoldt. Nel secondo capitolo accenneremo alla teoria delle serie di Dirichlet e studieremo in dettaglio le serie associate alle funzioni aritmetiche introdotte nel primo capitolo. Di fondamentale importanza sono le proprietà di base della funzione zeta di Riemann. Il terzo capitolo contiene la dimostrazione del TNP. Dopo aver dimostrato il prolungamento analitico e l'assenza di zeri nel semipiano dove la parte reale di s è maggiore o uguale a 1 della zeta di Riemann, concluderemo la dimostrazione mediante un teorema tauberiano dimostrato alcuni decenni fa da Newman.
APA, Harvard, Vancouver, ISO, and other styles
6

Evangelista, Davide. "Teorema di Dirichlet sull'infinità dei numeri primi in particolari progressioni numeriche." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16430/.

Full text
Abstract:
All'interno dell'elaborato discuteremo la dimostrazione classica che viene data del Teorema di Dirichlet, il quale prova, sfruttando una serie di risultati in Teoria Analitica dei Numeri, l'infinità di numeri primi in progressioni numeriche del tipo a(n) = kn + k, a patto che MCD(k, h) = 1. Per raggiungere tale risultato, vengono presentate anche alcune dimostrazioni dei principali risultati di Teoria Analitica dei Numeri, tra cui la relazione di ortogonalità tra caratteri, che farà da "setaccio numerico" e ci permetterà di ottenere il risultato. Nel tentativo di provare il Teorema, introdurremo e enunceremo alcune proprietà delle funzioni Carattere di Dirichlet e delle funzioni L di Dirichlet, le quali rappresentano uno strumento fondamentale in molti risultati di Teoria dei Numeri, in particolare nello studio dei numeri primi.
APA, Harvard, Vancouver, ISO, and other styles
7

Vannucci, Maria Chiara. "Questioni elementari di teoria dei numeri." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6614/.

Full text
Abstract:
Dopo una breve introduzione storica ci si occupa del problema della dimostrazione della infinità dei numeri primi. Di questa si espongono cinque dimostrazioni diverse trovate nell'arco di più di duemila anni. La tesi è completata dall'esposizione di una serie di criteri di divisibilità utili nell'insegnamento primario e secondario completamente dimostrati.
APA, Harvard, Vancouver, ISO, and other styles
8

TONON, REMIS. "Due problemi di teoria analitica dei numeri: somme armoniche con i primi e distribuzione delle cifre di quozienti fra interi." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2020. http://hdl.handle.net/11380/1200579.

Full text
Abstract:
Nella prima parte della tesi si estendono i risultati dell’articolo “Small values of signed harmonic sums” di Bettin, Molteni & Sanna (2018). In esso, gli autori considerano serie armoniche troncate, in cui si ammette per ogni addendo la possibilità del segno positivo o negativo, e studiano la funzione che misura quanto precisamente si possa approssimare un valore reale con tali oggetti. Nello specifico, vengono dimostrate delle limitazioni per tale funzione in alcuni intervalli di validità. Nella tesi si è dimostrato che lo stesso risultato vale non solo per la successione di tutti i naturali, ma anche per ogni sua sottosuccessione che rispetti ragionevoli ipotesi di crescita. Inoltre, nel caso specifico della successione dei numeri che sono il prodotto di k fattori primi distinti, dove k è un numero naturale fissato, è stato possibile migliorare sensibilmente le limitazioni per la funzione approssimante. Nella seconda parte della tesi si migliora il risultato dell’articolo “Probability of digits by dividing random numbers: a ψ and ζ functions approach” di Gambini, Mingari Scarpello & Ritelli (2012). Gli autori studiano in esso la distribuzione dell’ennesima cifra dopo la virgola (in diverse basi di numerazione) di tutti i possibili quozienti tra i primi N numeri naturali, dimostrando che essa non è uniforme, ma che segue una legge affine alla legge di Benford. Nella tesi, si migliora il termine d’errore proposto dai tre autori; inoltre, si studiano degli aspetti differenti e ulteriori e alcune varianti del problema, come ad esempio l’uniformità della formula.<br>In the first part of this thesis we extend the results of the paper “Small values of signed harmonic sums” by Bettin, Molteni & Sanna (2018). There, the authors consider harmonic truncated series, where the summands can have a positive or a negative sign; using these objects to approximate any real value, they study the function that measures the precision of this approximation. In particular, they prove some bounds for this function in some specific ranges. In this thesis, we prove that the same result holds not only for the sequence of all natural numbers, but also for any subsequence that satisfies a growth hypothesis. Besides, in the case of the sequence of numbers that are the product of k distinct primes, where k is a fixed natural number, we obtain a significant improvement on the bounds for the approximating function. In the second part of this thesis, we improve the result of the paper “Probability of digits by dividing random numbers: a ψ and ζ functions approach” by Gambini, Mingari Scarpello & Ritelli (2012). The authors study there the distribution of the nth digit after the decimal point (in different bases) of all possible ratios between the first N natural numbers: they prove that it is not uniform, but it follows a law analogous to Benford’s one. In this thesis, we improve the error term found by the authors; besides, we study some further and different aspects and some variations of the problem, such as the uniformity of the formula.
APA, Harvard, Vancouver, ISO, and other styles
9

Bandini, Michele. "Crittografia quantistica e algoritmo di Shor." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17073/.

Full text
Abstract:
In questo elaborato si cerca di dare un'idea di come funzioni un computer quantistico, portando come esempio l'Algoritmo di Shor per la fattorizzazione: si cerca di chiarirne la matematica e la fisica che vi stanno dietro e l'importanza applicativa e storica che ha avuto. Brevi cenni sull'odierna tecnologia dei calcolatori quantistici.
APA, Harvard, Vancouver, ISO, and other styles
10

Sovrano, Francesco. "A proposito di Crittografia a chiave asimmetrica e numeri primi: tecniche note e proposta di un nuovo test di primalità euristico e deterministico." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10897/.

Full text
Abstract:
Con questa tesi verrà spiegata l'intrinseca connessione tra la matematica della teoria dei numeri e l'affidabilità e sicurezza dei crittosistemi asimmetrici moderni. I principali argomenti trattati saranno la crittografia a chiave pubblica ed il problema della verifica della primalità. Nei primi capitoli si capirà cosa vuol dire crittografia e qual è la differenza tra asimmetria e simmetria delle chiavi. Successivamente verrà fatta maggiore luce sugli utilizzi della crittografia asimmetrica, mostrando tecniche per: comunicare in modo confidenziale, scambiare in modo sicuro chiavi private su un canale insicuro, firmare messaggi, certificare identità e chiavi pubbliche. La tesi proseguirà con la spiegazione di quale sia la natura dei problemi alla base della sicurezza dei crittosistemi asimmetrici oggigiorno più diffusi, illustrando brevemente le novità introdotte dall'avvento dei calcolatori quantistici e dimostrando l'importanza che riveste in questo contesto il problema della verifica della primalità. Per concludere verrà fatta una panoramica di quali sono i test di primalità più efficienti ed efficaci allo stato dell'arte, presentando una nuova tecnica per migliorare l'affidabilità del test di Fermat mediante un nuovo algoritmo deterministico per fattorizzare gli pseudoprimi di Carmichael, euristicamente in tempo O~( log^3{n}), poi modificato sfruttando alcune proprietà del test di Miller per ottenere un nuovo test di primalità deterministico ed euristico con complessità O~( log^2{n} ) e la cui probabilità di errore tende a 0 con n che tende ad infinito.
APA, Harvard, Vancouver, ISO, and other styles
11

Rossi, Cecilia. "Il carteggio fra Sophie Germain e Carl Friedrich Gauss." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13640/.

Full text
Abstract:
Lo scopo di questo lavoro è analizzare la corrispondenza fra Sophie Germain e Carl Friedrich Gauss ed alcuni manoscritti di Sophie Germain. La tesi è suddivisa in tre capitoli, il primo è incentrato sulla vita di Sophie Germain, il suo ambiente socio-culturale ed i principali oggetti di studio. Nel secondo e nel terzo capitolo l'analisi si sposta sulla corrispondenza, in particolare sullo studio della prima e della nona lettera che ruotano attorno alla risoluzione dell'ultimo Teorema di Fermat per alcune categorie di numeri che oggi vengono chiamati "Numeri primi di Sophie Germain". Proprio a tal fine nel terzo capitolo, oltre alla nona lettera, si esaminano altri tre manoscritti conservati alla Bibliothèque Nationale de France a Parigi.
APA, Harvard, Vancouver, ISO, and other styles
12

Ho, Kwan-hung, and 何君雄. "On the prime twins conjecture and almost-prime k-tuples." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29768421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chan, Ching-yin, and 陳靖然. "On k-tuples of almost primes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/195967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Anderson, Crystal Lynn. "An Introduction to Number Theory Prime Numbers and Their Applications." Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2222.

Full text
Abstract:
The author has found, during her experience teaching students on the fourth grade level, that some concepts of number theory haven't even been introduced to the students. Some of these concepts include prime and composite numbers and their applications. Through personal research, the author has found that prime numbers are vital to the understanding of the grade level curriculum. Prime numbers are used to aide in determining divisibility, finding greatest common factors, least common multiples, and common denominators. Through experimentation, classroom examples, and homework, the author has introduced students to prime numbers and their applications.
APA, Harvard, Vancouver, ISO, and other styles
15

Kong, Yafang, and 孔亚方. "On linear equations in primes and powers of two." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50533769.

Full text
Abstract:
It is known that the binary Goldbach problem is one of the open problems on linear equations in primes, and it has the Goldbach-Linnik problem, that is, representation of an even integer in the form of two odd primes and powers of two, as its approximate problem. The theme of my research is on linear equations in primes and powers of two. Precisely, there are two cases: one pair of linear equations in primes and powers of two, and one class of pairs of linear equations in primes and powers of two, in this thesis. In 2002, D.R. Heath-Brown and P.C. Puchta obtained that every sufficiently large even integer is the sum of two odd primes and k powers of two. Here k = 13, or = 7 under the generalized Riemann hypothesis. In 2010, B. Green and T. Tao obtained that every pair of linear equations in four prime variables with coefficients matrix A = (a_ij)s×t with s ≤ t, satisfying nondegenerate condition, that is, A has full rank and the only elements of the row-space of A over Q with two or fewer nonzero entries is the zero vector, is solvable. The restriction on the coefficient matrix means that they excluded the case of the binary Goldbach problem. Motivated by the above results, it is obtained that for every pair of sufficiently large positive even integers B1, B2, the simultaneous equation {█({B1 = p1 + p2 + 2v1 + 2v2 + · · · + 2vk ,@B2 = p3 + p4 + 2v1 + 2v2 + · · · + 2vk ,)┤ (1) is solvable, where p1, · · · , p4 are odd primes, each vi is a positive integer, and the positive integer k ≥ 63 or ≥ 31 under the generalized Riemann hypothesis. Note that, in 1989, M.C. Liu and K.M. Tsang have obtained that subject to some natural conditions on the coefficients, every pair of linear equations in five prime variables is solvable. Therefore one class of pairs of linear equations in four prime variables with special coefficient matrix and powers of two is considered. Indeed, it is deduced that every pair of integers B1 and B2 satisfying B1 ≡ 0 (mod 2), 3BB1 > e^(eB^48 ), B2 ≡ ∑_1^4▒= 1^(a_i ) (mod 2) and |B2| < BB1, where B = max1≤j≤4(2, |aj|), can be represented as {█(B1 = 〖p1〗_1 + p2 + 2^(v_1 ) + 2^(v_2 )+ · · · + 2^(v_k )@B2 = a1p1 + a2p2 + a3p3 + a4p4 + 2^(v_1 )+ 2^(v_2 )+ · · · + 2^(v_k ) )┤ (2) with k being a positive integer. Here p1, · · · p4 are odd primes, each 〖v 〗_iis a positive integer and the integral coefficients ai (i = 1, 2, 3, 4) satisfy {█((〖a 〗_1- 〖a 〗_2, 〖a 〗_3, 〖a 〗_4) = 1,@〖a 〗_1 〖a 〗_2< 0, 〖a 〗_3 〖a 〗_4<0,)┤ Moreover it is calculated that the positive integer k ≥ g(〖a 〗_1- 〖a 〗_2, 〖a 〗_3, 〖a 〗_4) where g(〖a 〗_21- 〖a 〗_22, 〖a 〗_23, 〖a 〗_24) = [(log⁡〖G(〖a 〗_21, …, 〖a 〗_24 〗)-log⁡〖F (〖a 〗_21, …, 〖a 〗_24)〗)/log0.975805-84.0285], (3) G(〖a 〗_21, 〖a 〗_22, 〖a 〗_23, 〖a 〗_24) = (min(1/(|a_24 |), 1/(|a_23 |)) - (〖|a〗_(21 )- a_22 |)/(|〖a_23 a〗_24 |) 〖(3B)〗^(-1) ×〖(3B)〗^(-1) (1-0.000001)- 〖(3B)〗^(-1-4), with B = max1≤j≤4(2, |a2j|), and F(a_21, …, a_24) = √(f(a_21)f〖(a〗_22 )) with f(a_2i) = {█(4414.15h (a_21-1)+5.088331 if a_21≠1@59.8411 if a_21=1,)┤ for i = 1, 2, and h(n) =∏_(p|n,p>2)▒(p-1)/(p-2). This result, if without the powers of two, can make up some of the cases excluded in Green and Tao’s paper.<br>published_or_final_version<br>Mathematics<br>Doctoral<br>Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
16

Shahabi, Majid. "The distribution of the classical error terms of prime number theory." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2012, 2012. http://hdl.handle.net/10133/3252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bronder, Justin S. "The AKS Class of Primality Tests: A Proof of Correctness and Parallel Implementation." Fogler Library, University of Maine, 2006. http://www.library.umaine.edu/theses/pdf/BronderJS2006.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Anicama, Jorge. "Prime numbers and encryption." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95565.

Full text
Abstract:
In this article we will deal with the prime numbers and its current use in encryption algorithms. Encryption algorithms make possible the exchange of sensible data in internet, such as bank transactions, email correspondence and other internet transactions where privacy is important.
APA, Harvard, Vancouver, ISO, and other styles
19

Vlasic, Andrew. "A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4476/.

Full text
Abstract:
We follow a research paper that J. Elstrodt published in 1998 to prove the Prime Number Theorem for arithmetic progressions. We will review basic results from Dirichlet characters and L-functions. Furthermore, we establish a weak version of the Wiener-Ikehara Tauberian Theorem, which is an essential tool for the proof of our main result.
APA, Harvard, Vancouver, ISO, and other styles
20

Maynard, James. "Topics in analytic number theory." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:3bf4346a-3efe-422a-b9b7-543acd529269.

Full text
Abstract:
In this thesis we prove several different results about the number of primes represented by linear functions. The Brun-Titchmarsh theorem shows that the number of primes which are less than x and congruent to a modulo q is less than (C+o(1))x/(phi(q)log{x}) for some value C depending on log{x}/log{q}. Different authors have provided different estimates for C in different ranges for log{x}/log{q}, all of which give C>2 when log{x}/log{q} is bounded. We show in Chapter 2 that one can take C=2 provided that log{x}/log{q}> 8 and q is sufficiently large. Moreover, we also produce a lower bound of size x/(q^{1/2}phi(q)) when log{x}/log{q}>8 and is bounded. Both of these bounds are essentially best-possible without any improvement on the Siegel zero problem. Let k>1 and Pi(n) be the product of k linear functions of the form a_in+b_i for some integers a_i, b_i. Suppose that Pi(n) has no fixed prime divisors. Weighted sieves have shown that for infinitely many integers n, the number of prime factors of Pi(n) is at most r_k, for some integer r_k depending only on k. In Chapter 3 and Chapter 4 we introduce two new weighted sieves to improve the possible values of r_k when k>2. In Chapter 5 we demonstrate a limitation of the current weighted sieves which prevents us proving a bound better than r_k=(1+o(1))klog{k} for large k. Zhang has shown that there are infinitely many intervals of bounded length containing two primes, but the problem of bounded length intervals containing three primes appears out of reach. In Chapter 6 we show that there are infinitely many intervals of bounded length containing two primes and a number with at most 31 prime factors. Moreover, if numbers with up to 4 prime factors have `level of distribution' 0.99, there are infinitely many integers n such that the interval [n,n+90] contains 2 primes and an almost-prime with at most 4 prime factors.
APA, Harvard, Vancouver, ISO, and other styles
21

Wodzak, Michael A. "Entire functions and uniform distribution /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9823328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wilson, Keith Eirik. "Factoring Semiprimes Using PG2N Prime Graph Multiagent Search." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/219.

Full text
Abstract:
In this thesis a heuristic method for factoring semiprimes by multiagent depth-limited search of PG2N graphs is presented. An analysis of PG2N graph connectivity is used to generate heuristics for multiagent search. Further analysis is presented including the requirements on choosing prime numbers to generate 'hard' semiprimes; the lack of connectivity in PG1N graphs; the counts of spanning trees in PG2N graphs; the upper bound of a PG2N graph diameter and a conjecture on the frequency distribution of prime numbers on Hamming distance. We further demonstrated the feasibility of the HD2 breadth first search of PG2N graphs for factoring small semiprimes. We presented the performance of different multiagent search heuristics in PG2N graphs showing that the heuristic of most connected seedpick outperforms least connected or random connected seedpick heuristics on small PG2N graphs of size N
APA, Harvard, Vancouver, ISO, and other styles
23

Domingues, Riaal. "A polynomial time algorithm for prime recognition." Diss., Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-08212007-100529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Buchanan, Dan Matthews. "Analytic Number Theory and the Prime Number Theorem." Youngstown State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1525451327211365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wolczuk, Dan. "Intervals with few Prime Numbers." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1064.

Full text
Abstract:
In this thesis we discuss some of the tools used in the study of the number of primes in short intervals. In particular, we discuss a large sieve density estimate due to Gallagher and two classical delay equations. We also show how these tools have been used by Maier and Stewart and provide computational data to their result.
APA, Harvard, Vancouver, ISO, and other styles
26

Shiu, Daniel Kai Lun. "Prime numbers in arithmetic progressions." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Welch, D. E. "Some problems involving prime numbers." Thesis, Cardiff University, 2007. http://orca.cf.ac.uk/56147/.

Full text
Abstract:
The first problem we consider is a variation of the Piatetski-Shapiro Prime Number Theorem. Consider a function g(y), growing faster than linearly. We ask how often is the integer part of a function g(y) no less than some distance j from a prime number Using Huxley's method of exponential sums the investigation shows how the rate at which g(y) increases is dependent on the size of j. The faster g(y) increases, the larger the value of j. The second problem investigates primes of arithmetic progressions, a mod g, in short intervals of the form (x, x+xe), where x is sufficiently large in terms of q, cp &lt; x for some 77 > 0. Such a result was proved by Fogels, for some 6 &lt; 1. We explicitly determine the relationship between 6 and 77 to establish admissible values for both. Lastly we use our version of Fogels' theorem and a variation of Vaughan's treatment of the ctp problem to investigate the following problem. Given a real number a in the interval (0,1) how many Farey fractions of the Farey sequence of order Q do we have to pass to go from a to a Farey fraction with prime denominator
APA, Harvard, Vancouver, ISO, and other styles
28

Hendi, Yacoub. "On The Prime Number Theorem." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fávaro, Eduardo Rogério [UNESP]. "Corpos cujo condutor é potência de primo: caracterização e reticulados ideais associados." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/100063.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:30:27Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-08-02Bitstream added on 2014-06-13T18:40:35Z : No. of bitstreams: 1 favaro_er_dr_sjrp.pdf: 449730 bytes, checksum: 66f6b6e8876e035dcd2e6aa8db337bbd (MD5)<br>Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)<br>Este trabalho esta relacionado com a Teoria Algébrica dos Números e aplicações em Reticulados Ideais. Descrevemos os corp os cujo condutor e potência de primo. Quando o primo e dois, descrevemos tamb em o anel de inteiros. Quando o primo e mpar calculamos o discriminante de um modo alternativo ao existente na literatura. Neste caso, e quando o corpo tem como grau o pr oprio primo mpar, descrevemos o anel de inteiros com uma base integral e a forma traço associada, além do mínimo euclidiano. Com isso, obtemos uma família de reticulados ideais de dimensão prima ímpar<br>This work is relate to Algebric Number Theory and applications in Ideal Lattices. We describ e numb er elds with p ower prime conductor. In the case prime two, we showed the ring of integers. For o dd prime, we give a new pro of for formula of discrimanate. In the case that the the degree of the eld is the o dd prime, we describ e the ring of integers, the trace form asso ciated and the Euclidean minimum. With this, we have a family of ideal lattices in odd prime dimension
APA, Harvard, Vancouver, ISO, and other styles
30

Henderson, Cory. "Exploring the Riemann Hypothesis." Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1371747196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fávaro, Eduardo Rogério. "Corpos cujo condutor é potência de primo : caracterização e reticulados ideais associados /." São José do Rio Preto : [s.n.], 2012. http://hdl.handle.net/11449/100063.

Full text
Abstract:
Orientador: Antonio Aparecido de Andrade<br>Coorientador: Trajano Pires da Nobrega Neto<br>Banca: Cleonice Fátima Bracciali<br>Banca: Reginaldo Palazzo Jr<br>Banca: Sueli Irene Rodrigues Costa<br>Banca: Carlile Campos Lavor<br>Resumo: Este trabalho esta relacionado com a Teoria Algébrica dos Números e aplicações em Reticulados Ideais. Descrevemos os corp os cujo condutor e potência de primo. Quando o primo e dois, descrevemos tamb em o anel de inteiros. Quando o primo e mpar calculamos o discriminante de um modo alternativo ao existente na literatura. Neste caso, e quando o corpo tem como grau o pr oprio primo mpar, descrevemos o anel de inteiros com uma base integral e a forma traço associada, além do mínimo euclidiano. Com isso, obtemos uma família de reticulados ideais de dimensão prima ímpar<br>Abstract: This work is relate to Algebric Number Theory and applications in Ideal Lattices. We describ e numb er elds with p ower prime conductor. In the case prime two, we showed the ring of integers. For o dd prime, we give a new pro of for formula of discrimanate. In the case that the the degree of the eld is the o dd prime, we describ e the ring of integers, the trace form asso ciated and the Euclidean minimum. With this, we have a family of ideal lattices in odd prime dimension<br>Doutor
APA, Harvard, Vancouver, ISO, and other styles
32

Alazmi, Amal Abdullah. "The Prime Number Theorem: Elementary Results." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1564916947385846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Esteki, Fataneh. "Approximations for some functions of primes." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2012, 2012. http://hdl.handle.net/10133/3263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lam, Cho-ho, and 林楚皓. "Primes of the form x² + Dy²." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Haugland, Jan Kristian. "Application of sieve methods to prime numbers." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Alexander, Anita Nicole. "A HISTORY OF THE PRIME NUMBER THEOREM." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1416827548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Alghamdi, Maha Mosaad. "ANALYTIC PROOF OF THE PRIME NUMBER THEOREM." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1550224160190008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gonçalves, Junior Eduardo Manuel. "Aspectos computacionais na geometria da espiral de Teodoro." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/7647.

Full text
Abstract:
Submitted by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-25T14:11:47Z No. of bitstreams: 1 arquivototal.pdf: 21722062 bytes, checksum: bb67c86f0d2ae8a89632226cb61b3636 (MD5)<br>Made available in DSpace on 2015-11-25T14:11:47Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 21722062 bytes, checksum: bb67c86f0d2ae8a89632226cb61b3636 (MD5) Previous issue date: 2015-02-24<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES<br>The present work is a study of Teodoro spiral, for the geometric aspects of the curve. At rst, the construction of Teodoro spiral in two and three dimensions is made. And through the softwares, GeoGebra and wxMaxima were developed respectively, the geometric constructions and the necessary calculations. With the possession of the spiral of concatenation, observe the pattern of behavior of growth and position, the collared peccary in the n - th triangle. Going through measurements of Teodoro spiral with other spirals such as the Archimedean, we come to denote behavior patterns in expanding spiral. The following is an arithmetic study on the spiral obtained by the length of the branches of the same, both perfect and imperfect hits with square also spaced apart relationship between them allows us to observe numbers as the . The distribution of prime numbers is seen as the nal part of this study, where you see speculatively allowing the formation of new curves on the spiral, as parabolas.<br>O presente trabalho faz um estudo da espiral de Teodoro, no tocante aos aspectos geométricos da curva. De início, é feita a construção da espiral de Teodoro em duas e três dimensões. E por meio dos softwares, GeoGebra e wxMaxima, foram desenvolvidas respectivamente, as construções geométricas e os cálculos necessários. Com a posse da concatenação da espiral, observa-se o comportamento do padrão de crescimento e posição, do cateto no enésimo triângulo. Passando por aferições da espiral de Teodoro com outras espirais, como por exemplo a arquimediana, chega-se a denotar padrões de comportamento na expansão da espiral. A seguir, é mostrado um estudo aritmético na espiral, obtido através do comprimento dos ramos da mesma, que tanto atinge quadrados perfeitos e imperfeitos como também a relação de afastamento entre eles nos permite observar números como o . A distribuição dos números primos é vista como parte fi nal desse estudo, onde se vê de forma especulativa, possibilitando a formação de novas curvas sobre a espiral, como parábolas.
APA, Harvard, Vancouver, ISO, and other styles
39

Coward, Daniel R. "Sums of two rational cubes." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

趙善衡 and Shin-hang Chiu. "The solubility and the insolubility of systems of linear equations in prime variables." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31209646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chiu, Shin-hang. "The solubility and the insolubility of systems of linear equations in prime variables /." [Hong Kong : University of Hong Kong], 1991. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12996622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dudek, Adrian W. "3MT : A fine time to find primes." Thesis, https://www.youtube.com/watch?v=g0qbNksZLgo&list=PL8rZPGPMzfuK7yVuY31rWGFkHM_DF1ItU&index=4, 2013. http://hdl.handle.net/1885/13619.

Full text
Abstract:
We all have a shared history; when we were in primary school, our teachers told us that a number is prime if it’s only divisible by one and itself. We might also share severe scarring, from when we popped our little hand in the air and asked the question: primes - what are they good for?
APA, Harvard, Vancouver, ISO, and other styles
43

Siu, Wai-chuen. "Small prime solutions of some ternary equations /." Hong Kong : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B17538191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kolenick, Joseph F. "On exponentially perfect numbers relatively prime to 15 /." Connect to resource online, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1196698780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kolenick, Joseph F. Jr. "On Exponentially Perfect Numbers Relatively Prime to 15." Youngstown State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1196698780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Padilha, José Cleiton Rodrigues. "Números primos." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7534.

Full text
Abstract:
Submitted by Susiquine Silva (susi.bibliotecaufpb@hotmail.com) on 2015-10-20T13:41:36Z No. of bitstreams: 2 Arquivototal.pdf: 1918900 bytes, checksum: faffe2a0b39bb0b14b7718f5a5b1b326 (MD5) license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5)<br>Rejected by Susiquine Silva (susi.bibliotecaufpb@hotmail.com), reason: Corrigir título. on 2015-10-20T14:44:19Z (GMT)<br>Submitted by Susiquine Silva (susi.bibliotecaufpb@hotmail.com) on 2015-10-20T14:46:20Z No. of bitstreams: 2 Arquivototal.pdf: 1918900 bytes, checksum: faffe2a0b39bb0b14b7718f5a5b1b326 (MD5) license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5)<br>Approved for entry into archive by Susiquine Silva (susi.bibliotecaufpb@hotmail.com) on 2015-10-20T14:46:58Z (GMT) No. of bitstreams: 2 Arquivototal.pdf: 1918900 bytes, checksum: faffe2a0b39bb0b14b7718f5a5b1b326 (MD5) license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5)<br>Made available in DSpace on 2015-10-20T14:46:58Z (GMT). No. of bitstreams: 2 Arquivototal.pdf: 1918900 bytes, checksum: faffe2a0b39bb0b14b7718f5a5b1b326 (MD5) license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5) Previous issue date: 2013-09-26<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES<br>The purpose of this work is to present a special category of integers: Prime numbers. It will be presented a historical retrospective, quoting the most important and interesting results achieved by great mathematicians over the years. Then, most of these results will be formally announced with propositions or theorems and their respective demonstrations, starting with the basic properties of divisibility and cul- minating in some primality tests.<br>O propósito deste trabalho é apresentar uma categoria especial de números inteiros: Os Números Primos. Será apresentada uma retrospectiva histórica,citando os resultados mai s importantes e interessantes obtidos por grandes matemáticos ao longodos anos. Em seguida, a maioria destes resultados serão formalmente enunciados com proposições ou teoremas e suas respectivas demonstrações,começando com as propriedades básicas da divisibilidade e culminando em alguns testes de primalidade.
APA, Harvard, Vancouver, ISO, and other styles
47

Reis, Jackson Martins. "Topicos de teoria dos numeros e teste de primalidade." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307494.

Full text
Abstract:
Orientador: Jose Plinio de Oliveira Santos<br>Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica<br>Made available in DSpace on 2018-08-14T08:31:50Z (GMT). No. of bitstreams: 1 Reis_JacksonMartins_M.pdf: 998765 bytes, checksum: ea7248e69be4c892e184263be7050375 (MD5) Previous issue date: 2009<br>Resumo: Neste trabalho foram abordados tópicos de Teoria dos Números e alguns testes de primalidade. Mostramos propriedades dos números inteiros, bem como alguns critérios de divisibilidade. Apresentamos também, além das propriedades do Máximo Divisor Comum e Mínimo Múltiplo Comum, interpretações geométricas dos mesmos. Foram estudados Tópicos da Teoria de Congruências e por fim trabalhamos alguns Testes de Primalidade, com respectivos exemplos.<br>Abstract: In this work were discussed topics of the theory of numbers and some primality tests. We show properties of whole numbers, and some criteria for divisibility. We also present, beyond the properties of the Common Dividing Maximum and Minimum Common Multiple, geometric interpretations of the same ones. They had been study topics of theory of congruences and finally we work some of primality tests, whith respective applications.<br>Mestrado<br>Teoria dos Numeros<br>Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
48

Mullen, Woodford Roger. "Partitions into prime powers and related divisor functions." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1246.

Full text
Abstract:
In this thesis, we will study a class of divisor functions: the prime symmetric functions. These are polynomials over Q in the so-called elementary prime symmetric functions, whose values lie in Z. The latter are defined on the nonnegative integers and take the values of the elementary symmetric functions applied to the multi-set of prime factors (with repetition) of an integer n. Initially we look at basic properties of prime symmetric functions, and consider analogues of questions posed for the usual sum of proper divisors function, such as those concerning perfect numbers or Aliquot sequences. We consider the inverse question of when, and in how many ways a number $n$ can be expressed as f(m) for certain prime symmetric functions f. Then we look at asymptotic formulae for the average orders of certain fundamental prime symmetric functions, such as the arithmetic function whose value at n is the sum of k-th powers of the prime divisors (with repetition) of n. For these last functions in particular, we also look at statistical results by comparing their distribution of values with the distribution of the largest prime factor dividing n. In addition to average orders, we look at the modular distribution of prime symmetric functions, and show that for a fundamental class, they are uniformly distributed over any fixed modulus. Then our focus shifts to the related area of partitions into prime powers. We compute the appropriate asymptotic formulae, and demonstrate important monotonicity properties. We conclude by looking at iteration problems for some of the simpler prime symmetric functions. In doing so, we consider the empirical basis for certain conjectures, and are left with many open problems.
APA, Harvard, Vancouver, ISO, and other styles
49

蕭偉泉 and Wai-chuen Siu. "Small prime solutions of some ternary equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31213595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

梁敏翔 and Man-cheung Leung. "An exceptional set problem on diagonal quadratic equations in three prime variables." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31210442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography