Academic literature on the topic 'Numeric and categorical data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numeric and categorical data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numeric and categorical data"
Suguna, J., and M. Arul Selvi. "Ensemble Fuzzy Clustering for Mixed Numeric and Categorical Data." International Journal of Computer Applications 42, no. 3 (March 31, 2012): 19–23. http://dx.doi.org/10.5120/5672-7705.
Full textJi, Jinchao, Wei Pang, Zairong Li, Fei He, Guozhong Feng, and Xiaowei Zhao. "Clustering Mixed Numeric and Categorical Data With Cuckoo Search." IEEE Access 8 (2020): 30988–1003. http://dx.doi.org/10.1109/access.2020.2973216.
Full textWu, Chengyuan, and Carol Anne Hargreaves. "Topological Machine Learning for Mixed Numeric and Categorical Data." International Journal on Artificial Intelligence Tools 30, no. 05 (August 2021): 2150025. http://dx.doi.org/10.1142/s0218213021500251.
Full textLee, Kyung Mi, and Keon Myung Lee. "A Locality Sensitive Hashing Technique for Categorical Data." Applied Mechanics and Materials 241-244 (December 2012): 3159–64. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.3159.
Full textArunprabha, K., and V. Bhuvaneswari. "Comparing K-Value Estimation for Categorical and Numeric Data Clustring." International Journal of Computer Applications 11, no. 3 (December 10, 2010): 4–7. http://dx.doi.org/10.5120/1565-1875.
Full textChrisinta, Debora, I. Made Sumertajaya, and Indahwati Indahwati. "EVALUASI KINERJA METODE CLUSTER ENSEMBLE DAN LATENT CLASS CLUSTERING PADA PEUBAH CAMPURAN." Indonesian Journal of Statistics and Its Applications 4, no. 3 (November 30, 2020): 448–61. http://dx.doi.org/10.29244/ijsa.v4i3.630.
Full textBattaglia, Elena, Simone Celano, and Ruggero G. Pensa. "Differentially Private Distance Learning in Categorical Data." Data Mining and Knowledge Discovery 35, no. 5 (July 13, 2021): 2050–88. http://dx.doi.org/10.1007/s10618-021-00778-0.
Full textJi, Jinchao, Yongbing Chen, Guozhong Feng, Xiaowei Zhao, and Fei He. "Clustering mixed numeric and categorical data with artificial bee colony strategy." Journal of Intelligent & Fuzzy Systems 36, no. 2 (March 16, 2019): 1521–30. http://dx.doi.org/10.3233/jifs-18146.
Full textAhmad, Amir, and Lipika Dey. "A k-mean clustering algorithm for mixed numeric and categorical data." Data & Knowledge Engineering 63, no. 2 (November 2007): 503–27. http://dx.doi.org/10.1016/j.datak.2007.03.016.
Full textJi, Jinchao, Ruonan Li, Wei Pang, Fei He, Guozhong Feng, and Xiaowei Zhao. "A Multi-View Clustering Algorithm for Mixed Numeric and Categorical Data." IEEE Access 9 (2021): 24913–24. http://dx.doi.org/10.1109/access.2021.3057113.
Full textDissertations / Theses on the topic "Numeric and categorical data"
Jia, Hong. "Clustering of categorical and numerical data without knowing cluster number." HKBU Institutional Repository, 2013. http://repository.hkbu.edu.hk/etd_ra/1495.
Full textSuarez, Alvarez Maria Del Mar. "Design and analysis of clustering algorithms for numerical, categorical and mixed data." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54131/.
Full textHjerpe, Adam. "Computing Random Forests Variable Importance Measures (VIM) on Mixed Numerical and Categorical Data." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185496.
Full textRandom Forest (RF) är en populär prediktormodell som visat goda resultat vid en stor uppsättning applikationsstudier. Modellen ger hög prediktionsprecision, har förmåga att modellera komplex högdimensionell data och modellen har vidare visat goda resultat vid interkorrelerade prediktorvariabler. Detta projekt undersöker ett mått, variabel importance measure (VIM) erhållna från RF modellen, för att beräkna graden av association mellan prediktorvariabler och målvariabeln. Projektet undersöker känsligheten hos VIM vid kvalitativt prediktorbrus och undersöker VIMs förmåga att differentiera prediktiva variabler från variabler som endast, med aveende på målvariableln, beskriver brus. Att differentiera prediktiva variabler vid övervakad inlärning kan användas till att öka robustheten hos klassificerare, öka prediktionsprecisionen, reducera data dimensionalitet och VIM kan användas som ett verktyg för att utforska relationer mellan prediktorvariabler och målvariablel.
Kirsch, Matthew Robert. "Signal Processing Algorithms for Analysis of Categorical and Numerical Time Series: Application to Sleep Study Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1278606480.
Full textObry, Tom. "Apprentissage numérique et symbolique pour le diagnostic et la réparation automobile." Thesis, Toulouse, INSA, 2020. http://www.theses.fr/2020ISAT0014.
Full textClustering is one of the methods resulting from unsupervised learning which aims to partition a data set into different homogeneous groups in the sense of a similarity criterion. The data in each group then share common characteristics. DyClee is a classifier that performs a classification based on digital data arriving in a continuous flow and which proposes an adaptation mechanism to update this classification, thus performing dynamic clustering in accordance with the evolution of the system or process being followed. Nevertheless, the only consideration of numerical attributes does not allow to apprehend all the fields of application. In this generalization objective, this thesis proposes on the one hand an extension to nominal categorical data, and on the other hand an extension to mixed data. Hierarchical clustering approaches are also proposed in order to assist the experts in the interpretation of the obtained clusters and in the validation of the generated partitions. The presented algorithm, called Mixed DyClee, can be applied in various application domains. In the case of this thesis, it is used in the field of automotive diagnostics
Bashon, Yasmina M. "Contributions to fuzzy object comparison and applications. Similarity measures for fuzzy and heterogeneous data and their applications." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6305.
Full textLibyan Embassy
Bashon, Yasmina Massoud. "Contributions to fuzzy object comparison and applications : similarity measures for fuzzy and heterogeneous data and their applications." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6305.
Full textHollingsworth, Jason Michael. "Foundational Data Repository for Numeric Engine Validation." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2661.pdf.
Full textLäuter, Henning, and Ayad Ramadan. "Statistical Scaling of Categorical Data." Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2011/4956/.
Full textZhang, Yiqun. "Advances in categorical data clustering." HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/658.
Full textBooks on the topic "Numeric and categorical data"
Yang, Keming, ed. Categorical Data Analysis. Los Angeles, USA: SAGE Publications Ltd, 2014.
Find full textSimonoff, Jeffrey S. Analyzing Categorical Data. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21727-7.
Full textYang, Keming. Categorical Data Analysis. 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications Ltd, 2014. http://dx.doi.org/10.4135/9781473915466.
Full textSutradhar, Brajendra C. Longitudinal Categorical Data Analysis. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2137-9.
Full textBook chapters on the topic "Numeric and categorical data"
Kuo, Huang-Cheng. "A Divisive Ordering Algorithm for Mapping Categorical Data to Numeric Data." In Lecture Notes in Computer Science, 979–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552451_135.
Full textAhmad, Amir, and Lipika Dey. "Algorithm for Fuzzy Clustering of Mixed Data with Numeric and Categorical Attributes." In Distributed Computing and Internet Technology, 561–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11604655_63.
Full textMartarelli, Nádia Junqueira, and Marcelo Seido Nagano. "Optimization of the Numeric and Categorical Attribute Weights in KAMILA Mixed Data Clustering Algorithm." In Intelligent Data Engineering and Automated Learning – IDEAL 2019, 20–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33607-3_3.
Full textChen, Guanhua, Xiuli Ma, Dongqing Yang, Shiwei Tang, and Meng Shuai. "A Bipartite Graph Framework for Summarizing High-Dimensional Binary, Categorical and Numeric Data." In Lecture Notes in Computer Science, 580–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02279-1_41.
Full textSilva, Joaquim, Gabriel Lopes, and António Falcão. "Mining Causality from Non-categorical Numerical Data." In Behavior Computing, 215–27. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2969-1_13.
Full textFeng, Xiaodong, Sen Wu, and Yanchi Liu. "Imputing Missing Values for Mixed Numeric and Categorical Attributes Based on Incomplete Data Hierarchical Clustering." In Knowledge Science, Engineering and Management, 414–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25975-3_37.
Full textCaruso, Giulia, Adelia Evangelista, and Stefano Antonio Gattone. "Profiling visitors of a national park in Italy through unsupervised classification of mixed data." In Proceedings e report, 135–40. Florence: Firenze University Press, 2021. http://dx.doi.org/10.36253/978-88-5518-304-8.27.
Full textRastogi, Rohit, Saumya Agarwal, Palak Sharma, Uarvarshi Kaul, and Shilpi Jain. "Unsupervised Classification of Mixed Data Type of Attributes Using Genetic Algorithm (Numeric, Categorical, Ordinal, Binary, Ratio-Scaled)." In Advances in Intelligent Systems and Computing, 121–31. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1771-8_11.
Full textCheung, Yiu-ming, and Hong Jia. "A Unified Metric for Categorical and Numerical Attributes in Data Clustering." In Advances in Knowledge Discovery and Data Mining, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37456-2_12.
Full textAlghanmi, Nouf, and Xiao-Jun Zeng. "A Hybrid Regression Model for Mixed Numerical and Categorical Data." In Advances in Intelligent Systems and Computing, 369–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29933-0_31.
Full textConference papers on the topic "Numeric and categorical data"
Reddy, M. V. Jagannatha, and B. Kavitha. "Efficient ensemble algorithm for mixed numeric and categorical data." In 2010 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2010. http://dx.doi.org/10.1109/iccic.2010.5705738.
Full textHan, Xiao, Yahui Yang, Qingni Shen, and Min Xia. "An Improved ART 2-A Model for Mixed Numeric and Categorical Data." In 2009 International Conference on Information Engineering and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/iciecs.2009.5365746.
Full textWang, Shuyun, Yingjie Fan, Chenghong Zhang, HeXiang Xu, Xiulan Hao, and Yunfa Hu. "Entropy Based Clustering of Data Streams with Mixed Numeric and Categorical Values." In Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008). IEEE, 2008. http://dx.doi.org/10.1109/icis.2008.57.
Full textSuematsu, Haruka, Sayaka Yagi, Takayuki Itoh, Yosuke Motohashi, Kenji Aoki, and Satoshi Morinaga. "A Heatmap-Based Time-Varying Multi-variate Data Visualization Unifying Numeric and Categorical Variables." In 2014 18th International Conference on Information Visualisation (IV). IEEE, 2014. http://dx.doi.org/10.1109/iv.2014.25.
Full textLi, Taoying, and Yan Chen. "A Weight Entropy k-Means Algorithm for Clustering Dataset with Mixed Numeric and Categorical Data." In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2008. http://dx.doi.org/10.1109/fskd.2008.32.
Full textLi, Jie, Xinbo Gao, and Licheng Jiao. "A GA-based clustering algorithm for large data sets with mixed numeric and categorical values." In Third International Symposium on Multispectral Image Processing and Pattern Recognition, edited by Hanqing Lu and Tianxu Zhang. SPIE, 2003. http://dx.doi.org/10.1117/12.538864.
Full textAndreopoulos, Bill, Aijun An, and Xiaogang Wang. "Clustering mixed numerical and low quality categorical data." In the 2nd international workshop. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1077501.1077517.
Full textLiang, Wen-Bin, Chang-Dong Wang, and Jian-Huang Lai. "Weighted numerical and categorical attribute clustering in data streams." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7966237.
Full textBacaksiz, Ahmet Hifzi, and Eren Esgin. "Extraction of Numerical data from Categorical Data Set and Artificial Neural Networks." In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2019. http://dx.doi.org/10.1109/ismsit.2019.8932767.
Full textZhang, Kai, Qiaojun Wang, Zhengzhang Chen, Ivan Marsic, Vipin Kumar, Guofei Jiang, and Jie Zhang. "From Categorical to Numerical: Multiple Transitive Distance Learning and Embedding." In Proceedings of the 2015 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015. http://dx.doi.org/10.1137/1.9781611974010.6.
Full textReports on the topic "Numeric and categorical data"
Leupp, D. G., S. Kelly, and D. E. Bridges. A Comparison of Numeric Data Entry with Touch-Sensitive and Conventional Numeric Keypads. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada153276.
Full textTueller, Stephen, Richard Van Dorn, and Georgiy Bobashev. Visualization of Categorical Longitudinal and Times Series Data. RTI Press, February 2016. http://dx.doi.org/10.3768/rtipress.2016.mr.0033.1602.
Full textPruett, Richard K. WDMET Numeric and Descriptive Data User Interface Development Project. Fort Belvoir, VA: Defense Technical Information Center, July 1996. http://dx.doi.org/10.21236/ada286979.
Full textRugg, David J. TableSim--A program for analysis of small-sample categorical data. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Research Station, 2003. http://dx.doi.org/10.2737/nc-gtr-232.
Full textBoden, T. A., F. M. Jr O`Hara, and F. W. Stoss. CDIAC catalog of numeric data packages and computer model packages. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10176843.
Full textEdwards, Susan L., Marcus E. Berzofsky, and Paul P. Biemer. Addressing Nonresponse for Categorical Data Items Using Full Information Maximum Likelihood with Latent GOLD 5.0. RTI Press, September 2018. http://dx.doi.org/10.3768/rtipress.2018.mr.0038.1809.
Full textPeterson, James T. CATDAT : A Program for Parametric and Nonparametric Categorical Data Analysis : User's Manual Version 1.0, 1998-1999 Progress Report. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/756625.
Full textLumpkin, Shamsie, Isaac Parrish, Austin Terrell, and Dwayne Accardo. Pain Control: Opioid vs. Nonopioid Analgesia During the Immediate Postoperative Period. University of Tennessee Health Science Center, July 2021. http://dx.doi.org/10.21007/con.dnp.2021.0008.
Full text