To see the other types of publications on this topic, follow the link: Numerical analysis.

Journal articles on the topic 'Numerical analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Numerical analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

H, Girija Bai. "Numerical Analysis of Aneurysm in Artery." International Journal of Psychosocial Rehabilitation 24, no. 4 (2020): 4975–81. http://dx.doi.org/10.37200/ijpr/v24i4/pr201597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Daegene. "Numerical Analysis in Entanglement Swapping Protocols." NeuroQuantology 20, no. 2 (2022): 153–57. http://dx.doi.org/10.14704/nq.2022.20.2.nq22083.

Full text
Abstract:
Entanglement has recently been one of the most essential elements in the development of various quantum technologies. In fact, a swapping protocol was introduced to create a long-distance entanglement from multiple shorter ones. Extending the previous work, this paper provides a more detailed numerical analysis to help create long-distance entanglement out of the two non-maximal three-level states. Specifically, it shows that while the protocol does not always yield optimal results, namely, the weaker link, there is a substantial number of states that yield an optimal result. Moreover, we disc
APA, Harvard, Vancouver, ISO, and other styles
3

Ellerby, F. B., I. Jacques, and C. Judd. "Numerical Analysis." Mathematical Gazette 72, no. 460 (1988): 156. http://dx.doi.org/10.2307/3618958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jackson, I. R. H., and Bill Dalton. "Numerical Analysis." Mathematical Gazette 76, no. 476 (1992): 307. http://dx.doi.org/10.2307/3619167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mudge, Michael Richard, and Peter R. Turner. "Numerical Analysis." Mathematical Gazette 81, no. 491 (1997): 342. http://dx.doi.org/10.2307/3619249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Strawderman, William E., and Rainer Kress. "Numerical Analysis." Journal of the American Statistical Association 95, no. 449 (2000): 348. http://dx.doi.org/10.2307/2669585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brezinski, C. "Numerical analysis." Mathematics and Computers in Simulation 31, no. 6 (1990): 596. http://dx.doi.org/10.1016/0378-4754(90)90072-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clarke, G. M., R. L. Burden, and J. D. Faires. "Numerical Analysis." Statistician 41, no. 1 (1992): 128. http://dx.doi.org/10.2307/2348648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

G., W., and David F. Griffiths. "Numerical Analysis." Mathematics of Computation 46, no. 174 (1986): 767. http://dx.doi.org/10.2307/2008021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

G., W., and David F. Griffiths. "Numerical Analysis." Mathematics of Computation 45, no. 171 (1985): 274. http://dx.doi.org/10.2307/2008070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

G., W., D. F. Griffiths, and G. A. Watson. "Numerical Analysis." Mathematics of Computation 49, no. 179 (1987): 307. http://dx.doi.org/10.2307/2008271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Atkinson, Kendall. "Numerical analysis." Scholarpedia 2, no. 8 (2007): 3163. http://dx.doi.org/10.4249/scholarpedia.3163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Brandimarte, Paolo. "Numerical analysis." Wiley Interdisciplinary Reviews: Computational Statistics 3, no. 5 (2011): 434–49. http://dx.doi.org/10.1002/wics.172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rannacher, Rolf. "Numerical analysis of the Navier-Stokes equations." Applications of Mathematics 38, no. 4 (1993): 361–80. http://dx.doi.org/10.21136/am.1993.104560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Perumal, Logah, C. P. Tso, and Lim Thong Leng. "Novel Polyhedral Finite Elements for Numerical Analysis." International Journal of Computer and Electrical Engineering 9, no. 2 (2017): 492–501. http://dx.doi.org/10.17706/ijcee.2017.9.2.492-501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Marek, Ivo. "International Symposium on Numerical Analysis ISNA'92. Preface." Applications of Mathematics 38, no. 4 (1993): 241–42. http://dx.doi.org/10.21136/am.1993.104551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shrivastava, Gajendra, and Pankaj Sharma. "Numerical Analysis of Shockwave Dynamics in Contraction Channels." International Journal of Science and Research (IJSR) 13, no. 10 (2024): 2031–32. http://dx.doi.org/10.21275/sr241028200442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shah, Mr Ronak S., and Prof D. A. Warke. "Numerical Analysis of Friction Stir Welding for AA6061 by Finite Element Analysis." International Journal of Trend in Scientific Research and Development Volume-2, Issue-2 (2018): 408–17. http://dx.doi.org/10.31142/ijtsrd9430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

I., E., Curtis F. Gerald, and Patrick O. Wheatley. "Applied Numerical Analysis." Mathematics of Computation 44, no. 169 (1985): 279. http://dx.doi.org/10.2307/2007813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mudge, Michael Richard, and Gwynne A. Evans. "Practical Numerical Analysis." Mathematical Gazette 81, no. 491 (1997): 343. http://dx.doi.org/10.2307/3619250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

G., W., and Kendall Atkinson. "Elementary Numerical Analysis." Mathematics of Computation 62, no. 205 (1994): 434. http://dx.doi.org/10.2307/2153423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Watson, Layne T., Michael Bartholomew-Biggs, and John Ford. "Numerical Analysis 2000." Journal of Computational and Applied Mathematics 124, no. 1-2 (2000): ix—x. http://dx.doi.org/10.1016/s0377-0427(00)00416-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Baker, Christopher, Manchester, Giovanni Monegato, et al. "Numerical Analysis 2000." Journal of Computational and Applied Mathematics 125, no. 1-2 (2000): xi—xviii. http://dx.doi.org/10.1016/s0377-0427(00)00454-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Charafi, A. "Applied numerical analysis." Engineering Analysis with Boundary Elements 10, no. 1 (1992): 89–90. http://dx.doi.org/10.1016/0955-7997(92)90089-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

W., L. B., and Colin W. Crye. "Numerical Functional Analysis." Mathematics of Computation 45, no. 171 (1985): 270. http://dx.doi.org/10.2307/2008066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Minkoff, M., and Kendall Atkinson. "Elementary Numerical Analysis." Mathematics of Computation 47, no. 176 (1986): 749. http://dx.doi.org/10.2307/2008188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Adomaitis, Raymond A., and Ali Çinar. "Numerical singularity analysis." Chemical Engineering Science 46, no. 4 (1991): 1055–62. http://dx.doi.org/10.1016/0009-2509(91)85098-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Vieru, Dumitru, Constantin Fetecau, Nehad Ali Shah, and Jae Dong Chung. "Numerical Approaches of the Generalized Time-Fractional Burgers’ Equation with Time-Variable Coefficients." Journal of Function Spaces 2021 (December 8, 2021): 1–14. http://dx.doi.org/10.1155/2021/8803182.

Full text
Abstract:
The generalized time-fractional, one-dimensional, nonlinear Burgers equation with time-variable coefficients is numerically investigated. The classical Burgers equation is generalized by considering the generalized Atangana-Baleanu time-fractional derivative. The studied model contains as particular cases the Burgers equation with Atangana-Baleanu, Caputo-Fabrizio, and Caputo time-fractional derivatives. A numerical scheme, based on the finite-difference approximations and some integral representations of the two-parameter Mittag-Leffler functions, has been developed. Numerical solutions of a
APA, Harvard, Vancouver, ISO, and other styles
29

Ouyanga, Kwan, Reui-Kuo Lina, Sheng-Ju Wu, and Wen-Hann Sheu. "The Numerical Analysis of Flow Field on Warship Deck." International Journal of Engineering Research 4, no. 3 (2015): 118–22. http://dx.doi.org/10.17950/ijer/v4s3/307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

C N, Jayapragasan, and Dr K. Janardhan Reddy. "Numerical Analysis and Experimental Verification of an Industrial Cleaner." International Journal of Engineering Research 4, no. 4 (2015): 216–21. http://dx.doi.org/10.17950/ijer/v4s4/411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

M.L., Pavan Kishore. "Numerical Study Free Vibration Analysis of Thin Rectangular Plates." Journal of Advanced Research in Dynamical and Control Systems 12, SP8 (2020): 351–60. http://dx.doi.org/10.5373/jardcs/v12sp8/20202533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

JITARAȘU, Octavian. "HYBRID COMPOSITE MATERIALS FOR BALLISTIC PROTECTION. A NUMERICAL ANALYSIS." Review of the Air Force Academy 17, no. 2 (2019): 47–56. http://dx.doi.org/10.19062/1842-9238.2019.17.2.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Song, Daegene. "Data Analysis in an Entanglement Network Using Numerical Methods." NeuroQuantology 20, no. 2 (2022): 158–64. http://dx.doi.org/10.14704/nq.2022.20.2.nq22084.

Full text
Abstract:
While the foundation of quantum theory has been debated, its pragmatism has made it enormously productive. Establishing secret keys over long distances has been realized in the real world. Once considered only a hype, quantum computers have also been implemented in laboratories and are performing computations that are superior to their classical counterparts. In this paper, building on previous work, three 2-level entangled states are studied. In particular, the extensive range of states that yield the near-optimal result when entanglement swapping is applied at joints is numerically examined.
APA, Harvard, Vancouver, ISO, and other styles
34

Jalaluddin and Akio Miyara. "A214 Numerical analysis of GHE Performance in Different Conditions." Proceedings of the Thermal Engineering Conference 2012 (2012): 331–32. http://dx.doi.org/10.1299/jsmeted.2012.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

S Chauhan, Vijaysingh, and Sameer Q Syed. "Numerical Stress Analysis of Uniform and Stiffened Hydraulic Cylinder." International Journal of Scientific Engineering and Research 3, no. 4 (2015): 55–59. https://doi.org/10.70729/ijser1580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Anima, Chinnababu, and Rajesh Kandula. "Numerical Study of Formula One Halo Frame Aerodynamic Analysis." International Journal of Science and Research (IJSR) 8, no. 11 (2019): 2003–8. http://dx.doi.org/10.21275/sr24119232911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Patil, Akshay, and Manas Rathore. "Dynamic Analysis of Sloped Building: Experimental & Numerical Studies." International Journal of Science and Research (IJSR) 10, no. 6 (2021): 997–1000. https://doi.org/10.21275/sr21612120449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Panday, K. M., P. L. Choudhury, and N. P. Kumar. "Numerical Unsteady Analysis of Thin Film Lubricated Journal Bearing." International Journal of Engineering and Technology 4, no. 2 (2012): 185–91. http://dx.doi.org/10.7763/ijet.2012.v4.346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Alessa, Nazek. "Transformation Magnetohydrodynamics in Presence of a Channel Filled with Porous Medium and Heat Transfer of Non-Newtonian Fluid by Using Lie Group Transformations." Journal of Function Spaces 2020 (October 22, 2020): 1–6. http://dx.doi.org/10.1155/2020/8840287.

Full text
Abstract:
In this paper, the numerical results are presented by using Lie group transformations, to be more efficient and sophisticated. To solve various fluid dynamic problems numerically, we present the numerical results in a field of velocity and distribution of temperature for different parameters regarding the problem of radiative heat, a magnetohydrodynamics, and non-Newtonian viscoelasticity for the unstable flow of optically thin fluid inside a channel filled with nonuniform wall temperature and saturated porous medium, including Hartmann number, porous medium and frequency parameter, and radiat
APA, Harvard, Vancouver, ISO, and other styles
40

Alomari, Mohammad W., Satyajit Sahoo, and Mojtaba Bakherad. "Further numerical radius inequalities." Journal of Mathematical Inequalities, no. 1 (2022): 307–26. http://dx.doi.org/10.7153/jmi-2022-16-22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bo, Yu, Dan Tian, Xiao Liu, and Yuanfeng Jin. "Discrete Maximum Principle and Energy Stability of the Compact Difference Scheme for Two-Dimensional Allen-Cahn Equation." Journal of Function Spaces 2022 (February 10, 2022): 1–15. http://dx.doi.org/10.1155/2022/8522231.

Full text
Abstract:
The Allen-Cahn model is discussed mainly in the phase field simulation. The compact difference method will be used to numerically approximate the two-dimensional nonlinear Allen-Cahn equation with initial and boundary value conditions, and then, a fully discrete compact difference scheme with second-order accuracy in time and fourth-order in space is established. And its numerical solution satisfies the discrete maximum principle under the constraints of reasonable space and time steps. On this basis, the energy stability of the scheme is investigated. Finally, numerical examples are given to
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Yinkun, Jianshu Luo, and Xiangling Chen. "Analysis of Numerical Measure and Numerical Integration Based on Measure." Abstract and Applied Analysis 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/474089.

Full text
Abstract:
We present a convergence analysis for a general numerical method to estimate measure function. By combining Lagrange interpolation, we propose a specific method for approximating the measure function and analyze the convergence order. Further, we analyze the error bound of numerical measure integration and prove that the numerical measure integration can decrease the singularity for singular integrals. Numerical examples are presented to confirm the theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
43

Piqueras, M. A., R. Company, and L. Jódar. "Stable Numerical Solutions Preserving Qualitative Properties of Nonlocal Biological Dynamic Problems." Abstract and Applied Analysis 2019 (July 1, 2019): 1–7. http://dx.doi.org/10.1155/2019/5787329.

Full text
Abstract:
This paper deals with solving numerically partial integrodifferential equations appearing in biological dynamics models when nonlocal interaction phenomenon is considered. An explicit finite difference scheme is proposed to get a numerical solution preserving qualitative properties of the solution. Gauss quadrature rules are used for the computation of the integral part of the equation taking advantage of its accuracy and low computational cost. Numerical analysis including consistency, stability, and positivity is included as well as numerical examples illustrating the efficiency of the propo
APA, Harvard, Vancouver, ISO, and other styles
44

Kadir Aziz, A., Donald A. French, Soren Jensen, and R. Bruce Kellogg. "Origins, analysis, numerical analysis, and numerical approximation of a forward-backward parabolic problem." ESAIM: Mathematical Modelling and Numerical Analysis 33, no. 5 (1999): 895–922. http://dx.doi.org/10.1051/m2an:1999125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mudge, Michael R., and Gilbert W. Stewart. "Afternotes on Numerical Analysis." Mathematical Gazette 81, no. 490 (1997): 188. http://dx.doi.org/10.2307/3618833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mudge, Michael R., and Walter Gautschi. "Numerical Analysis: An Introduction." Mathematical Gazette 83, no. 497 (1999): 372. http://dx.doi.org/10.2307/3619117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

S., F., Lars Elden, and Linde Wittmeyer-Koch. "Numerical Analysis: An Introduction." Mathematics of Computation 57, no. 196 (1991): 870. http://dx.doi.org/10.2307/2938725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Buhmann, Martin, J. Stoer, and R. Bulirsch. "Introduction to Numerical Analysis." Mathematical Gazette 79, no. 484 (1995): 243. http://dx.doi.org/10.2307/3620125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

I., E., James L. Buchanan, and Peter R. Turner. "Numerical Methods and Analysis." Mathematics of Computation 60, no. 202 (1993): 848. http://dx.doi.org/10.2307/2153126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Froberg, Carl-Erik, J. Stoer, R. Bulirsch, R. Bartels, W. Gautschi, and C. Witzgall. "Introduction to Numerical Analysis." Mathematics of Computation 63, no. 207 (1994): 421. http://dx.doi.org/10.2307/2153586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!