Academic literature on the topic 'Numerical differentiation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical differentiation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numerical differentiation"
Riachy, Samer, Mamadou Mboup, and Jean-Pierre Richard. "Multivariate numerical differentiation." Journal of Computational and Applied Mathematics 236, no. 6 (October 2011): 1069–89. http://dx.doi.org/10.1016/j.cam.2011.07.031.
Full textChartrand, Rick. "Numerical Differentiation of Noisy, Nonsmooth Data." ISRN Applied Mathematics 2011 (May 11, 2011): 1–11. http://dx.doi.org/10.5402/2011/164564.
Full textObradovic, Dragan, Lakshmi Narayan Mishra, and Vishnu Narayan Mishra. "Numerical Differentiation and Integration." JOURNAL OF ADVANCES IN PHYSICS 19 (January 25, 2021): 1–5. http://dx.doi.org/10.24297/jap.v19i.8938.
Full textRamm, Alexander G., and Alexandra B. Smirnova. "On stable numerical differentiation." Mathematics of Computation 70, no. 235 (March 9, 2001): 1131–54. http://dx.doi.org/10.1090/s0025-5718-01-01307-2.
Full textHuang, Xiaowei, Chuansheng Wu, and Jun Zhou. "Numerical differentiation by integration." Mathematics of Computation 83, no. 286 (June 4, 2013): 789–807. http://dx.doi.org/10.1090/s0025-5718-2013-02722-6.
Full textHerceg, Dragoslav, and Ljiljana Cvetković. "On a Numerical Differentiation." SIAM Journal on Numerical Analysis 23, no. 3 (June 1986): 686–91. http://dx.doi.org/10.1137/0723044.
Full textLing, Leevan, and Qi Ye. "On meshfree numerical differentiation." Analysis and Applications 16, no. 05 (August 30, 2018): 717–39. http://dx.doi.org/10.1142/s021953051850001x.
Full textDavydov, Oleg, and Robert Schaback. "Minimal numerical differentiation formulas." Numerische Mathematik 140, no. 3 (May 31, 2018): 555–92. http://dx.doi.org/10.1007/s00211-018-0973-3.
Full textMurphy, Robin. "103.45 Improving elementary numerical integration using numerical differentiation." Mathematical Gazette 103, no. 558 (October 21, 2019): 548–56. http://dx.doi.org/10.1017/mag.2019.127.
Full textHanke, Martin, and Otmar Scherzer. "Inverse Problems Light: Numerical Differentiation." American Mathematical Monthly 108, no. 6 (June 2001): 512. http://dx.doi.org/10.2307/2695705.
Full textDissertations / Theses on the topic "Numerical differentiation"
Bodily, Chris H. "Numerical Differentiation Using Statistical Design." NCSU, 2002. http://www.lib.ncsu.edu/theses/available/etd-07082002-235127/.
Full textHu, Luoan 1954. "DBDF: An implicit numerical differentiation algorithm for integrated circuit simulation." Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277918.
Full textHodson, Joshua D. "Numerical Analysis and Spanwise Shape Optimization for Finite Wings of Arbitrary Aspect Ratio." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7574.
Full textSafiran, Niloofar Verfasser], Uwe [Akademischer Betreuer] Naumann, and Erika [Akademischer Betreuer] [Ábrahám. "Differentiation of numerical simulations with embedded nonlinear systems and integrals / Niloofar Safiran ; Uwe Naumann, Erika Ábrahám." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1196018057/34.
Full textOthmane, Amine. "Contributions to numerical differentiation using orthogonal polynomials and its application to fault detection and parameter identification." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST144.
Full textThe reconstruction of unmeasured quantities in dynamical systems often boils down to the knowledge of derivatives of the measured system variables. The approximation of these derivatives in the presence of measurement disturbances is known to be challenging. However, numerical differentiation algorithms based on orthogonal polynomials and truncated generalised Fourier series may considerably simplify the problem. These differentiators are robust to measurement disturbances and may contribute to solving complex control engineering tasks. Critical challenges for the application of the methods are the selection of favourable parameters and their real-time implementation. This work presents a unified framework for synthesizing and analysing differentiators based on classical orthogonal polynomials. Existing approaches are extended, and their relations to established methods are investigated. Differentiators based on Jacobi polynomials, also known as algebraic differentiators, form a particular class of the considered algorithms. Parameter selection guidelines are derived based on filter interpretations of the differentiators to achieve desired frequency-domain properties. The discussion of the discrete-time implementation emphasizes the preservation of the latter properties. A new tuning approach based on an optimization problem which requires only the measured signal is proposed. An experimental case study compares the performance of the differentiators in the presence of measurement disturbances. The approximation results, the computational burden, and the storage requirements are discussed in detail. Especially the latter two properties are crucial for real-time applications. The differentiators are used for model-based fault detection problems in two experimental case studies. First, the collision of a table tennis ball with a magnetically supported plate is discussed. Only the measurement of the plate position and the applied forces are known. The proposed approach significantly reduces the computational burden and memory requirements when compared to previously considered methods. Besides, the new approach decreases theminimum detectable falling height of the ball. Then, a model-based approach for the efficient real-time detection of faults in rolling element bearings is proposed. The approach is validated using experimental data from different test benches. Finally, a parameter estimation problem is discussed. This work generalises recently proposed algorithms. The derived convergence conditions are less restrictive than the previously published ones. Besides, this approach allows identifying a subset of parameters even if some are not excited. Two experimental case studies validate the theoretical analysis. The results are compared to those achieved using standard gradient estimators and algebraic parameter estimation methods. These examples underline the great potential of these methods
Tateneni, Krishna. "Use of automatic and numerical differentiation in the estimation of asymptotic standard errors in exploratory factor analysis /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487950658548932.
Full textHeller, Richard. "Checkpointing without operating system intervention implementing Griewank's algorithm." Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1176494831.
Full textBirkisson, Asgeir. "Numerical solution of nonlinear boundary value problems for ordinary differential equations in the continuous framework." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:1df19052-5eb3-4398-a7b2-b103e380ec2c.
Full textPantland, Nicolette Ariana. "3D numerical techniques for determining the foot of a continental slope." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49807.
Full textENGLISH ABSTRACT: The United Nations Convention on the Law of the Sea (UNCLOS) provides an opportunity for qualifying coastal signatory states to claim extended maritime estate. The opportunity to claim rests on the precept that in certain cases a continental shelf extends beyond the traditionally demarcated two hundred nautical mile (200M) Exclusive Economic Zone (EEZ) mark. In these cases a successful claim results in states having sovereign rights to the living and non-living resources of the seabed and subsoil, as well as the sedentary species, of the area claimed. Where the continental shelf extends beyond the 200M mark, the Foot of the Continental Slope (FoS) has to be determined as one of the qualifying criteria. Article 76 of UNCLOS de nes the FoS as ". . . the point of maximum change in the gradient at its base." Currently Caris Lots is the most widely used software which incorporates public domain data to determine the FoS as a step towards defining the offshore extent of an extended continental shelf. In this software, existing methods to compute the FoS are often subjective, typically involving an operator choosing the best perceived foot point during consideration of a two dimensional profile of the continental slope. These foot points are then joined by straight lines to form the foot line to be used in the desk top study (feasibility study). The purpose of this thesis is to establish a semi-automated and mathematically based three dimensional method for determination of the FoS using South African data as a case study. Firstly, a general background of UNCLOS is given (with emphasis on Article 76), including a brief discussion of the geological factors that influence the characteristics of a continental shelf and thus factors that could influence the determination of the FoS. Secondly, a mathematical method for determination of the surfaces of extremal curvature (on three dimensional data), originally proposed by Vanicek and Ou in 1994, is detailed and applied to two smooth, hypothetical sample surfaces. A discussion of the bathymetric data to be used for application introduces the factors to be taken into account when using extensive survey data as well as methods to process the raw data for use. The method is then applied to two sets of gridded bathymetric data of differing resolution for four separate regions around the South African coast. The ridges formed on the resulting surfaces of maximum curvature are then traced in order to obtain a foot line definition for each region and each resolution. The results obtained from application of the method are compared with example foot points provided by the subjective two dimensional method of computation within the Caris Lots software suite. A comparison of the results for the different resolutions of data is included to provide insight as to the effectiveness of the method with differing spatial coarseness of data. Finally, an indication of further work is provided in the conclusion to this thesis, in the form of a number of recommendations for possible adaptations of the mathematical and tracing methods, and improvements thereof.
AFRIKAANSE OPSOMMING: Die Verenigde Nasies se Konvensie oor die Wet van die See (UNCLOS) bied 'n geleentheid aan kwalifiserende state wat ondertekenaars van die Konvensie is om aanspraak te maak op uitgebreide maritieme gebied. Die geleentheid om op uitgebreide gebied aanspraak te maak berus op die veronderstelling dat 'n kontinentale tafel in sekere gevalle tot buite die tradisioneel afgebakende 200 seemyl eksklusiewe ekonomiese zone (EEZ) strek. In sulke gevalle het 'n suksesvolle aanspraak die gevolg dat die staat soewereine reg oor die lewende en nie-lewende bronne van die seevloer en ondergrond verkry, sowel as die inwonende spesies van die gebied buite die EEZ waarop aanspraak gemaak word. Die voet van die kontinentale tafel (FoS) moet vasgestel word as een van die bepalende kriteria vir afbakening van die aanspraak waar die kontinentale tafel tot buite die EEZ strek. Artikel 76 van UNCLOS defineer die FoS as ". . . die punt van maksimale verandering in die helling by sy basis." Die mees algemeen gebruikte rekenaar sagteware wat openbare domein data aanwend om die voet van die helling te bepaal, is tans "Caris Lots." Die metodes wat in die program gebruik word om die voet van die helling te bepaal, is dikwels subjektief en berus tipies op 'n operateur se keuse van die beste afgeskatte punt van die voet van die helling uit 'n oorweging van 'n twee dimensionele profiel van die kontinentale tafel. Die berekende voet-punte word dan deur middel van reguit lyne verbind om 'n hellingsvoetlyn te vorm. Hierdie voetlyn kan dan in die Suid-Afrikaanse lessenaarstudie (doenlikheidstudie) oor die bepaling van die voet van die kontinentale tafel gebruik word. Die doel van hierdie verhandeling is om 'n semi-outomatiese en wiskundig gebaseerde drie-dimensionele metode te beskryf vir die vasstelling van die FoS, deur as 'n gevallestudie van Suid-Afrikaanse data gebruik te maak. 'n Algemene agtergrond van UNCLOS, met beklemtoning van Artikel 76, word eerstens gegee. 'n Kort bespreking van die geologiese faktore wat die kontinentale tafel beïnvloed en wat gevolglik 'n invloed kan hê op die vasstelling van die voet van die helling, is ingesluit. Tweedens word 'n wiskundige metode, wat oorspronklik in 1994 deur Vanicek en Ou voorgestel is, vir bepaling van die oppervlaktes van maksimale kromming (gebaseer op drie-dimensionele data) in detail bespreek en 'n voorbeeld van 'n toepassing op twee gladde, denkbeeldige oppervaktes word beskryf. Die faktore wat in ag geneem moet word wanneer omvattende dieptemeting data gebruik word, en die metodes wat gebruik word om die rou data te verwerk, word ingelei deur 'n bespreking van die aard van die dieptemeting data wat gebruik is. Die metode word dan toegepas op twee stelle geruite dieptemeting data van verskillende resolusies vir vier afsonderlike streke om die Suid-Afrikaanse kus. Die riwwe wat op die resulterende oppervlaktes van maksimale kromming gevorm word, word dan nagetrek ten einde 'n lyndefinisie van die voet van die kontinentale tafel vir elke streek teen elke resolusie te bepaal. Die resultate verkry uit toepassings van die metode word vergelyk met hellingsvoetpunte soos bepaal deur die subjektiewe twee dimensionele berekeningsmetode in die "Caris Lots" rekenaar-program. 'n Vergelyking van die resultate vir die verskillende data resolusies word ingesluit om die doeltreffendheid van die metode met betrekking tot die hantering van verskillende ruimtelike data resolusies te ondersoek. 'n Aanduiding van verdere werk, bestaande uit 'n aantal aanbevelings vir moontlike aanpassings en verbeterings van die wiskundige en natrek metodes, word ten slotte in die gevolgtrekking van die verhandeling verskaf.
Stary, Tomas. "Mathematical and computational study of Markovian models of ion channels in cardiac excitation." Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/24166.
Full textBooks on the topic "Numerical differentiation"
Owolabi, Kolade M., and Abdon Atangana. Numerical Methods for Fractional Differentiation. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0098-5.
Full textBitterlich, Walter. Numerische Methoden für technische Berechnungen. Aachen: Shaker Verlag, 2004.
Find full textKai, Diethelm, Luchko Yury, and NASA Glenn Research Center, eds. Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus : first annual report. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textKai, Diethelm, Luchko Yury, and NASA Glenn Research Center, eds. Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus : first annual report. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textFreed, Alan. Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus : first annual report. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textSkeel, Robert D. Global error estimation and the backward differentiation formulas. Urbana, IL (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1986.
Find full textTreanţă, Savin. Variational analysis with applications in optimisation and control. Newcastle upon Tyne, UK: Cambridge Scholars Publishing, 2019.
Find full textVerma, Arun. On the efficient methods to solve ODEs and BVPs using automatic differentiation. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1996.
Find full textGlovackaya, Alevtina. Computational model. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1013723.
Full textDolgov, I., Mihail Volovik, and Andrey Mahnovskiy. Thermographic signs of certain diseases of the respiratory system (acute sinusitis, pneumonia) Thermography Atlas. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/textbook_61b1ab7de6b1f9.69203696.
Full textBook chapters on the topic "Numerical differentiation"
Scherer, Philipp O. J. "Numerical Differentiation." In Graduate Texts in Physics, 39–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61088-7_3.
Full textWoodford, C., and C. Phillips. "Numerical Differentiation." In Numerical Methods with Worked Examples: Matlab Edition, 119–33. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_6.
Full textAnastassiou, George A., and Razvan A. Mezei. "Numerical Differentiation." In Springer Undergraduate Texts in Mathematics and Technology, 161–73. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16739-8_4.
Full textScherer, Philipp O. J. "Numerical Differentiation." In Computational Physics, 29–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13990-1_3.
Full textEngeln-Müllges, Gisela, and Frank Uhlig. "Numerical Differentiation." In Numerical Algorithms with C, 353–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61074-5_14.
Full textEngeln-Müllges, Gisela, and Frank Uhlig. "Numerical Differentiation." In Numerical Algorithms with Fortran, 353–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80043-6_14.
Full textBauldry, William C. "Numerical Differentiation." In Introduction to Computational Mathematics, 70–83. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003299257-4.
Full textSaha Ray, Santanu. "Numerical Differentiation." In Numerical Analysis with Algorithms and Programming, 159–83. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315369174-4.
Full textFaul, A. C. "Numerical Differentiation." In A Concise Introduction to Numerical Analysis, 205–9. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315370217-7.
Full textScherer, Philipp O. J. "Numerical Differentiation." In Graduate Texts in Physics, 37–43. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00401-3_3.
Full textConference papers on the topic "Numerical differentiation"
Giménez Palomares, Fernando, Juan Antonio Monsoriu Serrá, and Jose Fernando Giménez Luján. "NUMERICAL DIFFERENTIATION: A VIRTUAL LABORATORY." In International Technology, Education and Development Conference. IATED, 2017. http://dx.doi.org/10.21125/inted.2017.2212.
Full textHarker, Matthew, and Paul O'Leary. "Polynomial accurate numerical fractional order integration and differentiation." In 2014 International Conference on Fractional Differentiation and its Applications (ICFDA). IEEE, 2014. http://dx.doi.org/10.1109/icfda.2014.6967402.
Full textQian, Ailin, and Yan Li. "A modified method for fractional numerical differentiation." In 2011 International Conference on Information Science and Technology (ICIST). IEEE, 2011. http://dx.doi.org/10.1109/icist.2011.5765197.
Full textZhao, Zhenyu, and Lei You. "Numerical Differentiation by Legendre-Gauss-Lobatto Interpolation." In 2010 International Conference on Computational and Information Sciences (ICCIS). IEEE, 2010. http://dx.doi.org/10.1109/iccis.2010.196.
Full textChartrand, Rick. "Numerical differentiation of noisy, nonsmooth, multidimensional data." In 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2017. http://dx.doi.org/10.1109/globalsip.2017.8308641.
Full textZhou, Wen, Yiwen Liang, Hongbin Dong, Chengyu Tan, Zhenhua Xiao, and Weiwei Liu. "A Numerical Differentiation Based Dendritic Cell Model." In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2017. http://dx.doi.org/10.1109/ictai.2017.00167.
Full textChen, Ming-Da, Tung-Ju Hsieh, and Yang-Lang Chang. "Volume Data Numerical Integration and Differentiation Using CUDA." In 2011 IEEE 17th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2011. http://dx.doi.org/10.1109/icpads.2011.148.
Full textTay, Kim Gaik, Sie Long Kek, and Rosmila Abdul-Kahar. "Improved Richardson’s extrapolation spreadsheet calculator for numerical differentiation." In PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): Germination of Mathematical Sciences Education and Research towards Global Sustainability. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4887682.
Full text"Two numerical differentiation techniques for nonlinear state estimation." In Proceedings of the 1999 American Control Conference. IEEE, 1999. http://dx.doi.org/10.1109/acc.1999.782871.
Full textDiop, S., V. Fromion, and J. W. Grizzle. "A resettable Kalman filter based on numerical differentiation." In 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7076086.
Full textReports on the topic "Numerical differentiation"
GOSSLER, ALBERT A. Moving Least-Squares: A Numerical Differentiation Method for Irregularly Spaced Calculation Points. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/782717.
Full textGOSSLER, ALBERT A. Moving Least-Squares: A Numerical Differentiation Method for Irregularly Spaced Calculation Points. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/782718.
Full textJudd, Kenneth L., and Ben Skrainka. High performance quadrature rules: how numerical integration affects a popular model of product differentiation. Institute for Fiscal Studies, February 2011. http://dx.doi.org/10.1920/wp.cem.2011.0311.
Full text