Academic literature on the topic 'Numerical Heat Transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical Heat Transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Numerical Heat Transfer"

1

Schmidt, F. W. "Numerical heat transfer." International Journal of Heat and Fluid Flow 6, no. 2 (June 1985): 68. http://dx.doi.org/10.1016/0142-727x(85)90036-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mujumdar, Arun s., and Mainul Hasan. "NUMERICAL HEAT TRANSFER." Drying Technology 3, no. 4 (November 1985): 615–19. http://dx.doi.org/10.1080/07373938508916301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Babus'Haq, Ramiz, and S. Douglas Probert. "Numerical heat transfer." Applied Energy 39, no. 2 (January 1991): 177–78. http://dx.doi.org/10.1016/0306-2619(91)90030-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

STIKA, Laura-Alina, Valeriu-Alexandru VILAG, Mircea BOSCOIANU, and Gheorghe MEGHERELU. "NUMERICAL STUDY OF HEAT TRANSFER IN TURBULENT FLOWS, WITH APPLICATION." Review of the Air Force Academy 13, no. 3 (December 16, 2015): 77–82. http://dx.doi.org/10.19062/1842-9238.2015.13.3.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Minkowycz, W. J., and E. M. Sparrow. "NUMERICAL HEAT TRANSFER STATUS REPORT." Numerical Heat Transfer, Part A: Applications 27, no. 1 (January 1995): iii. http://dx.doi.org/10.1080/10407789508913684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elghobashi, S. "Handbook of numerical heat transfer." International Journal of Heat and Fluid Flow 10, no. 4 (December 1989): 371. http://dx.doi.org/10.1016/0142-727x(89)90030-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mujumdar, Arun S. "HANDBOOK OF NUMERICAL HEAT TRANSFER." Drying Technology 7, no. 4 (December 1989): 843–45. http://dx.doi.org/10.1080/07373938908916637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wrobel, L. C. "Handbook of numerical heat transfer." Advances in Engineering Software 14, no. 3 (January 1992): 236. http://dx.doi.org/10.1016/0965-9978(92)90030-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Whalley, P. B. "Handbook of Numerical Heat Transfer." Chemical Engineering Science 44, no. 2 (1989): 457–58. http://dx.doi.org/10.1016/0009-2509(89)85087-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghosh, S. K. "Handbook of numerical heat transfer." Journal of Materials Processing Technology 21, no. 3 (May 1990): 336–38. http://dx.doi.org/10.1016/0924-0136(90)90058-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Numerical Heat Transfer"

1

Colomer, Rey Guillem. "Numerical methods for radiative heat transfer." Doctoral thesis, Universitat Politècnica de Catalunya, 2006. http://hdl.handle.net/10803/6691.

Full text
Abstract:
L'objectiu principal d'aquesta tesi es l'estudi de la transferència d'energia per radiació. Per aquest motiu, s'ha estudiat la fenomenologia bàsica de la transferencia de calor per radiació. Tenint en compte el tipus d'equació que descriu aquesta transferència d'energia, aquesta tesi esta encarada als metodes numèrics que ens permetran incorporar la radiació en els nostres càlculs. Donat que aquest és el primer treball d'aquestes característiques en el grup de recerca CTTC ("Centre Tecnològic de Transferència de Calor"), està limitat a geometries senzilles, cartesianes i cilíndriques.

En el capítol 1 s'exposa una breu introducció a la transferència d'energia per radiació, i una explicació de les equacions que la governen. Es tracta de l'equació del transport radiatiu, formulada en termes dels coeficients d'absorció i de dispersió, i l'equació de l'energia. També s'indica quan cal tenir en compte aquest fenòmen, i a més a més, es defineixen totes les magnituds i conceptes que s'han utilitzat en aquesta tesi. També es dóna una breu descripció d'algunes simplificacions que es poden fer a les equacions governants.

El mètode de les radiositats s'explica en el capítol 2. També s'hi descriu un procediment numèric que permet calcular els factors de vista en geometries amb simetria cilíndrica, i es presenten resultats obtinguts amb el mètode descrit. Tot i que aquest capítol està una mica deslligat de la resta de la tesi, l'algoritme ideat per tractar geometries tridimensionals amb un temps computacional molt proper al de geometries bidimensionals, sense un increment de memòria apreciable, dóna uns resultats prou bons com per formar part de la tesi.

El mètode de les ordenades discretes (DOM) es detalla en el capítol 3. L'aspecte més important d'aquest mètode es l'elecció del conjunt d'ordenades per integrar l'equació del transport radiatiu. S'enumeren quines propietats han d'acomplir aquests conjunts. S'hi explica amb detall la discretització de la equació del transport radiatiu, tant en coordenades cartesianes com en cilíndriques. Es presenten també alguns resultats ilustratius obtinguts amb aquest mètode.

En el moment en que es vol resoldre un problema real, cal tenir present que el coeficients d'absorció pot dependre bruscament de la longitud d'ona de la radiació. En aquesta tesi s'ha considerat aquesta dependència amb especial interés, en el capítol 4. Aquest interès ha motivat una recerca bibliogràfica sobre la modelització aquesta forta dependència espectral del coeficient d'absorció. Aquesta recerca s'ha dirigit també a l'estudi dels diferents models numèrics existents capaços d'abordar-la, i de resoldre la equació del transport radiatiu en aquestes condicions. Es descriuen diversos mètodes, i, d'aquests, se n'han implementat dos: el mètode de la suma ponderada de gasos grisos (WSGG), i el mètode de la suma de gasos grisos ponderada per línies espectrals (SLW). S'hi presenten també resultats ilustratius.

S'han realitzat multitud de proves en el codi numèric resultant de l'elaboració d'aquesta tesi. Tenint en compte els resultats obtinguts, es pot dir que els objectius proposats a l'inici de la tesi s'han acomplert. Com a demostració de la utilitat del codi resultant, aquest ha estat integrat en un codi de proposit general (DPC), resultat del treball de molts investigadors en els darrers anys.

Aquesta esmentada integració permet la resolució de problemes combinats de transferència de calor, analitzats en els capítols 5 i 6, on la radiació s'acobla amb la transferència de calor per convecció. La influència de la radiació en la transferència total de calor s'estudia en el capítol 5, publicat a la International Journal of Heat and Mass Transfer, volum 47 (núm. 2), pàg. 257-269, 2004. En el capítol 6, s'analitza l'efecte d'alguns paràmetres del mètode SLW en un problema combinat de transferència de calor. Aquest capítol s'ha enviat a la revista Journal of Quantitative Spectroscopy and Radiative Transfer, per què en consideri la publicació.
The main objective of the present thesis is to study the energy transfer by means of radiation. Therefore, the basic phenomenology of radiative heat transfer has been studied. However, considering the nature of the equation that describes such energy transfer, this work is focussed on the numerical methods which will allow us to take radiation into account, for both transparent and participating media. Being this the first effort within the CTTC ("Centre Tecnològic de Transferència de Calor") research group on this subject, it is limited to simple cartesian and cylindrical geometries.

For this purpose, chapter 1 contains an introduction to radiative energy transfer and the basic equations that govern radiative transfer are discussed. These are the radiative transfer equation, formulated in terms of the absorption and scattering coefficients, and the energy equation. It is also given a discussion on when this mode of energy transfer should be considered. In this chapter are also defined all of the magnitudes and concepts used throughout this work. It ends with a brief description of some approximate methods to take radiation into account.

The Radiosity Irradiosity Method is introduced in chapter 2. In this chapter it is also described a numerical method to calculate the view factors for axial symmetric geometries. The main results obtained in such geometries are also presented. Although a little disconnected from the rest of the present thesis, the algorithm used to handle "de facto"' three dimensional geometries with computation time just a little longer than two dimensional cases, with no additional memory consumption, is considered worthy enough to be included in this work.

In chapter 3, the Discrete Ordinates Method (DOM) is detailed. The fundamental aspect of this method is the choice of an ordinate set to integrate the radiative transfer equation. The characterization of such valuable ordinate sets is laid out properly. The discretization of the radiative transfer equation is explained in etail. The direct solution procedure is also outlined. Finally, illustrative results obtained with the DOM under several conditions are presented.

In the moment we wish to solve real problems, we face the fact that the absorption and scattering coefficients depend strongly on radiation wavelength. In the present thesis, special emphasis has been placed on studying the radiative properties of real gases in chapter 4. This interest resulted on a bibliographical research on how the wavenumber dependence of the absorption coefficient is modeled and estimated. Furthermore, this bibliographical research was focussed also on numerical models able to handle such wavenumber dependence. Several methods are discussed, and two of them, namely the Weighted Sum of Gray Gases (WSGG) and the Spectral Line Weighted sum of gray gases (SLW), have been implemented to perform non gray calculations. Some significant results are shown.

Plenty of tests have been performed to the numerical code that resulted from the elaboration of this thesis. According to the results obtained, the objectives proposed in this thesis have been satisfied. As a demonstration of the usefulness of the implemented code, it has been succesfully integrated to a general purpose computational fluid dynamics code (DPC), fruit of the effort of many researchers during many years.
Results of the above integration lead to the resolution of combined heat transfer problems, that are analyzed in chapters 5 and 6, where radiative heat transfer is coupled to convection heat transfer. The effect of radiation on the total heat transfer is studied in chapter 5, which has been published as International Journal of Heat and Mass Transfer, volume 47 (issue 2), pages 257--269, year 2004. In chapter 6, the impact of some parameters of the SLW model on a combined heat transfer problem is analyzed. This chapter has been submitted for publication at the Journal of Quantitative Spectroscopy and Radiative Transfer.
APA, Harvard, Vancouver, ISO, and other styles
2

Ramamoorthy, Babila. "Numerical simulation of radiative heat transfer." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/ramamoorthy.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoggard, T. W. "Numerical methods in aero-engine heat transfer." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gardner, David Alan. "Numerical analysis of conjugate heat transfer from heat exchange surfaces." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xiaolin. "A numerical study of vorticity-enhanced heat transfer." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54017.

Full text
Abstract:
In this work, we have numerically studied the effect of the vorticity on the enhancement of heat transfer in a channel flow. In the first part of the work, we focus on the investigation of a channel flow with a vortex street as the incoming flow. We propose a model to simulate the fluid dynamics. We find that the flow exhibits different properties depending on the value of four dimensionless parameters. In particularly, we can classify the flows into two types, active and passive vibration, based on the sign of the incoming vortices. In the second part of the work, we discuss the heat transfer process due to the flows just described and investigate how the vorticity in the flow improves the efficiency of the heat transfer. The temperature shows different characteristics corresponding to the active and passive vibration cases. In active vibration cases, the vortex blob improves the heat transfer by disrupting the thermal boundary layer and preventing the decay of the wall temperature gradient throughout the channel, and by enhancing the forced convection to cool down the wall temperature. The heat transxfer performance is directly related to the strength of the vortex blobs and the background flow. In passive vibration cases, the corresponding heat transfer process is complicated and varies dramatically as the flow changes its properties. We also studied the effect of thermal parameters on heat transfer performance. Finally, we propose a more realistic optimization problem which is to minimize the maximum temperature of the solids with a given input energy. We find that the best heat transfer performance is obtained in the active vibration case with zero background flow.
APA, Harvard, Vancouver, ISO, and other styles
6

KC, Amar. "Numerical Simulations of Magnetohydrodynamic Flow and Heat Transfer." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1411495287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Webster, Robert Samuel. "A numerical study of the conjugate conduction-convection heat transfer problem." Diss., Mississippi State : Mississippi State University, 2001. http://library.msstate.edu/etd/show.asp?etd=etd-04102001-144805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spring, Sebastian [Verfasser]. "Numerical Prediction of Jet Impingement Heat Transfer / Sebastian Spring." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441330/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Isiklar, Yasar Vehbi. "A numerical study of heat transfer behavior in welding." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA350125.

Full text
Abstract:
Thesis (M.S. in Mechanical Engineering) Naval Postgraduate School, June 1998.
"June 1998." Thesis advisor(s): Ashok Gopinath. Includes bibliographical references (p. 107-109). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
10

Chacko, Salvio. "Numerical analysis of unsteady heat transfer for thermal management." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/54478/.

Full text
Abstract:
In this study, thermal management of Lithium ion (Li-ion) battery pack used in electric vehicle (EV) is considered. Li-ion cells generate a significant amount of heat during normal operation. Previous study has clearly identified that temperature affects the efficiency, safety, reliability and lifespan of the Li-ion battery. Therefore, a battery thermal management system (BTMS) enabling effective temperature control is essential for safety and overall performance of the Li-ion battery. Two critical aspects are key to design of efficient BTMS: firstly being able to predict the heat generated from Li-ion cells, and secondly to predict how the generated heat is removed though the cooling plate of the BTMS. To predict the heat generated from the Li-ion cell, a time-dependent, thermal behavior of a Li-ion polymer cell has been modelled for electric vehicle drive cycles with a view to developing an effective battery thermal management system. The fully coupled, new three-dimensional transient electrothermal model has proposed and implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for various electric load cycles consisting of a series of charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. To predict the heat removed, a numerical study has been performed on a cooling plate of a indirect liquid cooled BTMS. The BTMS has a battery cooling plate with coolant flowing through rectangular serpentine channels. The temperature distribution as well as the pressure drop across the battery cooling plate were investigated. Particular emphasis was placed on the temperature uniformity on the cooling plate surface as the lifespan of a battery is severely affected by non-uniform temperature distribution. From the simulations, it is found that the aspect ratio and the curvature have a significant effect on the surface temperature uniformity, and that a compromise of the battery cooling plate design would be required between the temperature uniformity and the pressure drop penalty. Thermal management of batteries for high discharge applications, for instance, in hybrid electric vehicle, is more challenging and typically requires turbulent heat transfer. In turbulent heat transfer not only mean temperatures but also temperature fluctuations need to be predicted correctly. For this, a numerical turbulent heat transfer of a triple jet is considered. In this study, a large eddy simulation (LES) technique was applied to predict the unsteady heat transfer behavior of turbulent flow. It is found that LES predicted the correct amplitude of temperature fluctuations which was in good agreement with the available experimental data in terms of mean, RMS, skewness and kurtosis. RANS simulations with two turbulence models were also conducted along with LES. The RANS based turbulence models produced a very small amplitude of fluctuations, and failed to predict the correct magnitude of unsteady thermal fluctuations, highlighting its limitations in unsteady turbulent heat transfer simulations. Keywords: battery thermal management; lithium-ion polymer battery; electro thermal model; EV drive cycles; finite volume method, electric vehicle; BTMS; conjugate heat transfer; battery cooling plate; rectangular serpentine channel; laminar flow; triple jet; thermal striping; mixing; thermal fatigue; LES; RANS.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Numerical Heat Transfer"

1

Minkowycz, W. J., E. M. Sparrow, and J. Y. Murthy, eds. Handbook of Numerical Heat Transfer. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000. http://dx.doi.org/10.1002/9780470172599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srinivasacharya, D., and K. Srinivas Reddy, eds. Numerical Heat Transfer and Fluid Flow. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1903-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alifanov, O. M. Inverse heat transfer problems. Berlin: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Akira, Nakayama. PC-aided numerical heat transfer and convective flow. Boca Raton: CRC Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Scotti, Stephen J. Numerical studies of convective cooling for a locally heated skin. Hampton, Va: Langley Research Center, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

AIAA/ASME, Thermophysics and Heat Transfer Conference (5th 1990 Seattle Wash ). Numerical heat transfer: Presented at AIAA/ASME Thermophysics and Heat Transfer Conference, June 18-20, 1990 - Seattle, Washington. New York, N.Y: American Society of Mechanical Engineers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barbosa, Lima Antonio Gilson, Silva Marta Vázquez, and SpringerLink (Online service), eds. Numerical Analysis of Heat and Mass Transfer in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Delgado, J. M. P. Q., Antonio Gilson Barbosa de Lima, and Marta Vázquez da Silva, eds. Numerical Analysis of Heat and Mass Transfer in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30532-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Markatos, N. C., M. Cross, D. G. Tatchell, and N. Rhodes, eds. Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82781-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Markatos, N. C. Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Numerical Heat Transfer"

1

Venkateshan, S. P. "Numerical Solution of Conduction Problems." In Heat Transfer, 253–321. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Comini, G., and O. Saro. "Numerical Modelling of Freezing Processes in Foodstuffs." In Heat Transfer, edited by L. C. Wrobel and C. A. Brebbia, 21–58. Berlin, Boston: De Gruyter, 1991. http://dx.doi.org/10.1515/9783110853209-004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Danilov, Vladimir, Roman Gaydukov, and Vadim Kretov. "Numerical Simulation and its Results." In Heat and Mass Transfer, 131–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0195-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mochnacki, B., E. Majchrzak, and A. Kapusta. "Numerical Model of Heat Transfer Processes in Solidifying and Cooling Steel Ingot (on the basis of BEM)." In Heat Transfer, edited by L. C. Wrobel and C. A. Brebbia, 177–90. Berlin, Boston: De Gruyter, 1991. http://dx.doi.org/10.1515/9783110853209-013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Majchrzak, E. "Utilization of the Boundary Element Method for Numerical Analysis of Thermal Processes in the Casting-Mould System." In Heat Transfer, edited by L. C. Wrobel and C. A. Brebbia, 223–38. Berlin, Boston: De Gruyter, 1991. http://dx.doi.org/10.1515/9783110853209-016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sarbu, Ioan. "Numerical Modelling of Heat Transfer." In Advances in Building Services Engineering, 839–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64781-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shang, De-Yi, and Liang-Cai Zhong. "Numerical Solutions of Velocity and Temperature Fields." In Heat and Mass Transfer, 71–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94403-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shang, De-Yi, and Liang-Cai Zhong. "Numerical Simulation of Conversion Factors on Heat Transfer." In Heat and Mass Transfer, 151–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94403-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Howell, John R., M. Pinar Mengüç, Kyle Daun, and Robert Siegel. "Numerical Solution Methods for Radiative Transfer in Participating Media." In Thermal Radiation Heat Transfer, 569–640. Seventh edition. | Boca Raton : CRC Press, 2021. | Revised edition of: Thermal radiation heat transfer / John R. Howell, M. Pinar Mengüç, Robert Siegel. Sixth edition. 2015.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429327308-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alifanov, Oleg M. "Solution of Boundary Inverse Heat Conduction Problems by Direct Numerical Methods." In Inverse Heat Transfer Problems, 124–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-76436-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Numerical Heat Transfer"

1

Al-Kayiem, H. H., and T. M. B. Albarody. "Numerical investigation of superheater tube failure." In HEAT TRANSFER 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/ht160011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Preibisch, S., and M. H. Buschmann. "Experimental and numerical investigation of real world dimpled heat exchanger." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yap, Y. F., and J. C. Chai. "Numerical methods for problems with moving interfaces and irregular geometries." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zeitoun, O., M. E. Ali, and A. Nuhait. "Numerical study of forced convection around heated horizontal triangular ducts." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poljak, D., H. Dodig, D. Cavka, and A. Peratta. "Some numerical methods of thermal dosimetry for applications in bioelectromagnetics." In HEAT TRANSFER 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/ht120231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahn, J. "A numerical simulation of the combustion processes of wood pellets." In HEAT TRANSFER 2014, edited by H. J. Kim. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kočí, J. "Numerical simulation for the drying shrinkage of autoclaved aerated concrete." In HEAT TRANSFER 2014, edited by J. Maděra, T. Koudelka, J. Kruis, and R. Černý. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manca, O., S. Nardini, D. Ricci, and S. Tamburrino. "Numerical investigation of natural convection of air in vertical divergent channels." In HEAT TRANSFER 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/ht080021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaluria, Y. "Use of experimentation in the accurate numerical simulation of thermal processes." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Majchrzak, E. "A numerical analysis of heating tissue using the two-temperature model." In HEAT TRANSFER 2014, edited by Ł. Turchan. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140411.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Numerical Heat Transfer"

1

Juric, D., G. Tryggvason, and J. Han. Direct numerical simulations of fluid flow, heat transfer and phase changes. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/463676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lele, Sanjiva K., and Zhongmin Xiong. Numerical Study of Leading-Edge Heat Transfer Under Free-Stream Turbulence. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada387562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arts, Tony, and Carlos Benocci. Experimental and Numerical Investigation of Conjugate Heat Transfer in Rib-roughened Duct. Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada552359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carey, G. F., R. J. MacKinnon, and P. E. Murray. In situ vitrification: Numerical studies of coupled heat transfer and viscous flow processes. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6185384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Jian, Joseph A. Main, Fahim H. Sadek, and Jonathan M. Weigand. Numerical modeling and analysis of heat transfer in composite slabs with profiled steel decking. Gaithersburg, MD: National Institute of Standards and Technology, April 2017. http://dx.doi.org/10.6028/nist.tn.1958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hawkes, G. L., R. J. MacKinnon, and P. E. Murray. Numerical studies of heat transfer and gas migration processes in relation to in situ vitrification. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6439979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Padgett, James. Effectiveness of Additive Correction Multigrid in numerical heat transfer analysis when implemented on an Intel IPSC2. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prasad, Kuldeep, William Twilley, and J. Randall Lawson. Thermal performance of fire fighters' protective clothing. 1. numerical study of transient heat and water vapor transfer. Gaithersburg, MD: National Institute of Standards and Technology, 2002. http://dx.doi.org/10.6028/nist.ir.6881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Su, Yun, Rui Li, Guowen Song, Chunhui Xiang, and Huanjiao Dong. Numerical model of heat and moisture transfer in membrane material used for protective clothing against steam hazard. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hruby, Jill, Richard Steeper, Gregory Evans, and Clayton Crowe. An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/1616232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography