Academic literature on the topic 'Numerical Heat Transfer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical Heat Transfer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numerical Heat Transfer"
Schmidt, F. W. "Numerical heat transfer." International Journal of Heat and Fluid Flow 6, no. 2 (June 1985): 68. http://dx.doi.org/10.1016/0142-727x(85)90036-0.
Full textMujumdar, Arun s., and Mainul Hasan. "NUMERICAL HEAT TRANSFER." Drying Technology 3, no. 4 (November 1985): 615–19. http://dx.doi.org/10.1080/07373938508916301.
Full textBabus'Haq, Ramiz, and S. Douglas Probert. "Numerical heat transfer." Applied Energy 39, no. 2 (January 1991): 177–78. http://dx.doi.org/10.1016/0306-2619(91)90030-2.
Full textSTIKA, Laura-Alina, Valeriu-Alexandru VILAG, Mircea BOSCOIANU, and Gheorghe MEGHERELU. "NUMERICAL STUDY OF HEAT TRANSFER IN TURBULENT FLOWS, WITH APPLICATION." Review of the Air Force Academy 13, no. 3 (December 16, 2015): 77–82. http://dx.doi.org/10.19062/1842-9238.2015.13.3.13.
Full textMinkowycz, W. J., and E. M. Sparrow. "NUMERICAL HEAT TRANSFER STATUS REPORT." Numerical Heat Transfer, Part A: Applications 27, no. 1 (January 1995): iii. http://dx.doi.org/10.1080/10407789508913684.
Full textElghobashi, S. "Handbook of numerical heat transfer." International Journal of Heat and Fluid Flow 10, no. 4 (December 1989): 371. http://dx.doi.org/10.1016/0142-727x(89)90030-1.
Full textMujumdar, Arun S. "HANDBOOK OF NUMERICAL HEAT TRANSFER." Drying Technology 7, no. 4 (December 1989): 843–45. http://dx.doi.org/10.1080/07373938908916637.
Full textWrobel, L. C. "Handbook of numerical heat transfer." Advances in Engineering Software 14, no. 3 (January 1992): 236. http://dx.doi.org/10.1016/0965-9978(92)90030-j.
Full textWhalley, P. B. "Handbook of Numerical Heat Transfer." Chemical Engineering Science 44, no. 2 (1989): 457–58. http://dx.doi.org/10.1016/0009-2509(89)85087-0.
Full textGhosh, S. K. "Handbook of numerical heat transfer." Journal of Materials Processing Technology 21, no. 3 (May 1990): 336–38. http://dx.doi.org/10.1016/0924-0136(90)90058-3.
Full textDissertations / Theses on the topic "Numerical Heat Transfer"
Colomer, Rey Guillem. "Numerical methods for radiative heat transfer." Doctoral thesis, Universitat Politècnica de Catalunya, 2006. http://hdl.handle.net/10803/6691.
Full textEn el capítol 1 s'exposa una breu introducció a la transferència d'energia per radiació, i una explicació de les equacions que la governen. Es tracta de l'equació del transport radiatiu, formulada en termes dels coeficients d'absorció i de dispersió, i l'equació de l'energia. També s'indica quan cal tenir en compte aquest fenòmen, i a més a més, es defineixen totes les magnituds i conceptes que s'han utilitzat en aquesta tesi. També es dóna una breu descripció d'algunes simplificacions que es poden fer a les equacions governants.
El mètode de les radiositats s'explica en el capítol 2. També s'hi descriu un procediment numèric que permet calcular els factors de vista en geometries amb simetria cilíndrica, i es presenten resultats obtinguts amb el mètode descrit. Tot i que aquest capítol està una mica deslligat de la resta de la tesi, l'algoritme ideat per tractar geometries tridimensionals amb un temps computacional molt proper al de geometries bidimensionals, sense un increment de memòria apreciable, dóna uns resultats prou bons com per formar part de la tesi.
El mètode de les ordenades discretes (DOM) es detalla en el capítol 3. L'aspecte més important d'aquest mètode es l'elecció del conjunt d'ordenades per integrar l'equació del transport radiatiu. S'enumeren quines propietats han d'acomplir aquests conjunts. S'hi explica amb detall la discretització de la equació del transport radiatiu, tant en coordenades cartesianes com en cilíndriques. Es presenten també alguns resultats ilustratius obtinguts amb aquest mètode.
En el moment en que es vol resoldre un problema real, cal tenir present que el coeficients d'absorció pot dependre bruscament de la longitud d'ona de la radiació. En aquesta tesi s'ha considerat aquesta dependència amb especial interés, en el capítol 4. Aquest interès ha motivat una recerca bibliogràfica sobre la modelització aquesta forta dependència espectral del coeficient d'absorció. Aquesta recerca s'ha dirigit també a l'estudi dels diferents models numèrics existents capaços d'abordar-la, i de resoldre la equació del transport radiatiu en aquestes condicions. Es descriuen diversos mètodes, i, d'aquests, se n'han implementat dos: el mètode de la suma ponderada de gasos grisos (WSGG), i el mètode de la suma de gasos grisos ponderada per línies espectrals (SLW). S'hi presenten també resultats ilustratius.
S'han realitzat multitud de proves en el codi numèric resultant de l'elaboració d'aquesta tesi. Tenint en compte els resultats obtinguts, es pot dir que els objectius proposats a l'inici de la tesi s'han acomplert. Com a demostració de la utilitat del codi resultant, aquest ha estat integrat en un codi de proposit general (DPC), resultat del treball de molts investigadors en els darrers anys.
Aquesta esmentada integració permet la resolució de problemes combinats de transferència de calor, analitzats en els capítols 5 i 6, on la radiació s'acobla amb la transferència de calor per convecció. La influència de la radiació en la transferència total de calor s'estudia en el capítol 5, publicat a la International Journal of Heat and Mass Transfer, volum 47 (núm. 2), pàg. 257-269, 2004. En el capítol 6, s'analitza l'efecte d'alguns paràmetres del mètode SLW en un problema combinat de transferència de calor. Aquest capítol s'ha enviat a la revista Journal of Quantitative Spectroscopy and Radiative Transfer, per què en consideri la publicació.
The main objective of the present thesis is to study the energy transfer by means of radiation. Therefore, the basic phenomenology of radiative heat transfer has been studied. However, considering the nature of the equation that describes such energy transfer, this work is focussed on the numerical methods which will allow us to take radiation into account, for both transparent and participating media. Being this the first effort within the CTTC ("Centre Tecnològic de Transferència de Calor") research group on this subject, it is limited to simple cartesian and cylindrical geometries.
For this purpose, chapter 1 contains an introduction to radiative energy transfer and the basic equations that govern radiative transfer are discussed. These are the radiative transfer equation, formulated in terms of the absorption and scattering coefficients, and the energy equation. It is also given a discussion on when this mode of energy transfer should be considered. In this chapter are also defined all of the magnitudes and concepts used throughout this work. It ends with a brief description of some approximate methods to take radiation into account.
The Radiosity Irradiosity Method is introduced in chapter 2. In this chapter it is also described a numerical method to calculate the view factors for axial symmetric geometries. The main results obtained in such geometries are also presented. Although a little disconnected from the rest of the present thesis, the algorithm used to handle "de facto"' three dimensional geometries with computation time just a little longer than two dimensional cases, with no additional memory consumption, is considered worthy enough to be included in this work.
In chapter 3, the Discrete Ordinates Method (DOM) is detailed. The fundamental aspect of this method is the choice of an ordinate set to integrate the radiative transfer equation. The characterization of such valuable ordinate sets is laid out properly. The discretization of the radiative transfer equation is explained in etail. The direct solution procedure is also outlined. Finally, illustrative results obtained with the DOM under several conditions are presented.
In the moment we wish to solve real problems, we face the fact that the absorption and scattering coefficients depend strongly on radiation wavelength. In the present thesis, special emphasis has been placed on studying the radiative properties of real gases in chapter 4. This interest resulted on a bibliographical research on how the wavenumber dependence of the absorption coefficient is modeled and estimated. Furthermore, this bibliographical research was focussed also on numerical models able to handle such wavenumber dependence. Several methods are discussed, and two of them, namely the Weighted Sum of Gray Gases (WSGG) and the Spectral Line Weighted sum of gray gases (SLW), have been implemented to perform non gray calculations. Some significant results are shown.
Plenty of tests have been performed to the numerical code that resulted from the elaboration of this thesis. According to the results obtained, the objectives proposed in this thesis have been satisfied. As a demonstration of the usefulness of the implemented code, it has been succesfully integrated to a general purpose computational fluid dynamics code (DPC), fruit of the effort of many researchers during many years.
Results of the above integration lead to the resolution of combined heat transfer problems, that are analyzed in chapters 5 and 6, where radiative heat transfer is coupled to convection heat transfer. The effect of radiation on the total heat transfer is studied in chapter 5, which has been published as International Journal of Heat and Mass Transfer, volume 47 (issue 2), pages 257--269, year 2004. In chapter 6, the impact of some parameters of the SLW model on a combined heat transfer problem is analyzed. This chapter has been submitted for publication at the Journal of Quantitative Spectroscopy and Radiative Transfer.
Ramamoorthy, Babila. "Numerical simulation of radiative heat transfer." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/ramamoorthy.pdf.
Full textHoggard, T. W. "Numerical methods in aero-engine heat transfer." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376577.
Full textGardner, David Alan. "Numerical analysis of conjugate heat transfer from heat exchange surfaces." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329229.
Full textWang, Xiaolin. "A numerical study of vorticity-enhanced heat transfer." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54017.
Full textKC, Amar. "Numerical Simulations of Magnetohydrodynamic Flow and Heat Transfer." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1411495287.
Full textWebster, Robert Samuel. "A numerical study of the conjugate conduction-convection heat transfer problem." Diss., Mississippi State : Mississippi State University, 2001. http://library.msstate.edu/etd/show.asp?etd=etd-04102001-144805.
Full textSpring, Sebastian [Verfasser]. "Numerical Prediction of Jet Impingement Heat Transfer / Sebastian Spring." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441330/34.
Full textIsiklar, Yasar Vehbi. "A numerical study of heat transfer behavior in welding." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA350125.
Full text"June 1998." Thesis advisor(s): Ashok Gopinath. Includes bibliographical references (p. 107-109). Also available online.
Chacko, Salvio. "Numerical analysis of unsteady heat transfer for thermal management." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/54478/.
Full textBooks on the topic "Numerical Heat Transfer"
Minkowycz, W. J., E. M. Sparrow, and J. Y. Murthy, eds. Handbook of Numerical Heat Transfer. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000. http://dx.doi.org/10.1002/9780470172599.
Full textSrinivasacharya, D., and K. Srinivas Reddy, eds. Numerical Heat Transfer and Fluid Flow. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1903-7.
Full textAkira, Nakayama. PC-aided numerical heat transfer and convective flow. Boca Raton: CRC Press, 1995.
Find full textScotti, Stephen J. Numerical studies of convective cooling for a locally heated skin. Hampton, Va: Langley Research Center, 1991.
Find full textAIAA/ASME, Thermophysics and Heat Transfer Conference (5th 1990 Seattle Wash ). Numerical heat transfer: Presented at AIAA/ASME Thermophysics and Heat Transfer Conference, June 18-20, 1990 - Seattle, Washington. New York, N.Y: American Society of Mechanical Engineers, 1990.
Find full textBarbosa, Lima Antonio Gilson, Silva Marta Vázquez, and SpringerLink (Online service), eds. Numerical Analysis of Heat and Mass Transfer in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textDelgado, J. M. P. Q., Antonio Gilson Barbosa de Lima, and Marta Vázquez da Silva, eds. Numerical Analysis of Heat and Mass Transfer in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30532-0.
Full textMarkatos, N. C., M. Cross, D. G. Tatchell, and N. Rhodes, eds. Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82781-5.
Full textMarkatos, N. C. Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986.
Find full textBook chapters on the topic "Numerical Heat Transfer"
Venkateshan, S. P. "Numerical Solution of Conduction Problems." In Heat Transfer, 253–321. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_7.
Full textComini, G., and O. Saro. "Numerical Modelling of Freezing Processes in Foodstuffs." In Heat Transfer, edited by L. C. Wrobel and C. A. Brebbia, 21–58. Berlin, Boston: De Gruyter, 1991. http://dx.doi.org/10.1515/9783110853209-004.
Full textDanilov, Vladimir, Roman Gaydukov, and Vadim Kretov. "Numerical Simulation and its Results." In Heat and Mass Transfer, 131–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0195-1_4.
Full textMochnacki, B., E. Majchrzak, and A. Kapusta. "Numerical Model of Heat Transfer Processes in Solidifying and Cooling Steel Ingot (on the basis of BEM)." In Heat Transfer, edited by L. C. Wrobel and C. A. Brebbia, 177–90. Berlin, Boston: De Gruyter, 1991. http://dx.doi.org/10.1515/9783110853209-013.
Full textMajchrzak, E. "Utilization of the Boundary Element Method for Numerical Analysis of Thermal Processes in the Casting-Mould System." In Heat Transfer, edited by L. C. Wrobel and C. A. Brebbia, 223–38. Berlin, Boston: De Gruyter, 1991. http://dx.doi.org/10.1515/9783110853209-016.
Full textSarbu, Ioan. "Numerical Modelling of Heat Transfer." In Advances in Building Services Engineering, 839–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64781-0_11.
Full textShang, De-Yi, and Liang-Cai Zhong. "Numerical Solutions of Velocity and Temperature Fields." In Heat and Mass Transfer, 71–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94403-6_6.
Full textShang, De-Yi, and Liang-Cai Zhong. "Numerical Simulation of Conversion Factors on Heat Transfer." In Heat and Mass Transfer, 151–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94403-6_12.
Full textHowell, John R., M. Pinar Mengüç, Kyle Daun, and Robert Siegel. "Numerical Solution Methods for Radiative Transfer in Participating Media." In Thermal Radiation Heat Transfer, 569–640. Seventh edition. | Boca Raton : CRC Press, 2021. | Revised edition of: Thermal radiation heat transfer / John R. Howell, M. Pinar Mengüç, Robert Siegel. Sixth edition. 2015.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429327308-13.
Full textAlifanov, Oleg M. "Solution of Boundary Inverse Heat Conduction Problems by Direct Numerical Methods." In Inverse Heat Transfer Problems, 124–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-76436-3_6.
Full textConference papers on the topic "Numerical Heat Transfer"
Al-Kayiem, H. H., and T. M. B. Albarody. "Numerical investigation of superheater tube failure." In HEAT TRANSFER 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/ht160011.
Full textPreibisch, S., and M. H. Buschmann. "Experimental and numerical investigation of real world dimpled heat exchanger." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100031.
Full textYap, Y. F., and J. C. Chai. "Numerical methods for problems with moving interfaces and irregular geometries." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100061.
Full textZeitoun, O., M. E. Ali, and A. Nuhait. "Numerical study of forced convection around heated horizontal triangular ducts." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100181.
Full textPoljak, D., H. Dodig, D. Cavka, and A. Peratta. "Some numerical methods of thermal dosimetry for applications in bioelectromagnetics." In HEAT TRANSFER 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/ht120231.
Full textAhn, J. "A numerical simulation of the combustion processes of wood pellets." In HEAT TRANSFER 2014, edited by H. J. Kim. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140141.
Full textKočí, J. "Numerical simulation for the drying shrinkage of autoclaved aerated concrete." In HEAT TRANSFER 2014, edited by J. Maděra, T. Koudelka, J. Kruis, and R. Černý. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140371.
Full textManca, O., S. Nardini, D. Ricci, and S. Tamburrino. "Numerical investigation of natural convection of air in vertical divergent channels." In HEAT TRANSFER 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/ht080021.
Full textJaluria, Y. "Use of experimentation in the accurate numerical simulation of thermal processes." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100211.
Full textMajchrzak, E. "A numerical analysis of heating tissue using the two-temperature model." In HEAT TRANSFER 2014, edited by Ł. Turchan. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140411.
Full textReports on the topic "Numerical Heat Transfer"
Juric, D., G. Tryggvason, and J. Han. Direct numerical simulations of fluid flow, heat transfer and phase changes. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/463676.
Full textLele, Sanjiva K., and Zhongmin Xiong. Numerical Study of Leading-Edge Heat Transfer Under Free-Stream Turbulence. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada387562.
Full textArts, Tony, and Carlos Benocci. Experimental and Numerical Investigation of Conjugate Heat Transfer in Rib-roughened Duct. Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada552359.
Full textCarey, G. F., R. J. MacKinnon, and P. E. Murray. In situ vitrification: Numerical studies of coupled heat transfer and viscous flow processes. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6185384.
Full textJiang, Jian, Joseph A. Main, Fahim H. Sadek, and Jonathan M. Weigand. Numerical modeling and analysis of heat transfer in composite slabs with profiled steel decking. Gaithersburg, MD: National Institute of Standards and Technology, April 2017. http://dx.doi.org/10.6028/nist.tn.1958.
Full textHawkes, G. L., R. J. MacKinnon, and P. E. Murray. Numerical studies of heat transfer and gas migration processes in relation to in situ vitrification. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6439979.
Full textPadgett, James. Effectiveness of Additive Correction Multigrid in numerical heat transfer analysis when implemented on an Intel IPSC2. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6313.
Full textPrasad, Kuldeep, William Twilley, and J. Randall Lawson. Thermal performance of fire fighters' protective clothing. 1. numerical study of transient heat and water vapor transfer. Gaithersburg, MD: National Institute of Standards and Technology, 2002. http://dx.doi.org/10.6028/nist.ir.6881.
Full textSu, Yun, Rui Li, Guowen Song, Chunhui Xiang, and Huanjiao Dong. Numerical model of heat and moisture transfer in membrane material used for protective clothing against steam hazard. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1891.
Full textHruby, Jill, Richard Steeper, Gregory Evans, and Clayton Crowe. An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/1616232.
Full text