Academic literature on the topic 'Numerical implementation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical implementation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numerical implementation"
Mikeš, Karel, and Milan Jirásek. "Free Warping Analysis and Numerical Implementation." Applied Mechanics and Materials 825 (February 2016): 141–48. http://dx.doi.org/10.4028/www.scientific.net/amm.825.141.
Full textNairn, John A. "Numerical implementation of imperfect interfaces." Computational Materials Science 40, no. 4 (October 2007): 525–36. http://dx.doi.org/10.1016/j.commatsci.2007.02.010.
Full textLee, Chun Jin. "The numerical implementation of risk." Korean Journal of Computational & Applied Mathematics 2, no. 2 (September 1995): 53–61. http://dx.doi.org/10.1007/bf03008963.
Full textLinderberg, Jan, So/ren B. Padkjær, Yngve Öhrn, and Behnam Vessal. "Numerical implementation of reactive scattering theory." Journal of Chemical Physics 90, no. 11 (June 1989): 6254–65. http://dx.doi.org/10.1063/1.456342.
Full textDoong, T., and I. Mayergoyz. "On numerical implementation of hysteresis models." IEEE Transactions on Magnetics 21, no. 5 (September 1985): 1853–55. http://dx.doi.org/10.1109/tmag.1985.1063923.
Full textJAUSLIN, H. R. "NUMERICAL IMPLEMENTATION OF A K.A.M. ALGORITHM." International Journal of Modern Physics C 04, no. 02 (April 1993): 317–22. http://dx.doi.org/10.1142/s0129183193000331.
Full textEinziger, P. D. "Numerical implementation of the Gabor representation." Electronics Letters 24, no. 13 (1988): 810. http://dx.doi.org/10.1049/el:19880551.
Full textCardelli, E., E. Della Torre, and A. Faba. "Numerical Implementation of the DPC Model." IEEE Transactions on Magnetics 45, no. 3 (March 2009): 1186–89. http://dx.doi.org/10.1109/tmag.2009.2012549.
Full textLow, K. H. "Numerical implementation of structural dynamics analysis." Computers & Structures 65, no. 1 (October 1997): 109–25. http://dx.doi.org/10.1016/s0045-7949(95)00338-x.
Full textBabolian, E., and A. Davari. "Numerical implementation of Adomian decomposition method." Applied Mathematics and Computation 153, no. 1 (May 2004): 301–5. http://dx.doi.org/10.1016/s0096-3003(03)00646-5.
Full textDissertations / Theses on the topic "Numerical implementation"
Vinikoff, Nicolas. "Numerical Control: Performance Analysis and Implementation Issues." Thesis, KTH, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101797.
Full textSchwarz, Cornelia. "Numerical implementation of continuum dislocation-based plasticity." kostenfrei, 2007. http://mediatum2.ub.tum.de/doc/618976/document.pdf.
Full textCASTAGNOLI, JOAO PAULO. "NUMERICAL IMPLEMENTATION OF ACOPPLING SURFACE WATER: GROUNDWATER." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11037@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A relação entre os processos hidrológicos de escoamento superficial e subterrâneo apresenta uma grande variabilidade espacial e temporal. Podendo ser representado de forma qualitativa como parte sequêncial do ciclo hidrológico, estes processos, demostram sua grande dependência e importância nos estudos de balanços hídricos. Visando uma representação quantitativa, este trabalho faz o acoplamento, entre os modelos numéricos de escoamento superficial e de fluxo em meios porosos. Para o meio poroso adotou-se o modelo numérico SWMS_3D (Simunek et al, 1995), o qual resolve a equação de Richards, para fluxo em meios porosos saturados e não saturados nas três dimensões. Na simulação da dinâmica superficial, foram desenvolvidos dois modelos derivados das equações de Saint- Venant: o modelo da Onda Cinemática e o modelo de Difusão. Para a solução numérica foi empregado o método dos elementos finitos através da formulaçao de Galerkin, adotando uma malha tridimensional de elementos tetraédricos, formando uma sub-malha de elementos triangulares na superfície. O modelo de escoamento superficial emprega a malha triangular e interage com o programa SWMS_3D modificado (que utiliza a malha de tetraédros) através das imposições das condições de contorno transientes. Este, responderá com uma parcela de fluxo correspondente à recarga ou descarga no contorno a cada passo de tempo. Com isso, o modelo gerado é capaz de quantificar espacialmente e temporalmente as cargas de pressão em todos os pontos do domínio de estudo.
While analyzing the interaction between the hydrological processes of surface and groundwater flow, it is seen that there is a big difference in its interaction in the space and time. These processes can be represented in a qualitative form as part of the hydrological cycle, demonstrating its dependences and importance in the hydrological balance. This work does the numerical coupling of the surface and groundwater flow. This work adopted the SWMS_3D numerical model (Simunek et. al., 1995), which resolves the Richards equation for saturated and non saturated porous media flow in 3D. In order to simulate the superficial dynamic flow, two models from Saint-Vennat equation were developed, these models are: the cinematic wave model and the diffusion model. These two models consider the average outflow in sections in a 2D scenario. For the numerical solution the finite element method was adopted through the Galerkin formulation. Adopting a 3D domain mesh of tetrahedral elements, seen from above, in 2D, we can see a triangular element mesh. The superficial flow model uses the triangular mesh and iterates with the SWMS_3D modified software, which uses the tetrahedral elements mesh. This was done by changes in the boundary conditions to the models. The SWMS_3D will answer with a flow portion corresponding to a sink or source action in the surface, in each time step. Finally the generated model is able to quantify in space and in time the pressure head in the study domain.
Herdiana, Ratna. "Numerical methods for SDEs - with variable stepsize implementation /." [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17638.pdf.
Full textFooladi, Samaneh, and Samaneh Fooladi. "Numerical Implementation of Elastodynamic Green's Function for Anisotropic Media." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/623144.
Full textSotolongo, Wilfredo. "On the numerical implementation of cyclic elasto-plastic material models." Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/17594.
Full textQUISPE, ROBERTO JUAN QUEVEDO. "NUMERICAL IMPLEMENTATION FOR 3D ANALYSIS OF TRANSIENT FLOW IN DAMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12189@1.
Full textEsta dissertação tem por objetivo a implementação de uma ferramenta numérica para avaliação do fluxo transiente 3D saturado-não saturado em barragens de terra e enrocamento, baseado no método dos elementos finitos e no programa GEOFLUX implementado por Machado Jr. (2000) para análise de problemas 2D. Nesta nova versão, foram incluídos elementos triangulares de 3 nós para análises 2D e elementos tetraédricos de 4 nós para análises 3D. Implementam-se também subrotinas que oferecem a possibilidade de variação das condições de contorno com o tempo. A equação de Richards é solucionada considerando a formulação mista e o método iterativo de Picard Modificado para solução do sistema de equações não- lineares. Para a solução do sistema de equações utiliza-se um armazenamento especial para matrizes esparsas associado com o método do gradiente bi-conjugado, tornando o processo muito rápido, mesmo em sistemas de grande porte. Utilizam- se dois modelos para representar as curvas características: o modelo exponencial proposto por Srivastava e Yeh (1991) e o modelo proposto por van Genuchten (1980). O programa computacional desenvolvido (GEOFLUX3D) foi aplicado na análise de fluxo na barragem de enrocamento de Gouhou, China, e na barragem de terra Macusani, Peru. Os resultados numéricos indicam a necessidade de análises numéricas 3D em barragens situadas em vales estreitos, onde os efeitos de geometria nas condições de fluxo são significativos e não podem ser ignorados.
The main objective of this thesis is to implement a numerical tool for the evaluation of 3D saturated / unsaturated transient flow through earth and rockfill dams with basis on the finite element method and a computer program written by Machado Jr. (2000) for analysis of similar 2D flow problems. In the 3D version, developed in this thesis, four-nodes tetrahedral elements were implement as well as special subroutines that make possible to vary in time the boundary conditions. The Richards` equation is solved through a mixed formulation, for the solution of the non-linear system of equations a Modified Picard`s method is employed. A special algorithm is used to store the sparse matrices which, in association with the bi-conjugated gradient method, rend the solver computationally very efficient, even for a large number of equations. Two different models were used to represent the characteristic curves: the exponential curve proposed by Srivastava and Yeh (1991) and the formulation suggested by van Genuchten (1980). The improved computer program, thereafter named GEOFLUX3D, was then applied for flow analysis of the Gouhou rockfill dam (China) and the Macusani earth dam (Peru). Numerical results point out that 3D numerical analyses are necessary for dams situated in narrow valleys, where the influence of the terrain geometry on the flow conditions are quite significant and cannot be just ignored.
Mashalaba, Qaphela. "Implementation of numerical Fourier method for second order Taylor schemes." Master's thesis, Faculty of Commerce, 2019. http://hdl.handle.net/11427/30978.
Full textChun, Byung Kwan. "Study on hardening models and numerical implementation for springback prediction /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486397841222103.
Full textHe, Ting. "[pi]Mesh : practical implementation of a low-cost wireless mesh for indoor networking /." View abstract or full-text, 2010. http://library.ust.hk/cgi/db/thesis.pl?CSED%202010%20HE.
Full textBooks on the topic "Numerical implementation"
Tijhuis, A. G. Electromagnetic inverse profiling: Theory and numerical implementation. Utrecht, The Netherlands: VNU Science Press, 1987.
Find full textM, Rajendran A., and Batra R. C, eds. Constitutive laws: Theory, experiments and numerical implementation. Barcelona: International Center for Numerical Methods in Engineering, 1995.
Find full textCenter, Ames Research, ed. Parallel implementation of an algorithm for Delaunay triangulation. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Find full text1969-, Chartier Timothy P., ed. Numerical methods: Design, analysis, and computer implementation of algorithms. Princeton, NJ: Princeton University Press, 2012.
Find full textCenter, Langley Research, ed. Implementation of an ADI method on parallel computers. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Find full textLinear systems: A state variable approach with numerical implementation. Englewood Cliffs, N.J: Prentice Hall, 1989.
Find full textOverby, Alan. CNC machining handbook: Building, programming, and implementation. New York, NY: McGraw-Hill/TAB Electronics, 2010.
Find full textJ, Bockelie Michael, and Langley Research Center, eds. A comparison of using APPL and PVM for a parallel implementation of an unstructured grid generation problem. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textStanley, Osher, and Langley Research Center, eds. Efficient implementation of essentially non-oscillatory shock capturing schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Find full textLi, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43432-1.
Full textBook chapters on the topic "Numerical implementation"
Turek, Ilja, Václav Drchal, Josef Kudrnovský, Mojmír Šob, and Peter Weinberger. "Numerical Implementation." In Electronic Structure of Disordered Alloys, Surfaces and Interfaces, 287–309. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6255-9_10.
Full textKitagawa, Koichi. "Numerical Implementation." In Boundary Element Analysis of Viscous Flow, 42–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84029-6_3.
Full textNaomis, Steve, and Paul C. M. Lau. "Numerical Implementation." In Lecture Notes in Engineering, 101–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84243-6_4.
Full textMadenci, Erdogan, Atila Barut, and Mehmet Dorduncu. "Numerical Implementation." In Peridynamic Differential Operator for Numerical Analysis, 39–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02647-9_3.
Full textMartínez Pañeda, Emilio. "Numerical Implementation." In Springer Theses, 33–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63384-8_3.
Full textSanz-Serna, J. M., and M. P. Calvo. "Implementation." In Numerical Hamiltonian Problems, 53–68. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_5.
Full textBoudreau, Bernard P. "Numerical Methods." In Diagenetic Models and Their Implementation, 297–360. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60421-8_8.
Full textSeifi, Hossein, and Hamed Delkhosh. "Implementation and Numerical Results." In Model Validation for Power System Frequency Analysis, 37–57. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2980-7_4.
Full textChen, Chuchu, Jialin Hong, and Lihai Ji. "Implementation of Numerical Experiments." In Lecture Notes in Mathematics, 215–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6686-8_6.
Full textLiseikin, Vladimir D. "Numerical Implementation of Grid Generator." In Scientific Computation, 241–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05415-4_9.
Full textConference papers on the topic "Numerical implementation"
Singh, Gagandeep, Markus Püschel, and Martin Vechev. "Making numerical program analysis fast." In PLDI '15: ACM SIGPLAN Conference on Programming Language Design and Implementation. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2737924.2738000.
Full textAlfalou, A., C. Brosseau, B. E. Benkelfat, S. Qasmi, and I. Léonard. "Towards all-numerical implementation of correlation." In SPIE Defense, Security, and Sensing, edited by David P. Casasent and Tien-Hsin Chao. SPIE, 2012. http://dx.doi.org/10.1117/12.919378.
Full textZhao, Yidi. "Numerical Implementation of Gauge-Fixed FourierAcceleration." In The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0026.
Full textCavalcanti, C., H. Correia, A. Castro, and J. L. Alves. "Constituive modelling of the annulus fibrosus: Numerical implementation and numerical analysis." In 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2013. http://dx.doi.org/10.1109/enbeng.2013.6518408.
Full textBrugnano, Luigi, Felice Iavernaro, Tiziana Susca, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Hamiltonian BVMs (HBVMs): Implementation Details and Applications." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241568.
Full textHe, Jingxuan, Gagandeep Singh, Markus Püschel, and Martin Vechev. "Learning fast and precise numerical analysis." In PLDI '20: 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3385412.3386016.
Full textFoote, W., J. Kraemer, and G. Foster. "APL2 implementation of numerical asset pricing models." In the international conference. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/55626.55643.
Full textPanahi, Ashkan, Mats Viberg, and Babak Hassibi. "A numerical implementation of gridless compressed sensing." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178590.
Full textvan Stralen, Mattheus J. N., Maarten V. de Hoop, and Hans Blok. "Numerical Implementation of the Bremmer Coupling Series." In Integrated Photonics Research. Washington, D.C.: OSA, 1996. http://dx.doi.org/10.1364/ipr.1996.imb4.
Full textLebrun, M., J. Darbon, and J. M. Morel. "A Numerical Implementation of Landscape Evolution Models." In Second Conference on Forward Modelling of Sedimentary Systems. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201600381.
Full textReports on the topic "Numerical implementation"
Weinacht, Daniel J. Coupled elastic-plastic thermomechanically assisted diffusion: Theory development, numerical implementation, and application. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/176804.
Full textHerrmann, Leonard R., Victor Kaliakin, and C. K. Shen. Improved Numerical Implementation of the Bounding Surface Plasticity Model for Cohesive Soils. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada163572.
Full textBaczewski, Andrew David, Luke Shulenburger, Michael Paul Desjarlais, and Rudolph J. Magyar. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1204090.
Full textDing, Yan, Q. Chen, Ling Zhu, Julie Rosati, and Bradley Johnson. Implementation of flexible vegetation into CSHORE for modeling wave attenuation. Engineer Research and Development Center (U.S.), February 2022. http://dx.doi.org/10.21079/11681/43220.
Full textWarne, Larry, and William Johnson. Capacitive/Inductive Corrections for Numerical Implementation of Thin-Slot Transmission Line Models and Other Useful Formulas. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1891445.
Full textMichaels, Michelle, Theodore Letcher, Sandra LeGrand, Nicholas Webb, and Justin Putnam. Implementation of an albedo-based drag partition into the WRF-Chem v4.1 AFWA dust emission module. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/42782.
Full textLewis, Matthew W. Numerical Implementation of an Invariant-Based Model for Foamed Elastomers with Strain Softening and Nonlinear Time Dependent Response. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1469496.
Full textPaschen, Marius, Felix Meier, and Wilfried Rickels. Working paper on the numerical modelling framework to compare different accounting schemes. OceanNets, August 2023. http://dx.doi.org/10.3289/oceannets_d1.1_v3.
Full textSavant, Gaurav, Rutherford Berger, Corey Trahan, and Gary Brown. Theory, formulation, and implementation of the Cartesian and spherical coordinate two-dimensional depth-averaged module of the Adaptive Hydraulics (AdH) finite element numerical code. Engineer Research and Development Center (U.S.), June 2020. http://dx.doi.org/10.21079/11681/36993.
Full textTer-Minassian, Teresa. Preconditions for a Successful Introduction of Structural Fiscal Balance-based Rules in Latin America and the Caribbean: A Framework Paper. Inter-American Development Bank, October 2010. http://dx.doi.org/10.18235/0006940.
Full text