Academic literature on the topic 'Numerical integration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical integration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Numerical integration"

1

Tabsum, B. "Python for Numerical Integration." International Journal of Science and Research (IJSR) 12, no. 5 (2023): 1801–5. http://dx.doi.org/10.21275/mr23521182224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matušů, Josef, Gejza Dohnal, and Martin Matušů. "On one method of numerical integration." Applications of Mathematics 36, no. 4 (1991): 241–63. http://dx.doi.org/10.21136/am.1991.104464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zadiraka, V. K., L. V. Luts, and I. V. Shvidchenko. "Optimal Numerical Integration." Cybernetics and Computer Technologies, no. 4 (December 31, 2020): 47–64. http://dx.doi.org/10.34229/2707-451x.20.4.4.

Full text
Abstract:
Introduction. In many applied problems, such as statistical data processing, digital filtering, computed tomography, pattern recognition, and many others, there is a need for numerical integration, moreover, with a given (often quite high) accuracy. Classical quadrature formulas cannot always provide the required accuracy, since, as a rule, they do not take into account the oscillation of the integrand. In this regard, the development of methods for constructing optimal in accuracy (and close to them) quadrature formulas for the integration of rapidly oscillating functions is rather important
APA, Harvard, Vancouver, ISO, and other styles
4

Hochbruck, Marlis, Christian Lubich, Robert McLachlan, and Jesús María Sanz-Serna. "Geometric Numerical Integration." Oberwolfach Reports 18, no. 2 (2022): 943–99. http://dx.doi.org/10.4171/owr/2021/17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elliott, David, H. Brass, and G. Hammerlin. "Numerical Integration IV." Mathematics of Computation 64, no. 210 (1995): 901. http://dx.doi.org/10.2307/2153467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Faou, Erwan, Ernst Hairer, Marlis Hochbruck, and Christian Lubich. "Geometric Numerical Integration." Oberwolfach Reports 13, no. 1 (2016): 869–948. http://dx.doi.org/10.4171/owr/2016/18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clegg, D. B., and A. N. Richmond. "Perfect numerical integration." International Journal of Mathematical Education in Science and Technology 18, no. 4 (1987): 519–25. http://dx.doi.org/10.1080/0020739870180403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dyer, Stephen, and Justin Dyer. "bythenumbers - Numerical integration." IEEE Instrumentation & Measurement Magazine 11, no. 2 (2008): 47–49. http://dx.doi.org/10.1109/mim.2008.4483733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

G., W., H. Brass, and G. H. Hammerlin. "Numerical Integration III." Mathematics of Computation 53, no. 187 (1989): 451. http://dx.doi.org/10.2307/2008381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burk, Frank. "Numerical Integration via Integration by Parts." College Mathematics Journal 17, no. 5 (1986): 418. http://dx.doi.org/10.2307/2686254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Numerical integration"

1

Lastdrager, Boris. "Numerical time integration on sparse grids." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/64526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berry, Matthew M. "A Variable-Step Double-Integration Multi-Step Integrator." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11155.

Full text
Abstract:
A new method of numerical integration is presented here, the variable-step Stormer-Cowell method. The method uses error control to regulate the step size, so larger step sizes can be taken when possible, and is double-integration, so only one evaluation per step is necessary when integrating second-order differential equations. The method is not variable-order, because variable-order algorithms require a second evaluation. The variable-step Stormer-Cowell method is designed for space surveillance applications,which require numerical integration methods to track orbiting objects accurately. Bec
APA, Harvard, Vancouver, ISO, and other styles
3

Akinola, Richard Olatokunbo. "Numerical indefinite integration using the sinc method." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/1049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ou, Rongfu. "Parallel numerical integration methods for nonlinear dynamics." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/18181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alsallami, Shami Ali M. "Discrete integrable systems and geometric numerical integration." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22291/.

Full text
Abstract:
This thesis deals with discrete integrable systems theory and modified Hamiltonian equations in the field of geometric numerical integration. Modified Hamiltonians are used to show that symplectic schemes for Hamiltonian systems are accurate over long times. However, for nonlinear systems the series defining the modified Hamiltonian equation usually diverges. The first part of the thesis demonstrates that there are nonlinear systems where the modified Hamiltonian has a closed-form expression and hence converges. These systems arise from the theory of discrete integrable systems. Specifically,
APA, Harvard, Vancouver, ISO, and other styles
6

Strandberg, Rickard, and Johan Låås. "Uncertainty quantification using high-dimensional numerical integration." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195701.

Full text
Abstract:
We consider quantities that are uncertain because they depend on one or many uncertain parameters. If the uncertain parameters are stochastic the expected value of the quantity can be obtained by integrating the quantity over all the possible values these parameters can take and dividing the result by the volume of the parameter-space. Each additional uncertain parameter has to be integrated over; if the parameters are many, this give rise to high-dimensional integrals. This report offers an overview of the theory underpinning four numerical methods used to compute high-dimensional integrals:
APA, Harvard, Vancouver, ISO, and other styles
7

Tranquilli, Paul J. "Lightly-Implicit Methods for the Time Integration of Large Applications." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81974.

Full text
Abstract:
Many scientific and engineering applications require the solution of large systems of initial value problems arising from method of lines discretization of partial differential equations. For systems with widely varying time scales, or with complex physical dynamics, implicit time integration schemes are preferred due to their superior stability properties. However, for very large systems accurate solution of the implicit terms can be impractical. For this reason approximations are widely used in the implementation of such methods. The primary focus of this work is on the development of nov
APA, Harvard, Vancouver, ISO, and other styles
8

Oliva, Federico. "Modelling, stability, and control of DAE numerical integration." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20143/.

Full text
Abstract:
This thesis deals with the integration of differential algebraic equations systems. Generally speaking the execution of numerical integration algorithms may introduce some errors, which could propagate ending up in a wrong description of system dynamics. This issue, named drifting, will be highlighted by dealing with a specific constrained mechanical system presenting. Such system consists of a looper, which is a mechanism used in the steel production to sense and control the tension acting on the material. The thesis unfolds as follows: a first section model the looper and inspects the main p
APA, Harvard, Vancouver, ISO, and other styles
9

Thompson, Jeremy Stewart. "High speed numerical integration of Fermi Dirac integrals." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA311805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qureshi, Muhammad Amer. "Efficient numerical integration for gravitational N-body simulations." Thesis, University of Auckland, 2012. http://hdl.handle.net/2292/10826.

Full text
Abstract:
Models for N-body gravitational simulations of the Solar System vary from small simulations of two bodies over short intervals of time to simulations of large numbers of bodies over long-term integration. Most simulations require the numerical solution of an initial value problem (IVP) of second-order ordinary differential equation. We present new integration methods intended for accurate simulations that are more efficient than existing methods. In the first part of the thesis, we present new higher-order explicit Runge–Kutta Nyström pairs. These new pairs are searched using a simulated ann
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Numerical integration"

1

Keast, Patrick, and Graeme Fairweather, eds. Numerical Integration. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3889-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Espelid, Terje O., and Alan Genz, eds. Numerical Integration. Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2646-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Evans, Gwynne. Practical numerical integration. Wiley, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brass, H., and G. Hämmerlin, eds. Numerical Integration IV. Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-6338-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braß, H., and G. Hämmerlin, eds. Numerical Integration III. Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6398-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hairer, Ernst, Gerhard Wanner, and Christian Lubich. Geometric Numerical Integration. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05018-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davis, Philip J. Methods of numerical integration. 2nd ed. Dover Publications, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

R, Piessens, and Mori Masatake, eds. Numerical quadrature. North-Holland, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krommer, Arnold R., and Christoph W. Ueberhuber, eds. Numerical Integration on Advanced Computer Systems. Springer-Verlag, 1994. http://dx.doi.org/10.1007/bfb0025796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Milstein, G. N. Numerical Integration of Stochastic Differential Equations. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8455-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Numerical integration"

1

Hämmerlin, Günther, and Karl-Heinz Hoffman. "Integration." In Numerical Mathematics. Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-4442-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Johansson, Robert. "Integration." In Numerical Python. Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-0553-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Johansson, Robert. "Integration." In Numerical Python. Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4246-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Johansson, Robert. "Integration." In Numerical Python. Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0413-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Joyce, Philip. "Numerical Integration." In Numerical C. Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5064-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rajasekar, Shanmuganathan. "Numerical Integration." In Numerical Methods. CRC Press, 2024. http://dx.doi.org/10.1201/9781032649931-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Turner, Peter R. "Numerical Integration." In Numerical Analysis. Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13108-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Corless, Robert M., and Nicolas Fillion. "Numerical Integration." In A Graduate Introduction to Numerical Methods. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8453-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shapira, Yair. "Numerical Integration." In Linear Algebra and Group Theory for Physicists and Engineers. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17856-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kress, Rainer. "Numerical Integration." In Graduate Texts in Mathematics. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0599-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Numerical integration"

1

Luft, Brian, Vadim Shapiro, and Igor Tsukanov. "Geometrically adaptive numerical integration." In the 2008 ACM symposium. ACM Press, 2008. http://dx.doi.org/10.1145/1364901.1364923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Milovanović, Gradimir V., Dobrilo e. Tošić, and Miloljub Albijanić. "Numerical integration of analytic functions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Savcenco, Valeriu, and Eugeniu Savcenco. "Multirate Numerical Integration for Parabolic PDEs." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu Du. "Electromagnetic transient numerical integration methods." In 2010 8th World Congress on Intelligent Control and Automation (WCICA 2010). IEEE, 2010. http://dx.doi.org/10.1109/wcica.2010.5553948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cerone, P., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Multidimensional Integration via Dimension Reduction and Generators." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ascher, Uri, and Kees van den Doel. "Fast but chaotic artificial time integration." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brugnano, Luigi, and Felice Iavernaro. "Geometric integration by playing with matrices." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wensch, Jörg, Oswald Knoth, and Alexander Galant. "Multirate Time Integration for Compressible Atmospheric Flow." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Walentyński, Ryszard A., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "On Exact Integration Within an Isoparametric Tetragonal Finite Element." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Kwangmin, Hyunkyung Lim, and Pooja Rao. "Practical numerical integration on NISQ devices." In Quantum Information Science, Sensing, and Computation XII, edited by Michael Hayduk and Eric Donkor. SPIE, 2020. http://dx.doi.org/10.1117/12.2558207.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Numerical integration"

1

Lester, Brian T., and Kevin Nicholas Long. Numerical Integration of Viscoelastic Models. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1567985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Osborne, A. R. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics. Defense Technical Information Center, 2007. http://dx.doi.org/10.21236/ada578324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Masalma, Yahya, and Yu Jiao. Technical Report: Scalable Parallel Algorithms for High Dimensional Numerical Integration. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/990238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Allen, Christopher K. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1408583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zoller, Miklos. Error Analysis on Numerical Integration Algorithms in a Hypoelasticity Framework. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1806423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Austin, M. High Order Integration of Smooth Dynamical Systems: Theory and Numerical Experiments. Defense Technical Information Center, 1991. http://dx.doi.org/10.21236/ada445569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Robinson, Eric. Comparing Three Types of Numerical Techniques for the Integration of Perturbed Satellite Motion. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1117981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Judd, Kenneth L., and Ben Skrainka. High performance quadrature rules: how numerical integration affects a popular model of product differentiation. Institute for Fiscal Studies, 2011. http://dx.doi.org/10.1920/wp.cem.2011.0311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bammann, Douglas J., G. C. Johnson, Esteban B. Marin, and Richard A. Regueiro. On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/883488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tsynkov, Semyon T. Non-Deteriorating Numerical Methods and Artificial Boundary Conditions for the Long-Term Integration of Maxwell's Equations. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada427296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!