Academic literature on the topic 'Numerical integration. Integrals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical integration. Integrals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numerical integration. Integrals"
Safouhi, Hassan. "A Generalized Technique in Numerical Integration." EPJ Web of Conferences 173 (2018): 01011. http://dx.doi.org/10.1051/epjconf/201817301011.
Full textZadiraka, V. K., L. V. Luts, and I. V. Shvidchenko. "Optimal Numerical Integration." Cybernetics and Computer Technologies, no. 4 (December 31, 2020): 47–64. http://dx.doi.org/10.34229/2707-451x.20.4.4.
Full textKurihara, Y., and T. Kaneko. "Numerical contour integration for loop integrals." Computer Physics Communications 174, no. 7 (April 2006): 530–39. http://dx.doi.org/10.1016/j.cpc.2005.05.009.
Full textHu, Jin-Xiu, Hai-Feng Peng, and Xiao-Wei Gao. "Numerical Evaluation of Arbitrary Singular Domain Integrals Using Third-Degree B-Spline Basis Functions." Mathematical Problems in Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/284106.
Full textLv, Jun, Guoyu Sheng, Xiaowei Gao, and Hongwu Zhang. "Numerical Integration Approach Based on Radial Integration Method for General 3D Polyhedral Finite Elements." International Journal of Computational Methods 12, no. 05 (October 2015): 1550026. http://dx.doi.org/10.1142/s0219876215500267.
Full textLindh, Roland, Per-Åke Malmqvist, and Laura Gagliardi. "Molecular integrals by numerical quadrature. I. Radial integration." Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 106, no. 3 (July 1, 2001): 178–87. http://dx.doi.org/10.1007/s002140100263.
Full textStolle, H. W., and R. Strauss. "On the numerical integration of certain singular integrals." Computing 48, no. 2 (June 1992): 177–89. http://dx.doi.org/10.1007/bf02310532.
Full textUbale, P. V. "Numerical Solution of Boole’s Rule in Numerical Integration by Using General Quadrature Formula." Bulletin of Society for Mathematical Services and Standards 2 (June 2012): 1–4. http://dx.doi.org/10.18052/www.scipress.com/bsmass.2.1.
Full textBrzeziński, D. W., and P. Ostalczyk. "High-accuracy numerical integration methods for fractional order derivatives and integrals computations." Bulletin of the Polish Academy of Sciences Technical Sciences 62, no. 4 (December 1, 2014): 723–33. http://dx.doi.org/10.2478/bpasts-2014-0078.
Full textSharma, M. D., and S. Nain. "Numerical evaluation of inverse integral transforms: Dynamic response of elastic materials." International Journal of Engineering, Science and Technology 12, no. 2 (June 1, 2020): 29–34. http://dx.doi.org/10.4314/ijest.v12i2.4.
Full textDissertations / Theses on the topic "Numerical integration. Integrals"
Thompson, Jeremy Stewart. "High speed numerical integration of Fermi Dirac integrals." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA311805.
Full textWebster, Jonathan Robert. "Methods of numerical integration for rapidly oscillatory integrals." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/13776.
Full textSinescu, Vasile. "Construction of lattice rules for multiple integration based on a weighted discrepancy." The University of Waikato, 2008. http://hdl.handle.net/10289/2542.
Full textMeszmer, Peter. "Hierarchische Integration und der Strahlungstransport in streuenden Medien." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-98584.
Full textJohnson, Tomas. "Computer-aided Computation of Abelian integrals and Robust Normal Forms." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107519.
Full textTamayo, Palau José María. "Multilevel adaptive cross approximation and direct evaluation method for fast and accurate discretization of electromagnetic integral equations." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/6952.
Full textLas formulaciones MFIE y CFIE son válidas únicamente para objetos cerrados y necesitan tratar la integración de núcleos con singularidades de orden superior al de la EFIE. La falta de técnicas eficientes y precisas para el cálculo de dichas integrales singulares a llevado a imprecisiones en los resultados. Consecuentemente, su uso se ha visto restringido a propósitos puramente académicos, incluso cuando tienen una velocidad de convergencia muy superior cuando son resuelto iterativamente, debido a su excelente número de condicionamiento.
En general, la principal desventaja del MoM es el alto coste de su construcción, almacenamiento y solución teniendo en cuenta que es inevitablemente un sistema denso, que crece con el tamaño eléctrico del objeto a analizar. Por tanto, un gran número de métodos han sido desarrollados para su compresión y solución. Sin embargo, muchos de ellos son absolutamente dependientes del núcleo de la ecuación integral, necesitando de una reformulación completa para cada núcleo, en caso de que sea posible.
Esta tesis presenta nuevos enfoques o métodos para acelerar y incrementar la precisión de ecuaciones integrales discretizadas con el Método de los Momentos (MoM) en electromagnetismo computacional.
En primer lugar, un nuevo método iterativo rápido, el Multilevel Adaptive Cross Approximation (MLACA), ha sido desarrollado para acelerar la solución del sistema lineal del MoM. En la búsqueda por un esquema de propósito general, el MLACA es un método independiente del núcleo de la ecuación integral y es puramente algebraico. Mejora simultáneamente la eficiencia y la compresión con respecto a su versión mono-nivel, el ACA, ya existente. Por tanto, representa una excelente alternativa para la solución del sistema del MoM de problemas electromagnéticos de gran escala.
En segundo lugar, el Direct Evaluation Method, que ha provado ser la referencia principal en términos de eficiencia y precisión, es extendido para superar el cálculo del desafío que suponen las integrales hiper-singulares 4-D que aparecen en la formulación de Ecuación Integral de Campo Magnético (MFIE) así como en la de Ecuación Integral de Campo Combinada (CFIE). La máxima precisión asequible -precisión de máquina se obtiene en un tiempo más que razonable, sobrepasando a cualquier otra técnica existente en la bibliografía.
En tercer lugar, las integrales hiper-singulares mencionadas anteriormente se convierten en casi-singulares cuando los elementos discretizados están muy próximo pero sin llegar a tocarse. Se muestra como las reglas de integración tradicionales tampoco convergen adecuadamente en este caso y se propone una posible solución, basada en reglas de integración más sofisticadas, como la Double Exponential y la Gauss-Laguerre.
Finalmente, un esfuerzo en facilitar el uso de cualquier programa de simulación de antenas basado en el MoM ha llevado al desarrollo de un modelo matemático general de un puerto de excitación en el espacio discretizado. Con este nuevo modelo, ya no es necesaria la adaptación de los lados del mallado al puerto en cuestión.
The Method of Moments (MoM) has been widely used during the last decades for the discretization and the solution of integral equation formulations appearing in several electromagnetic antenna and scattering problems. The most utilized of these formulations are the Electric Field Integral Equation (EFIE), the Magnetic Field Integral Equation (MFIE) and the Combined Field Integral Equation (CFIE), which is a linear combination of the other two.
The MFIE and CFIE formulations are only valid for closed objects and need to deal with the integration of singular kernels with singularities of higher order than the EFIE. The lack of efficient and accurate techniques for the computation of these singular integrals has led to inaccuracies in the results. Consequently, their use has been mainly restricted to academic purposes, even having a much better convergence rate when solved iteratively, due to their excellent conditioning number.
In general, the main drawback of the MoM is the costly construction, storage and solution considering the unavoidable dense linear system, which grows with the electrical size of the object to analyze. Consequently, a wide range of fast methods have been developed for its compression and solution. Most of them, though, are absolutely dependent on the kernel of the integral equation, claiming for a complete re-formulation, if possible, for each new kernel.
This thesis dissertation presents new approaches to accelerate or increase the accuracy of integral equations discretized by the Method of Moments (MoM) in computational electromagnetics.
Firstly, a novel fast iterative solver, the Multilevel Adaptive Cross Approximation (MLACA), has been developed for accelerating the solution of the MoM linear system. In the quest for a general-purpose scheme, the MLACA is a method independent of the kernel of the integral equation and is purely algebraic. It improves both efficiency and compression rate with respect to the previously existing single-level version, the ACA. Therefore, it represents an excellent alternative for the solution of the MoM system of large-scale electromagnetic problems.
Secondly, the direct evaluation method, which has proved to be the main reference in terms of efficiency and accuracy, is extended to overcome the computation of the challenging 4-D hyper-singular integrals arising in the Magnetic Field Integral Equation (MFIE) and Combined Field Integral Equation (CFIE) formulations. The maximum affordable accuracy --machine precision-- is obtained in a more than reasonable computation time, surpassing any other existing technique in the literature.
Thirdly, the aforementioned hyper-singular integrals become near-singular when the discretized elements are very closely placed but not touching. It is shown how traditional integration rules fail to converge also in this case, and a possible solution based on more sophisticated integration rules, like the Double Exponential and the Gauss-Laguerre, is proposed.
Finally, an effort to facilitate the usability of any antenna simulation software based on the MoM has led to the development of a general mathematical model of an excitation port in the discretized space. With this new model, it is no longer necessary to adapt the mesh edges to the port.
Kraus, Michal. "Paralelní výpočetní architektury založené na numerické integraci." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-261227.
Full textAlsallami, Shami Ali M. "Discrete integrable systems and geometric numerical integration." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22291/.
Full textLastdrager, Boris. "Numerical time integration on sparse grids." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/64526.
Full textMikulka, Jiří. "Numerické výpočty určitých integrálů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236141.
Full textBooks on the topic "Numerical integration. Integrals"
Whitney, Hassler. Geometric integration theory. Mineola, N.Y: Dover Publications, 2005.
Find full textThompson, Jeremy Stewart. High speed numerical integration of Fermi Dirac integrals. Monterey, Calif: Naval Postgraduate School, 1996.
Find full textMilʹshteĭn, G. N. Numerical integration of stochastic differential equations. Dordrecht: Kluwer Academic Publishers, 1995.
Find full textKythe, Prem K. Handbook of computational methods for integration. Boca Raton: Chapman & Hall/CRC, 2005.
Find full textBook chapters on the topic "Numerical integration. Integrals"
Bialecki, Bernard. "Sinc Quadratures for Cauchy Principal Value Integrals." In Numerical Integration, 81–92. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2646-5_7.
Full textSidi, Avram. "Computation of Oscillatory Infinite Integrals by Extrapolation Methods." In Numerical Integration, 349–51. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2646-5_29.
Full textLyness, J. N. "Some Quadrature Rules for Finite Trigonometric and Related Integrals." In Numerical Integration, 17–33. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3889-2_2.
Full textGenz, Alan. "The Numerical Evaluation of Multiple Integrals on Parallel Computers." In Numerical Integration, 219–29. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3889-2_23.
Full textHsu, L. C., and Y. S. Zhou. "Approximate Computation of Strongly Oscillatory Integrals with Compound Precision." In Numerical Integration, 91–101. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3889-2_7.
Full textSchwab, Christoph, and Wolfgang L. Wendland. "Numerical Integration of Singular and Hypersingular Integrals in Boundary Element Methods." In Numerical Integration, 203–18. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2646-5_16.
Full textBerntsen, Jarle. "On the Numerical Calculation of Multidimensional Integrals Appearing in the Theory of Underwater Acoustics." In Numerical Integration, 249–65. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2646-5_19.
Full textHunter, D. B. "The Numerical Evaluation of Definite Integrals Affected by Singularities Near the Interval of Integration." In Numerical Integration, 111–20. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2646-5_9.
Full textIoakimidis, Nikolaos I. "Application of Computer Algebra Software to the Derivation of Numerical Integration Rules for Singular and Hypersingular Integrals." In Numerical Integration, 121–31. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2646-5_10.
Full textBerens, H., and H. J. Schmid. "On the Number of Nodes of Odd Degree Cubature Formulae for Integrals with Jacobi Weights on a Simplex." In Numerical Integration, 37–44. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2646-5_3.
Full textConference papers on the topic "Numerical integration. Integrals"
Chaloupka, Jan, Jiří Kunovský, Václav Šátek, Petr Veigend, and Alžbeta Martinkovičová. "Numerical Integration of Multiple Integrals using Taylor Polynomial." In 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005539701630171.
Full textVolskiy, Vladimir, Guy A. E. Vandenbosch, Athanasios G. Polimeridis, Juan R. Mosig, and Ruzica Golubovic Niciforovic. "KUL and EPFL cooperation on numerical integration of Sommerfeld integrals." In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6206566.
Full textVolmer, Julia, Andreas Ammon, Alan Genz, Tobias Hartung, Karl Jansen, and Hernan Leövey. "Applying recursive numerical integration techniques for solving high dimensional integrals." In 34th annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.256.0335.
Full textUsovitsch, Johann, Ievgen Dubovyk, and Tord Riemann. "MBnumerics: Numerical integration of Mellin-Barnes integrals in physical regions." In Loops and Legs in Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.303.0046.
Full textLiao, Wen-I., and Tsung-Jen Teng. "On Evaluation of Lamb’s Integrals for Seismic Waves in a Three-Dimension Elastic Half-Space." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71448.
Full textHelluy, Philippe, Sylvain Maire, and Patrice Ravel. "New Higher Order Numeric Quadratures for Regular or Singular Functions on an Interval: Applications for the Helmholtz Integral Equation." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8119.
Full textGluza, Janusz, Ievgen Dubovyk, Tord Riemann, and Johann Usovitsch. "Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions." In Loops and Legs in Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.260.0034.
Full textBora, Jugma N. "Analytical Evaluation of the Integrals Appearing in the Boundary Element Method for Some Problems in Mechanics." In ASME 1991 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/cie1991-0102.
Full textYan-Wen, Zhao, Zhao Qing-Guang, Luo Xi, Nie Zai-Ping, and Bi Hai-Yan. "Analysis of Numerical Integration Accuracy of Singular Integrals in Moment Method of TDEFIE." In The 2006 4th Asia-Pacific Conference on Environmental Electromagnetics. IEEE, 2006. http://dx.doi.org/10.1109/ceem.2006.257977.
Full textVolskiy, Vladimir, Guy A. E. Vandenbosch, Ruzica Golubovic Niciforovic, Athanasios G. Polimeridis, and Juan R. Mosig. "Numerical integration of Sommerfeld integrals based on singularity extraction techniques and double exponential-type quadrature formulas." In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6205950.
Full text