Dissertations / Theses on the topic 'Numerical integration. Integrals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Numerical integration. Integrals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Thompson, Jeremy Stewart. "High speed numerical integration of Fermi Dirac integrals." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA311805.
Full textWebster, Jonathan Robert. "Methods of numerical integration for rapidly oscillatory integrals." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/13776.
Full textSinescu, Vasile. "Construction of lattice rules for multiple integration based on a weighted discrepancy." The University of Waikato, 2008. http://hdl.handle.net/10289/2542.
Full textMeszmer, Peter. "Hierarchische Integration und der Strahlungstransport in streuenden Medien." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-98584.
Full textJohnson, Tomas. "Computer-aided Computation of Abelian integrals and Robust Normal Forms." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107519.
Full textTamayo, Palau José María. "Multilevel adaptive cross approximation and direct evaluation method for fast and accurate discretization of electromagnetic integral equations." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/6952.
Full textLas formulaciones MFIE y CFIE son válidas únicamente para objetos cerrados y necesitan tratar la integración de núcleos con singularidades de orden superior al de la EFIE. La falta de técnicas eficientes y precisas para el cálculo de dichas integrales singulares a llevado a imprecisiones en los resultados. Consecuentemente, su uso se ha visto restringido a propósitos puramente académicos, incluso cuando tienen una velocidad de convergencia muy superior cuando son resuelto iterativamente, debido a su excelente número de condicionamiento.
En general, la principal desventaja del MoM es el alto coste de su construcción, almacenamiento y solución teniendo en cuenta que es inevitablemente un sistema denso, que crece con el tamaño eléctrico del objeto a analizar. Por tanto, un gran número de métodos han sido desarrollados para su compresión y solución. Sin embargo, muchos de ellos son absolutamente dependientes del núcleo de la ecuación integral, necesitando de una reformulación completa para cada núcleo, en caso de que sea posible.
Esta tesis presenta nuevos enfoques o métodos para acelerar y incrementar la precisión de ecuaciones integrales discretizadas con el Método de los Momentos (MoM) en electromagnetismo computacional.
En primer lugar, un nuevo método iterativo rápido, el Multilevel Adaptive Cross Approximation (MLACA), ha sido desarrollado para acelerar la solución del sistema lineal del MoM. En la búsqueda por un esquema de propósito general, el MLACA es un método independiente del núcleo de la ecuación integral y es puramente algebraico. Mejora simultáneamente la eficiencia y la compresión con respecto a su versión mono-nivel, el ACA, ya existente. Por tanto, representa una excelente alternativa para la solución del sistema del MoM de problemas electromagnéticos de gran escala.
En segundo lugar, el Direct Evaluation Method, que ha provado ser la referencia principal en términos de eficiencia y precisión, es extendido para superar el cálculo del desafío que suponen las integrales hiper-singulares 4-D que aparecen en la formulación de Ecuación Integral de Campo Magnético (MFIE) así como en la de Ecuación Integral de Campo Combinada (CFIE). La máxima precisión asequible -precisión de máquina se obtiene en un tiempo más que razonable, sobrepasando a cualquier otra técnica existente en la bibliografía.
En tercer lugar, las integrales hiper-singulares mencionadas anteriormente se convierten en casi-singulares cuando los elementos discretizados están muy próximo pero sin llegar a tocarse. Se muestra como las reglas de integración tradicionales tampoco convergen adecuadamente en este caso y se propone una posible solución, basada en reglas de integración más sofisticadas, como la Double Exponential y la Gauss-Laguerre.
Finalmente, un esfuerzo en facilitar el uso de cualquier programa de simulación de antenas basado en el MoM ha llevado al desarrollo de un modelo matemático general de un puerto de excitación en el espacio discretizado. Con este nuevo modelo, ya no es necesaria la adaptación de los lados del mallado al puerto en cuestión.
The Method of Moments (MoM) has been widely used during the last decades for the discretization and the solution of integral equation formulations appearing in several electromagnetic antenna and scattering problems. The most utilized of these formulations are the Electric Field Integral Equation (EFIE), the Magnetic Field Integral Equation (MFIE) and the Combined Field Integral Equation (CFIE), which is a linear combination of the other two.
The MFIE and CFIE formulations are only valid for closed objects and need to deal with the integration of singular kernels with singularities of higher order than the EFIE. The lack of efficient and accurate techniques for the computation of these singular integrals has led to inaccuracies in the results. Consequently, their use has been mainly restricted to academic purposes, even having a much better convergence rate when solved iteratively, due to their excellent conditioning number.
In general, the main drawback of the MoM is the costly construction, storage and solution considering the unavoidable dense linear system, which grows with the electrical size of the object to analyze. Consequently, a wide range of fast methods have been developed for its compression and solution. Most of them, though, are absolutely dependent on the kernel of the integral equation, claiming for a complete re-formulation, if possible, for each new kernel.
This thesis dissertation presents new approaches to accelerate or increase the accuracy of integral equations discretized by the Method of Moments (MoM) in computational electromagnetics.
Firstly, a novel fast iterative solver, the Multilevel Adaptive Cross Approximation (MLACA), has been developed for accelerating the solution of the MoM linear system. In the quest for a general-purpose scheme, the MLACA is a method independent of the kernel of the integral equation and is purely algebraic. It improves both efficiency and compression rate with respect to the previously existing single-level version, the ACA. Therefore, it represents an excellent alternative for the solution of the MoM system of large-scale electromagnetic problems.
Secondly, the direct evaluation method, which has proved to be the main reference in terms of efficiency and accuracy, is extended to overcome the computation of the challenging 4-D hyper-singular integrals arising in the Magnetic Field Integral Equation (MFIE) and Combined Field Integral Equation (CFIE) formulations. The maximum affordable accuracy --machine precision-- is obtained in a more than reasonable computation time, surpassing any other existing technique in the literature.
Thirdly, the aforementioned hyper-singular integrals become near-singular when the discretized elements are very closely placed but not touching. It is shown how traditional integration rules fail to converge also in this case, and a possible solution based on more sophisticated integration rules, like the Double Exponential and the Gauss-Laguerre, is proposed.
Finally, an effort to facilitate the usability of any antenna simulation software based on the MoM has led to the development of a general mathematical model of an excitation port in the discretized space. With this new model, it is no longer necessary to adapt the mesh edges to the port.
Kraus, Michal. "Paralelní výpočetní architektury založené na numerické integraci." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-261227.
Full textAlsallami, Shami Ali M. "Discrete integrable systems and geometric numerical integration." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22291/.
Full textLastdrager, Boris. "Numerical time integration on sparse grids." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/64526.
Full textMikulka, Jiří. "Numerické výpočty určitých integrálů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236141.
Full textIša, Radek. "Efektivní výpočty vícenásobných integrálů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-363877.
Full textRoper, Ryan Todd. "A Study of Radiofrequency Cardiac Ablation Using Analytical and Numerical Techniques." Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd262.pdf.
Full textAl-Jawary, Majeed Ahmed Weli. "The radial integration boundary integral and integro-differential equation methods for numerical solution of problems with variable coefficients." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/6449.
Full textGiudiceandrea, Nicola. "la fabbrica automatica e i sistemi di controllo integrati." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textJanko, Roman. "Modelování elektrických obvodů ve specializovaném paralelním systému." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236416.
Full textGalizia, Francesco Giovanni. "Modellazione numerica del flusso e del trasporto per l’applicazione integrata di geotermia a bassa entalpia e bonifica." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11881/.
Full textČambor, Michal. "Paralelní řešení parciálních diferenciálnich rovnic." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2011. http://www.nusl.cz/ntk/nusl-412855.
Full textOpálka, Jan. "Automatické řízení výpočtu ve specializovaném výpočetním systému." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-363728.
Full textAdamík, Pavel. "Řízení dynamických systémů v reálném čase." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236759.
Full textDella, Fera Stefano. "Il ruolo di un atmospheric river nell'evento di precipitazione estrema dell'ottobre 2018 in Italia." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18809/.
Full textChang, Shin-Chieh, and 張世杰. "Numerical Algorithms for the Integration of Fourier-Type Integrals." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/91827978091609310245.
Full text國立臺灣海洋大學
資訊工程學系
94
In this thesis, we study the numerical methods for integrating the Fourier-type integrals, defined by $\int_0^{\infty}f(x)\sin{\omega x}\,dx$ or $\int_0^{\infty}f(x)\cos{\omega x}\,dx$. We focus on the two of most efficient schemes, namely the accelerated trapezoidal-type rules and the Fourier-type double exponential formulas. We propose an algorithm for selecting the two parameters, namely $h$(the step size) and $N$(the number of function calculations), to be approximately optimal for the new Fourier-type double exponential formula. This algorithm significantly reduces the number of function evaluations and definitely improves the drawback of Ooura and Mori's approach. For the problem what Ooura and Mori left of the special integrals, $\int_0^{\infty}\frac{\cos{\omega x}}{(x-2)^2+1}\,dx$, we also present a hybrid scheme of combining the Gauss-type rule with the double exponential formula. This approach resolves the inefficiency of the new Fourier-type double exponential formula. The comparison of the accelerated trapezoidal-type rules and double exponential formula and their tests were also done. %In this thesis, we study the two of most efficient schemes, namely the accelerated trapezoidal rule and the double-exponential.
Michálek, Martin. "Matematická analýza rovnic popisujících pohyb stlačitelných tekutin." Doctoral thesis, 2017. http://www.nusl.cz/ntk/nusl-368922.
Full text