To see the other types of publications on this topic, follow the link: Numerical integration.

Journal articles on the topic 'Numerical integration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Numerical integration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tabsum, B. "Python for Numerical Integration." International Journal of Science and Research (IJSR) 12, no. 5 (2023): 1801–5. http://dx.doi.org/10.21275/mr23521182224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matušů, Josef, Gejza Dohnal, and Martin Matušů. "On one method of numerical integration." Applications of Mathematics 36, no. 4 (1991): 241–63. http://dx.doi.org/10.21136/am.1991.104464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zadiraka, V. K., L. V. Luts, and I. V. Shvidchenko. "Optimal Numerical Integration." Cybernetics and Computer Technologies, no. 4 (December 31, 2020): 47–64. http://dx.doi.org/10.34229/2707-451x.20.4.4.

Full text
Abstract:
Introduction. In many applied problems, such as statistical data processing, digital filtering, computed tomography, pattern recognition, and many others, there is a need for numerical integration, moreover, with a given (often quite high) accuracy. Classical quadrature formulas cannot always provide the required accuracy, since, as a rule, they do not take into account the oscillation of the integrand. In this regard, the development of methods for constructing optimal in accuracy (and close to them) quadrature formulas for the integration of rapidly oscillating functions is rather important
APA, Harvard, Vancouver, ISO, and other styles
4

Hochbruck, Marlis, Christian Lubich, Robert McLachlan, and Jesús María Sanz-Serna. "Geometric Numerical Integration." Oberwolfach Reports 18, no. 2 (2022): 943–99. http://dx.doi.org/10.4171/owr/2021/17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elliott, David, H. Brass, and G. Hammerlin. "Numerical Integration IV." Mathematics of Computation 64, no. 210 (1995): 901. http://dx.doi.org/10.2307/2153467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Faou, Erwan, Ernst Hairer, Marlis Hochbruck, and Christian Lubich. "Geometric Numerical Integration." Oberwolfach Reports 13, no. 1 (2016): 869–948. http://dx.doi.org/10.4171/owr/2016/18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clegg, D. B., and A. N. Richmond. "Perfect numerical integration." International Journal of Mathematical Education in Science and Technology 18, no. 4 (1987): 519–25. http://dx.doi.org/10.1080/0020739870180403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dyer, Stephen, and Justin Dyer. "bythenumbers - Numerical integration." IEEE Instrumentation & Measurement Magazine 11, no. 2 (2008): 47–49. http://dx.doi.org/10.1109/mim.2008.4483733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

G., W., H. Brass, and G. H. Hammerlin. "Numerical Integration III." Mathematics of Computation 53, no. 187 (1989): 451. http://dx.doi.org/10.2307/2008381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burk, Frank. "Numerical Integration via Integration by Parts." College Mathematics Journal 17, no. 5 (1986): 418. http://dx.doi.org/10.2307/2686254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Burk, Frank. "Numerical Integration via Integration by Parts." College Mathematics Journal 17, no. 5 (1986): 418–22. http://dx.doi.org/10.1080/07468342.1986.11972993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Obradovic, Dragan, Lakshmi Narayan Mishra, and Vishnu Narayan Mishra. "Numerical Differentiation and Integration." JOURNAL OF ADVANCES IN PHYSICS 19 (January 25, 2021): 1–5. http://dx.doi.org/10.24297/jap.v19i.8938.

Full text
Abstract:
There are several reasons why numerical differentiation and integration are used. The function that integrates f (x) can be known only in certain places, which is done by taking a sample. Some supercomputers and other computer applications sometimes need numerical integration for this very reason. The formula for the function to be integrated may be known, but it may be difficult or impossible to find the antiderivation that is an elementary function. One example is the function f (x) = exp (−x2), an antiderivation that cannot be written in elementary form. It is possible to find antiderivatio
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Chuanmiao, Michal Křížek, and Liping Liu. "Numerical Integration over Pyramids." Advances in Applied Mathematics and Mechanics 5, no. 03 (2013): 309–20. http://dx.doi.org/10.4208/aamm.12-m12110.

Full text
Abstract:
AbstractPyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method. In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.
APA, Harvard, Vancouver, ISO, and other styles
14

Bland, J. A., and H. V. Smith. "Numerical Methods of Integration." Mathematical Gazette 79, no. 484 (1995): 244. http://dx.doi.org/10.2307/3620126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

S., F., and H. V. Smith. "Numerical Methods of Integration." Mathematics of Computation 64, no. 210 (1995): 900. http://dx.doi.org/10.2307/2153466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Arthur, D. W., Philip J. Davis, and Philip Rabinowitz. "Methods of Numerical Integration." Mathematical Gazette 70, no. 451 (1986): 70. http://dx.doi.org/10.2307/3615859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jacka, K., and David Lewin. "Numerical measures of integration." Journal of Advanced Nursing 11, no. 6 (1986): 679–85. http://dx.doi.org/10.1111/j.1365-2648.1986.tb03385.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Balmino, G., and J. B. Harriot. "Numerical integration techniques revisited." manuscripta geodaetica 15, no. 1 (1990): 1–10. http://dx.doi.org/10.1007/bf03655383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Voronin, S. M., and V. I. Skalyga. "On numerical integration algorithms." Izvestiya: Mathematics 60, no. 5 (1996): 887–91. http://dx.doi.org/10.1070/im1996v060n05abeh000084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schmee, Josef. "Tables for Numerical Integration." Technometrics 27, no. 1 (1985): 90–91. http://dx.doi.org/10.1080/00401706.1985.10488025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Laue, Hans. "Elementary numerical integration methods." American Journal of Physics 56, no. 9 (1988): 849–50. http://dx.doi.org/10.1119/1.15441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Valliappan, S., and K. K. Ang. "? method of numerical integration." Computational Mechanics 5, no. 5 (1989): 321–36. http://dx.doi.org/10.1007/bf01047049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Xin, Wu, and Huang Tian-yi. "Constraints and numerical integration." Chinese Astronomy and Astrophysics 29, no. 1 (2005): 81–91. http://dx.doi.org/10.1016/j.chinastron.2005.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Huang, Xiaowei, Chuansheng Wu, and Jun Zhou. "Numerical differentiation by integration." Mathematics of Computation 83, no. 286 (2013): 789–807. http://dx.doi.org/10.1090/s0025-5718-2013-02722-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Monahan, John F., Philip J. Davis, and Philip Rabinowitz. "Methods of Numerical Integration." Journal of the American Statistical Association 80, no. 392 (1985): 1081. http://dx.doi.org/10.2307/2288607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

S., F., Philip J. Davis, and Philip Rabinowitz. "Methods of Numerical Integration." Mathematics of Computation 46, no. 174 (1986): 760. http://dx.doi.org/10.2307/2008014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kalaida, A. F. "Matrix numerical integration algorithm." Journal of Mathematical Sciences 69, no. 6 (1994): 1369–78. http://dx.doi.org/10.1007/bf01250578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hashish, H., S. H. Behiry, and N. A. El-Shamy. "Numerical integration using wavelets." Applied Mathematics and Computation 211, no. 2 (2009): 480–87. http://dx.doi.org/10.1016/j.amc.2009.01.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fukushima, Toshio, and Toshimichi Shirai. "Numerical Convolution Method in Time Domain and Its Application to Nonrigid Earth Nutation Theory." International Astronomical Union Colloquium 178 (2000): 595–605. http://dx.doi.org/10.1017/s0252921100061765.

Full text
Abstract:
AbstractWe developed a numerical method to incorporate nonrigid effects into a nutation theory of the rigid Earth. Here we assume that the nonrigid effects are based on a linear response theory and its transfer function is expressed as a rational function of frequency. The method replaces the convolution of the transfer function in the frequency domain by the corresponding integro-differential operations in the time domain numerically; namely multiplying the polynomial in the frequency domain by the numerical differentiations in the time domain and multiplying the fractions in the frequency do
APA, Harvard, Vancouver, ISO, and other styles
30

Kim, Kyung Yong, and Uk Hyun Cho. "Approximating Bifactor IRT True-Score Equating With a Projective Item Response Model." Applied Psychological Measurement 44, no. 3 (2019): 215–18. http://dx.doi.org/10.1177/0146621619885903.

Full text
Abstract:
Item response theory (IRT) true-score equating for the bifactor model is often conducted by first numerically integrating out specific factors from the item response function and then applying the unidimensional IRT true-score equating method to the marginalized bifactor model. However, an alternative procedure for obtaining the marginalized bifactor model is through projecting the nuisance dimensions of the bifactor model onto the dominant dimension. Projection, which can be viewed as an approximation to numerical integration, has an advantage over numerical integration in providing item para
APA, Harvard, Vancouver, ISO, and other styles
31

Abdulle, Assyr. "The role of numerical integration in numerical homogenization." ESAIM: Proceedings and Surveys 50 (March 2015): 1–20. http://dx.doi.org/10.1051/proc/201550001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Murphy, Robin. "103.45 Improving elementary numerical integration using numerical differentiation." Mathematical Gazette 103, no. 558 (2019): 548–56. http://dx.doi.org/10.1017/mag.2019.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Holloway, Damien Scott. "Numerical stabilisation of motion integration." ANZIAM Journal 49 (July 16, 2007): 249. http://dx.doi.org/10.21914/anziamj.v48i0.51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bakirov, N. K., and I. R. Gallyamov. "Comparison of numerical integration formulas." Russian Mathematics 54, no. 12 (2010): 1–16. http://dx.doi.org/10.3103/s1066369x10120017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Malmquist, Jens, and Robert Strichartz. "Numerical integration for fractal measures." Journal of Fractal Geometry 5, no. 2 (2018): 165–226. http://dx.doi.org/10.4171/jfg/60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bartoš, Erik. "Numerical multidimensional integration with PyMikor." Computer Physics Communications 270 (January 2022): 108149. http://dx.doi.org/10.1016/j.cpc.2021.108149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Assouline, F., and P. Lailly. "Numerical Integration for Kirchhoff Migration." Oil & Gas Science and Technology 58, no. 3 (2003): 385–412. http://dx.doi.org/10.2516/ogst:2003024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rees, W. G. "Numerical integration of orbital motion." European Journal of Physics 6, no. 4 (1985): 302–6. http://dx.doi.org/10.1088/0143-0807/6/4/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ginestar, D., G. Verdú, and J. March-Leuba. "Thermohydraulics Oscillations and Numerical Integration." Nuclear Science and Engineering 140, no. 2 (2002): 172–80. http://dx.doi.org/10.13182/nse02-a2253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Balkir, S., M. Yanilmaz, and M. Plonus. "Numerical integration using Bezier splines." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 13, no. 6 (1994): 737–45. http://dx.doi.org/10.1109/43.285248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Treutler, Oliver, and Reinhart Ahlrichs. "Efficient molecular numerical integration schemes." Journal of Chemical Physics 102, no. 1 (1995): 346–54. http://dx.doi.org/10.1063/1.469408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Soper, Davison E. "QCD Calculations by Numerical Integration." Physical Review Letters 81, no. 13 (1998): 2638–41. http://dx.doi.org/10.1103/physrevlett.81.2638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

de Doncker, Elise, Ajay Gupta, and Rodger R. Zanny. "Large-scale parallel numerical integration." Journal of Computational and Applied Mathematics 112, no. 1-2 (1999): 29–44. http://dx.doi.org/10.1016/s0377-0427(99)00210-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Smith, Harry V. "Numerical integration — a different approach." Mathematical Gazette 90, no. 517 (2006): 21–24. http://dx.doi.org/10.1017/s0025557200178994.

Full text
Abstract:
In common with, I suspect, many people the author does not have access to the NAG library and so, when I was asked recently to calculate the value of the integralcorrect to 10 decimal places my first reaction was to try several different calculators as well as several mathematical software packages. On doing so it was disappointing to find they either gave widely differing values such as 7.9065200767, 4.1317217452 or 0.9174196842 or an error message indicating that the method had not converged.
APA, Harvard, Vancouver, ISO, and other styles
45

de Doncker, Elise. "Methods for enhancing numerical integration." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 502, no. 2-3 (2003): 358–63. http://dx.doi.org/10.1016/s0168-9002(03)00443-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Soper, Davison E. "QCD calculations by numerical integration." Nuclear Physics B - Proceedings Supplements 79, no. 1-3 (1999): 444–46. http://dx.doi.org/10.1016/s0920-5632(99)00748-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Caligaris, Marta, Georgina Rodríguez, and Lorena Laugero. "Designing Tools for Numerical Integration." Procedia - Social and Behavioral Sciences 176 (February 2015): 270–75. http://dx.doi.org/10.1016/j.sbspro.2015.01.471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rabinowitz, Philip. "Extrapolation methods in numerical integration." Numerical Algorithms 3, no. 1 (1992): 17–28. http://dx.doi.org/10.1007/bf02141912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Petras, Knut. "Principles of verified numerical integration." Journal of Computational and Applied Mathematics 199, no. 2 (2007): 317–28. http://dx.doi.org/10.1016/j.cam.2005.07.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

McLachlan, Robert I. "Perspectives on geometric numerical integration." Journal of the Royal Society of New Zealand 49, no. 2 (2019): 114–25. http://dx.doi.org/10.1080/03036758.2018.1564676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!