Academic literature on the topic 'Numerical simulation of plate heat exchangers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical simulation of plate heat exchangers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numerical simulation of plate heat exchangers"
Ji, Chang Fa, Xiao Bing Liu, and Rui Liu. "Numerical Simulation of Heat Transfer Characteristics of Dimpled Plate." Applied Mechanics and Materials 170-173 (May 2012): 2686–92. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.2686.
Full textTian, Jin Jin, Zhe Zhang, and Yong Gang Guo. "Thermal Simulation of Plate-Fin Heat Exchangers." Applied Mechanics and Materials 291-294 (February 2013): 1623–26. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.1623.
Full textZhang, Zhe, Jin Jin Tian, and Yong Gang Guo. "CFD Simulation on Flow Distribution in Plate-Fin Heat Exchangers." Advanced Materials Research 655-657 (January 2013): 445–48. http://dx.doi.org/10.4028/www.scientific.net/amr.655-657.445.
Full textPiepiórka-Stepuk, Joanna, and Marek Jakubowski. "NUMERICAL STUDIES OF FLUID FLOW IN FLAT, NARROW-GAP CHANNELS SIMULATING PLATE HEAT EXCHANGER." Chemical and Process Engineering 34, no. 4 (December 1, 2013): 507–14. http://dx.doi.org/10.2478/cpe-2013-0041.
Full textAllymehr, Ehsan, Geir Skaugen, Torsten Will, Ángel Álvarez Pardiñas, Trygve Magne Eikevik, Armin Hafner, and Lena Schnabel. "Numerical Study of Hydrocarbon Charge Reduction Methods in HVAC Heat Exchangers." Energies 14, no. 15 (July 24, 2021): 4480. http://dx.doi.org/10.3390/en14154480.
Full textTian, Shu-Ling, Ying-Ying Shen, Yao Li, Hai-Bo Wang, Sheryar Muhammad, and Hai-Qing Si. "Numerical simulation of flow distribution in the header of plate-fin heat exchanger." International Journal of Modern Physics B 34, no. 14n16 (April 20, 2020): 2040111. http://dx.doi.org/10.1142/s0217979220401116.
Full textWang, Zhenyu, Jie Wang, Ma Yunhai, and Lining Wang. "Structural optimization design and heat transfer characteristics of multi-degree-of-freedom spiral plate type agricultural machinery equipment heat exchanger." Thermal Science 23, no. 5 Part A (2019): 2525–33. http://dx.doi.org/10.2298/tsci181115140w.
Full textJain, Sanjeev, Aniruddha Joshi, and P. K. Bansal. "A New Approach to Numerical Simulation of Small Sized Plate Heat Exchangers With Chevron Plates." Journal of Heat Transfer 129, no. 3 (August 4, 2006): 291–97. http://dx.doi.org/10.1115/1.2430722.
Full textWEN, Jue. "Numerical Simulation of New Combined Plate Heat Exchangers and Distribution Region." Journal of Mechanical Engineering 52, no. 2 (2016): 150. http://dx.doi.org/10.3901/jme.2016.02.150.
Full textZhang, Ji-Min, Shi-Ting Ruan, Jian-Guang Cao, and Tao Xu. "Flow and heat transfer performance of plate phase change energy storage heat exchanger." Thermal Science 23, no. 3 Part B (2019): 1989–2000. http://dx.doi.org/10.2298/tsci170821072z.
Full textDissertations / Theses on the topic "Numerical simulation of plate heat exchangers"
Al-Azzawi, Huda Jasim Mohammed [Verfasser]. "Numerical Simulation of Heat Transfer and Fluid Flow in Additively Manufactured Plate-Fin Heat Exchangers with Wavy Fins / Huda Jasim Mohammed Al-Azzawi." Hannover : Gottfried Wilhelm Leibniz Universität, 2021. http://d-nb.info/123822203X/34.
Full textSarraf, Kifah. "Echangeurs à plaques corruguées en mode monophasique et en condensation : études expérimentale, numérique et analytique, et analyse des écoulements et des transferts thermiques." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4760/document.
Full textThis research work examines at the global and local scales the thermo-hydraulic characteristics of plate heat exchangers with corrugated chevron plates, for single-phase and condensation flows. The study is divided into two parts:The first part concerns the analysis of flow structures of single-phase flows using numerical simulations, which are validated using the results of the experimental campaign. The analysis of the simulations results, from a flow characteristic observable that has been carefully chosen, has allowed quantifying the main flow categories as a function of the heat exchanger geometric parameters and the flow characteristics. This new information on the flow structures has led to the proposal of an original generalized model of the friction law inside this type of heat exchanger with complex geometry.The second part concerns the study of condensation with and without vapor superheating at the inlet of the heat exchanger. Thus, a specific experimental setup allowing precise control of the boundary conditions has been developed. Otherwise a specific metrology, based on infrared thermography, has been set to the point in order to determine the variation of certain local quantities along the condenser (vapor mass fraction, heat transfer coefficient...). Thus, we observe a high and wide variability of the heat transfer coefficients and the heat flux density along the condenser, and the superheating of the vapor tends to increase the heat transfers. These additional measures question certain assumptions of the literature regarding the development of heat transfer correlations in plate heat condensers
Marques, Alfredo Manuel Nobre. "Modelação e avaliação do desempenho de permutadores de calor." Master's thesis, Universidade de Évora, 2009. http://hdl.handle.net/10174/20930.
Full textTITO, JOSÉ MIGUEL MAYTA. "SIMULATION OF BRAZED PLATE HEAT EXCHANGERS FOR CASCADE VAPOR COMPRESSION SISTEM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18986@1.
Full textDesenvolveu-se um modelo de simulação para trocadores de calor de placas soldadas (BPHE – Brazed Plate Heat Exchanger) operando em regime permanente em um sistema de refrigeração em cascata por compressão de vapor, ou seja, condensador, trocador de calor intermediário (ou condensador em cascata) e evaporador. O modelo adota o método de análise local, onde o trocador de calor é dividido em uma série de pequenos volumes de controle, para os quais as equações de troca de calor e de conservação de massa e de energia são aplicadas. Para o calculo dos coeficientes locais de transferência de calor e fator de atrito foram utilizadas correlações disponíveis na literatura, considerando as regiões de escoamento monofásico ou bifásico em cada um dos trocadores, Estas correlações cobrem valores de fluxo de calor entre 2,5 kW/m2 e 185 kW/m2, temperaturas de saturação entre 5 graus Celsius e 30 graus Celsius, e aplicam-se a geometrias com ângulos de corrugação entre 20 e 60 graus. Um programa computacional foi desenvolvido em FORTRAN para o cálculo do desempenho térmico dos trocadores de calor e das correlações de asida dos dois fluidos. Na simulação foram consideradas conhecidas as condições de entrada dos fluidos e a geometria do trocador. As propriedades termo-físicas dos fluidos foram calculadas utilizandose a mais recente versão do padrão NIST de referência de propriedades termodinâmicas e de transporte (REFPROP 9.0), permitindo a simulação dos trocadores de calor operando com uma vasta gama de refrigerantes. Os resultados da simulação foram comparados com os dados experimentais (condensador e evaporador) levantados por outros autores para os refrigerantes R22 e R290, tendose obtido boa concordância. Uma analise de sensibilidade para os trocadores de calor, utilizando os novos refrigerantes R1234yf e R1234ze, foi também realizada.
A simulation model of brazed plate heat exchangers (BPHE) operating in steady-state in a cascade vapor compression refrigeration system has been developed. For this system the heat exchangers were the condenser, intermediate heat exchanger or cascade-condenser and evaporator. The model adopts a local analysis method, where the heat exchanger is divided into a series of small control volumes, to which the heat transfer rate equations and the fundamental of conservation of mass and energy equation. Local heat exchanger coefficients and friction factor are calculated using correlations available in literature, considering regions of single-phase or twophase flow for each one of the heat exchangers. These correlations have heat flux values ranging from 2,5kW/m2 to 185kW/m2, saturation temperatures from 5 degrees Celsius to 35 degrees Celsius and were applied to geometries with corrugation angle ranging from 20 degrees to 60 degrees. In order to calculate the thermal performance of the heat exchangers and the output conditions of the two fluids a computational program was developed in FORTRAN. This simulation considers known inlet conditions of the fluids and the geometry of the heat exchanger. The thermophysical properties of the refrigerants fluids were calculated using the version 7 of REFPROP, a package by NIST (National Institute of Standards and Technology), that allow for the simulation of heat exchangers with a wide operating range of refrigerants. The simulation results were compared with experimental data (condenser and evaporator) for R22 and R290 refrigerants, obtaining a good agreement. A sensibility analysis for heat exchangers, using the new R1234yf and R1234ze has also been carried out.
Galati, Chiara. "Experimental and numerical study of flow distribution in compact plate heat exchangers." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19928/1/GALATI_Chiara.pdf.
Full textProtheroe, Michael. "Simulation of variable fluid-properties plate heat exchanger for educational purposes thesis submitted in partial fulfilment of the Masters degree in Engineering, Auckland University of Technology, October 2003." Full thesis. Abstract, 2003. http://puka2.aut.ac.nz/ait/theses/ProtheroeM.pdf.
Full textRastan, Hamidreza. "Investigation of the heat transfer of enhanced additively manufactured minichannel heat exchangers." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264278.
Full textPaniagua, Sánchez Leslye. "Three-dimensional numerical simulation of fluid flow and heat transfer in fin-and-tube heat exchangers at different flow regimes." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277561.
Full textEsta tesis tiene como objetivo unificar dos ramas de trabajo dentro del Centro Tecnológico de Transferencia de Calor (CTTC). Por un lado, se ha realizado un amplio trabajo experimental durante los últimos años. Este trabajo experimental se ha complementado con modelos numéricos para el estudio de intercambiadores de calor de tipo aleta-tubo. Tales modelos numéricos pueden considerarse una herramienta numérica de bajo coste empleada con propósitos de diseño principalmente. Por otro lado, los científicos que trabajan en el centro han desarrollado con éxito un código de Dinámica de Fluidos Computacionales (TermoFluids). Este código de alto rendimiento ha sido ampliamente utilizado principalmente para predecir flujos complejos de gran interés académico. La idea de unir a estas dos ramas, proviene de la necesidad de una plataforma numérica fiable con datos locales propios del flujo y de la transferencia de calor en diversas aplicaciones de intercambiadores de calor. Ser capaz de generar coeficientes locales de transferencia de calor para abastecer con datos propios los modelos existentes de bajo coste, permitirá la correcta predicción del rendimiento de dichos dispositivos. Para lograr estos objetivos, se han hecho varias contribuciones al código TermoFluids que está en continua evolución. Algunas de las mayores cuestiones que se plantean implican la generación de mallas adecuadas y asequibles, la implementación y validación de la condición de contorno periódica tridimensional y el acoplamiento de los diferentes dominios para el estudio de casos con diferentes comportamientos físicos, como desarrollo transitorio e inercia térmica. La turbulencia está presente en la mayoría de los flujos de ingeniería, y los intercambiadores de calor de evaporadores para refrigeración no son una excepción. La presencia de muchos tubos (que actúan como obstáculos para el fluido) colocados en diferentes configuraciones y el hecho de que el flujo también está confinado por aletas, crean características de flujo tridimensionales complejas que tienen generalmente régimen turbulento o en transición. Por lo tanto, se analiza la convección forzada turbulenta en una matriz de pines delimitados por paredes. simulando las grandes escalas de turbulencia y modelando las pequeñas (LES) con el fin de evaluar el desempeño de los tres modelos seleccionados, a saber WALE, QR y VMS. Los números de Reynolds establecidos para el estudio son 3000, 10000 y 30000. Algunos de los principales resultados que se incluyen son el coeficiente de presión alrededor los cilindros, el número de Nusselt promedio en las paredes y la vorticidad del flujo. La parte final de la tesis se dedica a estudiar el flujo tridimensional y los parámetros de transferencia de calor encontrados en un intercambiador de calor de tipo aleta-tubo utilizado para la refrigeración doméstica en equipos de 'no-escarcha'. Las implementaciones del código y el postproceso numéricos se validan en un caso muy similar para un intercambiador de calor con dos filas de tubos a bajos Reynolds para el cual se dispone de datos experimentales. El siguiente análisis que se presenta es una configuración típica para evaporadores 'no-escarcha' con paso de aleta doble (para el que se tiene muy poca información numérica en la literatura). Se considera el acoplamiento conjugado de la transferencia de calor convectiva entre fluido y sólido y conductiva dentro de la aleta. La influencia de algunos parámetros geométricos y de régimen de flujo se analizan con propósitos de diseño. En conclusión, las contribuciones generales de esta tesis junto con el código computacional ya existente, ha demostrado ser capaz de realizar con éxito simulaciones tridimensionales para predecir las características del flujo y los mecanismos responsables de la transferencia de calor en intercambiadores de calor de tipo aleta-tubo
Panse, Satchit Pradip. "A Numerical Investigation of Thermal-Hydraulic Characteristics in Three Dimensional Plate and Wavy Fin-Tube Heat Exchangers for Laminar and Transitional Flow Regimes." Thesis, Montana State University, 2005. http://etd.lib.montana.edu/etd/2005/panse/PanseS0805.pdf.
Full textZHANG, JIEHAI. "NUMERICAL SIMULATIONS OF STEADY LOW-REYNOLDS-NUMBER FLOWS AND ENHANCED HEAT TRANSFER IN WAVY PLATE-FIN PASSAGES." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1109015881.
Full textBooks on the topic "Numerical simulation of plate heat exchangers"
Numerical Simulation of Heat Exchangers. CRC Press, 2017. http://dx.doi.org/10.1201/9781315372587.
Full textNumerical Simulation of Heat Exchangers: Advances in Numerical Heat Transfer. Taylor & Francis Group, 2017.
Find full textSparrow, E. M., J. P. Abraham, W. J. Minkowycz, and J. M. Gorman. Numerical Simulation of Heat Exchangers: Advances in Numerical Heat Transfer Volume V. Taylor & Francis Group, 2017.
Find full textSparrow, E. M., J. P. Abraham, W. J. Minkowycz, and J. M. Gorman. Numerical Simulation of Heat Exchangers: Advances in Numerical Heat Transfer Volume V. Taylor & Francis Group, 2017.
Find full textSparrow, E. M., J. P. Abraham, W. J. Minkowycz, and J. M. Gorman. Numerical Simulation of Heat Exchangers: Advances in Numerical Heat Transfer Volume V. Taylor & Francis Group, 2017.
Find full textSparrow, E. M., J. P. Abraham, W. J. Minkowycz, and J. M. Gorman. Numerical Simulation of Heat Exchangers: Advances in Numerical Heat Transfer Volume V. Taylor & Francis Group, 2017.
Find full textLi, Zhixiong, Ahmad Shafee, Iskander Tlili, and M. Jafaryar. Nanofluid in Heat Exchangers for Mechanical Systems: Numerical Simulation. Elsevier, 2020.
Find full textBae, Young Lib. Performance of rotary regenerative heat exchanger--a numerical simulation. 1986.
Find full textC, Tew Roy, Dudenhoefer James E, and United States. National Aeronautics and Space Administration., eds. Two-dimensional numerical simulation of a Stirling engine heat exchanger. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textC, Tew Roy, Dudenhoefer James E, and United States. National Aeronautics and Space Administration., eds. Two-dimensional numerical simulation of a Stirling engine heat exchanger. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textBook chapters on the topic "Numerical simulation of plate heat exchangers"
Song, Jiafang, Shuhui Liu, and Xiangquan Meng. "Numerical Simulation and Optimization of Air–Air Total Heat Exchanger with Plate-Fin." In Environmental Science and Engineering, 287–95. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9524-6_31.
Full textShang, Xiaobiao, Junruo Chen, Weifeng Zhang, Jinyan Shi, Guo Chen, and Jinhui Peng. "Numerical Simulation of Microwave Absorption of Regenerative Heat Exchangers Subjected to Microwave Heating." In 5th International Symposium on High-Temperature Metallurgical Processing, 605–11. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118887998.ch75.
Full textKhavin, Gennadii. "Simulation and Design of Welded Plate Heat Exchangers with Channels of Different Corrugation Height." In Lecture Notes in Mechanical Engineering, 453–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93587-4_47.
Full textSaha, Sujoy Kumar, Hrishiraj Ranjan, Madhu Sruthi Emani, and Anand Kumar Bharti. "Wavy Fin, 3D Corrugated Fin, Perforated Fin, Pin Fin, Wire Mesh, Metal Foam Fin, Packings, Numerical Simulation." In Heat Transfer Enhancement in Plate and Fin Extended Surfaces, 89–135. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20736-6_5.
Full textKumar, Anuj, Rohit Kothari, Pushpanjay K. Singh, M. P. Paulraj, Santosh K. Sahu, and Shailesh I. Kundalwal. "Numerical Simulation of PCM-Based Heat Sink with Plate Fins for Thermal Management of Electronic Components." In Lecture Notes in Mechanical Engineering, 207–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4165-4_20.
Full textTerfai, Abdelkrim, Younes Chiba, Mounir Zirari, and Mohamed Najib Bouaziz. "Numerical Simulation of a Flat-Plate Solar Collector Operating Under Open Cycle Mode of Heat Extraction." In Advances in Green Energies and Materials Technology, 153–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0378-5_21.
Full textRoxana, Grigore, Popa Sorin, Hazi Aneta, and Hazi Gheorghe. "Study Regarding Numerical Simulation of Counter Flow Plate Heat Exchanger." In Numerical Analysis - Theory and Application. InTech, 2011. http://dx.doi.org/10.5772/24113.
Full textSyaiful and M. Kurnia Lutfi. "Numerical Investigation of Heat Transfer and Fluid Flow Characteristics in a Rectangular Channel with Presence of Perforated Concave Rectangular Winglet Vortex Generators." In Heat Transfer - Design, Experimentation and Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96117.
Full textMurshed, S. M. Sohel, and Manuel L. Matos Lopes. "Introductory Chapter: An Overview of Design, Experiment and Numerical Simulation of Heat Exchangers." In Heat Exchangers - Design, Experiment and Simulation. InTech, 2017. http://dx.doi.org/10.5772/intechopen.68472.
Full textKauschke, M., and H. Quack. "Numerical Simulation of Countercurrent Heat Exchangers in Cryogenic Systems." In Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference, 465–68. Elsevier, 1997. http://dx.doi.org/10.1016/b978-008042688-4/50108-3.
Full textConference papers on the topic "Numerical simulation of plate heat exchangers"
Ali, Muhammad Ansab, Tariq S. Khan, and Ebrahim Al Hajri. "Numerical Simulation of Manifold Microchannel Heat Exchanger." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66960.
Full textDietrich, Alexander, Mario Nowitzki, Ron van de Sand, and Joerg Reiff-Stephan. "Numerical Simulation Of Condensing Ammonia In Plate Heat Exchangers Using CFD." In 34th International ECMS Conference on Modelling and Simulation. ECMS, 2020. http://dx.doi.org/10.7148/2020-0041.
Full textTamakuwala, Harsh, Ryan Von Ness, and Debjyoti Banerjee. "Numerical Modeling of Chevron Plate Heat Exchangers for Thermal Management Applications." In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7312.
Full textLi, Wei, and Hongxia Li. "Numerical Analysis of Composite Fouling in Corrugated Plate Heat Exchanger." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17075.
Full textZhang, Li-Zhi. "A Large Eddy Simulation (LES) of Plate-Fin and Tube Heat Exchangers." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22030.
Full textLiu, Baochang, Caifu Qian, Jiandong Zou, and Yiming He. "Research on Numerical Simulation Technology of Spiral Plate Heat Exchanger." In 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS). IEEE, 2019. http://dx.doi.org/10.1109/icicas48597.2019.00039.
Full textLee, Myungsung, Jae Hyuk Jung, and Nahmkeon Hur. "A Numerical Analysis for the Flow and Heat Transfer in a Large Plate Heat Exchanger by Using a Porous Media Approach." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-03036.
Full textZhang, Chao, Farzad A. Shirazi, Bo Yan, Terrence W. Simon, Perry Y. Li, and James Van de Ven. "Design of an Interrupted-Plate Heat Exchanger Used in a Liquid-Piston Compression Chamber for Compressed Air Energy Storage." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17484.
Full textLuo, Xing, Guo-Yan Zhou, Long-Wei Cong, Marco Fuchs, and Stephan Kabelac. "Numerical Simulation of Heat Transfer and Fluid Flow in 3D-Printed High-Temperature Plate-Fin Heat Exchangers with OpenFoam." In Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019). Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/ihmtc-2019.960.
Full textEl Boujaddaini, Mohamed Najib, Philippe Haberschill, Abdelaziz Mimet, and Andre Lallemand. "MODELLING AND NUMERICAL SIMULATION OF STABILIZED ICE SLURRY IN PLANE PLATE HEAT EXCHANGER: THE THERMAL BEHAVIOUR." In Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2008. http://dx.doi.org/10.1615/ichmt.2008.cht.760.
Full text