To see the other types of publications on this topic, follow the link: Numerické metody.

Journal articles on the topic 'Numerické metody'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Numerické metody.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gonzáles-Santos, German. "Métodos numéricos simplécticos de un paso." Journal de Ciencia e Ingeniería 11, no. 1 (August 31, 2019): 7–24. http://dx.doi.org/10.46571/jci.2019.1.2.

Full text
Abstract:
Los métodos numéricos geométrico son empleados para aproximar la solución de sistemas Hamiltonianos y conservar propiedades importantes de estos sistemas; como son la energía, las áreas y las simetrías, entre otras. En este artículo se presentan algunos métodos simplécticos de un paso (Runge-Kutta). Los métodos obtenidos han sido empleados en la solución de varias problemas de mecánica. Se incluyen, en este trabajo, algunos resultados del estudio numérico de vibraciones en una cuerda elástica vertical obtenidos por medio de métodos simplécticos.
APA, Harvard, Vancouver, ISO, and other styles
2

NOOR, AGUNG ALVIAN, ARRIVAL RINCE PUTRI, and MAHDHIVAN SYAFWAN. "SOLUSI ANALITIK DAN NUMERIK SUATU PERSAMAAN GELOMBANG SATU DIMENSI." Jurnal Matematika UNAND 8, no. 4 (December 13, 2019): 1. http://dx.doi.org/10.25077/jmu.8.4.1-8.2019.

Full text
Abstract:
Persamaan gelombang merupakan salah satu persamaan diferensial yang merepresentasikan fenomena fisis yang terjadi dalam kehidupan sehari-hari. Pada penelitian ini dibahas persamaan gelombang homogen satu dimensi. Solusi analitik dari persamaan gelombang tersebut ditentukan dengan metoda karakteristik. Solusi analitik dikonfirmasi dengan solusi numerik yang menggunakan metode beda hingga beda pusat dengan skema eksplisit. Hasil yang diperoleh memperlihatkan bahwa solusi analitik mempunyai pola yang sama dengan solusi numerik.Kata Kunci: Persamaan Gelombang, Solusi Analitik, Metode Karakteristik, Solusi Numerik, Metode Beda Hingga
APA, Harvard, Vancouver, ISO, and other styles
3

Side, Syafruddin, Maya Sari Wahyuni, and Muh Rifki. "Solusi Numerik Model SIR pada Penyebaran Penyakit Hepatitis B dengan Metode Perturbasi Homotopi di Provinsi Sulawesi Selatan." Journal of Mathematics, Computations, and Statistics 3, no. 2 (October 31, 2020): 79. http://dx.doi.org/10.35580/jmathcos.v3i2.20122.

Full text
Abstract:
Penelitian ini membahas mengenai solusi secara numerik dari model SIR pada penyebaran penyakit Hepatitis B dengan Metode Perturbasi Homotopi. Data yang digunakan adalah data sekunder dari penelitian Rosdiana (2015) yang berupa model SIR dan jumlah penderita Hepatitis B di Provinsi Sulawesi Selatan tahun 2015 dari Dinas Kesehatan Provinsi Sulawesi Selatan. Pembahasan dimulai dari penentuan solusi umum dengan Metode Perturbasi Homotopi, penentuan parameter, simulasi dan analisis hasil. Setelah dilakukan analisis dari simulasi numerik terlihat bahwa Metode Perturbasi Homotopi dapat digunakan untuk melihat kecenderungan perlakuan penyakit Hepatitis B di Provinsi Sulawesi Selatan dan menjadi bahan pertimbangan untuk tindakan pencegahan penyakit Hepatitis B. Dalam penelitian ini diperoleh grafik pergerakan dari model SIR dengan data riil.Kata kunci : Solusi Numerik, Model SIR, Hepatitis B, Metode Perturbasi Homotopi, PemodelanThis research aims to find out the numerical solustion from a SIR model on the spread of Hepatitis B by Homotopy Perturbation Method. This research used a secundary data from Rosdiana’s research (2015) focused on SIR model and number of Hepatitis B in South Sulawesi 2015 from Health Department of South Sulawesi. The discussion started by determining general solution with Homotopy Perturbation Method, parameter decision, simulation and result analyzis. After conducting an analyzis from numeric simulation it shows that the Homotopy Perturbation Method can be used to analyze the preference of Hepatitis B treatment in South Sulawesi also can be a consideration for preventing action of infectious disease of Hepatitis B. This research gets movement grafic and result analyzis from SIR model by riil data.Keywords : Numeric Solution, SIR Model, Hepatitis B, Homotopy Perturbation Method, Modeling
APA, Harvard, Vancouver, ISO, and other styles
4

Tanaskovski, Bojan, Jovica Nešić, Ljiljana Jelisavac, and Jovica Bogdanov. "A numerical method for solid propellant grain design." Scientific Technical Review 68, no. 2 (2018): 48–54. http://dx.doi.org/10.5937/str1802048t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sadono, Kresno Wikan. "Penyelesaian Numerik Persamaan Advection Dengan Radial Point Interpolation Method dan Integrasi Waktu Dengan Discontinuous Galerkin Method." Teknik 37, no. 2 (December 31, 2016): 64. http://dx.doi.org/10.14710/teknik.v37i2.11640.

Full text
Abstract:
Persamaan differensial banyak digunakan untuk menggambarkan berbagai fenomena dalam bidang sains dan rekayasa. Berbagai masalah komplek dalam kehidupan sehari-hari dapat dimodelkan dengan persamaan differensial dan diselesaikan dengan metode numerik. Salah satu metode numerik, yaitu metode meshfree atau meshless berkembang akhir-akhir ini, tanpa proses pembuatan elemen pada domain. Penelitian ini menggabungkan metode meshless yaitu radial basis point interpolation method (RPIM) dengan integrasi waktu discontinuous Galerkin method (DGM), metode ini disebut RPIM-DGM. Metode RPIM-DGM diaplikasikan pada advection equation pada satu dimensi. RPIM menggunakan basis function multiquadratic function (MQ) dan integrasi waktu diturunkan untuk linear-DGM maupun quadratic-DGM. Hasil simulasi menunjukkan, metode ini mendekati hasil analitis dengan baik. Hasil simulasi numerik dengan RPIM DGM menunjukkan semakin banyak node dan semakin kecil time increment menunjukkan hasil numerik semakin akurat. Hasil lain menunjukkan, integrasi numerik dengan quadratic-DGM untuk suatu time increment dan jumlah node tertentu semakin meningkatkan akurasi dibandingkan dengan linear-DGM. [Title: Numerical solution of advection equation with radial basis interpolation method and discontinuous Galerkin method for time integration] Differential equation is widely used to describe a variety of phenomena in science and engineering. A variety of complex issues in everyday life can be modeled with differential equations and solved by numerical method. One of the numerical methods, the method meshfree or meshless developing lately, without making use of the elements in the domain. The research combines methods meshless, i.e. radial basis point interpolation method with discontinuous Galerkin method as time integration method. This method is called RPIM-DGM. The RPIM-DGM applied to one dimension advection equation. The RPIM using basis function multiquadratic function and time integration is derived for linear-DGM and quadratic-DGM. The simulation result shows that this numerical method, close to the results exact well. The results of numerical simulations with RPIM-DGM show, the more nodes and the smaller the time increment, the more accurate the numerical results. Other results showed, integration with quadratic-DGM for a time increment, and a certain number of nodes, further improving accuracy, compared with the linear-DGM.
APA, Harvard, Vancouver, ISO, and other styles
6

Utomo, Rukmono Budi. "METODE NUMERIK STEPEST DESCENT TERINDUKSI NEWTON DALAM PEMECAHAN MASALAH OPTIMISASI TANPA KENDALA." Mosharafa: Jurnal Pendidikan Matematika 5, no. 3 (August 23, 2018): 187–94. http://dx.doi.org/10.31980/mosharafa.v5i3.274.

Full text
Abstract:
AbstrakPenelitian teoritis ini mengkaji mengenai metode numerik Stepest Descent yang terinduksi Newton. Penelitian ini dilakukan dengan cara memahami terlebih dahulu mengenai metode numerik Stepest Descent dan Newton, kemudian mengkonstruksi metode baru yang disebut dengan Stepest Descent terinduksi Newton. Pada makalah ini turut disertakan pula contoh perhitungan numerik antara ketiga metode tersebut beserta analisis perhitungannya. AbstractThis research is investigating numerical method of Steepest Descent inducted of Newton. Steps of this research can be described as follows: First, the author has to understand the definition and algorithm of Steepest Descent and Newton methods. After that, the second, author constructing the new method called by Steepest Descent inducted newton. In this paper, author also containing examples of numerical counting among that three methods and analyze them self.
APA, Harvard, Vancouver, ISO, and other styles
7

Matušů, Josef, Gejza Dohnal, and Martin Matušů. "On one method of numerical integration." Applications of Mathematics 36, no. 4 (1991): 241–63. http://dx.doi.org/10.21136/am.1991.104464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Botta, Nicola, and Rolf Jeltsch. "A numerical method for unsteady flows." Applications of Mathematics 40, no. 3 (1995): 175–201. http://dx.doi.org/10.21136/am.1995.134290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jing, Ping, Liang Zhang, Yiping Tang, and Jinfang Wang. "SUBCLASSIFICATION MATCHING METHOD FOR AVERAGE TREATMENT EFFECT AND A NUMERICAL COMPARISON OF RELATED METHODS ." Journal of the Japanese Society of Computational Statistics 24, no. 1 (2011): 67–84. http://dx.doi.org/10.5183/jjscs.1008002_191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ambarita, Himsar. "Kajian Numerik Penguapan Pada Evaporator Desalinasi Air Laut Sistem Vakum Alami." Talenta Conference Series: Energy and Engineering (EE) 1, no. 1 (October 16, 2018): 095–103. http://dx.doi.org/10.32734/ee.v1i1.117.

Full text
Abstract:
Fokus penelitian ini adalah alat desalinasi air laut energi surya dengan sistem vakum alami. Salah satu bagian terpenting yang menentukan performansi alat ini adalah proses penguapan pada kondisi vakum di dalam evaporator. Para peneliti umumnya menggunakan cara analitik dengan persamaan-persamaan empirik untuk menentukan laju penguapan pada evaporator.Padapenelitian ini diusulkan menggunakan metode numerik dengan menggunakan perangkat lunak CFD untuk menjelaskan proses penguapan pada evaporator. Hasil numerik dan analitik akan dibandingkan dengan hasil eksperimen. Peralatan eksperimen sederhana telah dirancang bangun untuk mendapatkan hasil eksperimen dan melakukan validasi. Hasil simulasi menunjukkan metode numerik dengan menggunakan perangkat lunak CFD dapat menggambarkan proses penguapan pada evaporator dengan baik. Perbandingan hasil analitik dan numerik menunjukkan laju penguapan di evaporator dengan metode numerik lebih dekat dengan hasil eksperimen. Metode numerik sebaiknya digunakan untuk melakukan inovasi agar dihasilkan peningkatan performansi desalinasi surya sistem vakum alami. The focus of this research is solar energy seawater desalination with a natural vacuum system. One of the most important parts that determine the performance of this tool is the evaporation process under vacuum inside the evaporator. Researchers generally use analytical methods with empirical equations to determine the evaporation rate of the evaporator. This research proposed by using a numerical method with CFD software to explain the evaporation process on evaporator. Numerical and analytical results will be compared with the experimental results. A simple experimental tool has been designed to get experimental results and validate. The simulation results show that the numerical method using CFD software can properly describe the evaporation process in the evaporator. Comparison of analytic and numerical results shows the evaporation rate in the evaporator with numerical methods closer to the experimental results. Numerical methods must be used to innovate so that the performance of solar desalination results increases by using a natural vacuum system.
APA, Harvard, Vancouver, ISO, and other styles
11

Jeremić, Olivera, Momčilo Milinović, Miloš Marković, and Boško Rašuo. "Analytical and numerical method of velocity fields for the explosively formed projectiles." FME Transactions 45, no. 1 (2017): 38–44. http://dx.doi.org/10.5937/fmet1701038j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ristanto, Sigit, and Choirul Huda. "Pemodelan Transfer Panas dan Massa pada Proses Pengeringan Biji-Bijian Sistem Rak Beserta Solusi Numeriknya." Jurnal Ilmiah Pendidikan Fisika Al-Biruni 5, no. 2 (October 27, 2016): 153. http://dx.doi.org/10.24042/jpifalbiruni.v5i2.115.

Full text
Abstract:
Modeling of heat and mass transfer determine the form of mathematical equations obtained. The aim of this study was to obtain heat and mass transfer equation based on modeling has been prepared and finished using numerical methods. The study starts from determining assumptions, construction of models, make up the mathematical equation of heat and mass transfer, determine the type of numerical methods used, complete the heat and mass transfer equations using numerical methods that have been chosen. Grains as the dried thing modeled as porous bodies. The results shows that the numerical solutions have been successfully made with a series of requirements that must be met to stability.Pemodelan transfer panas dan massa menentukan bentuk persamaan matematis yang diperoleh. Tujuan penelitian ini adalah memperoleh persamaan transfer panas dan massa berdasarkan pemodelan yang telah disusun lalu menyelesaikannya menggunakan metode numerik.Tahapan penelitian dimulai dari menentukan asumsi-asumsi, menyusun model, menyusun persamaan matematis transfer panas dan massa, menentukan jenis metode numerik yang digunakan, menyelesaikan persamaan transfer panas dan massa menggunakan metode numerik yang telah dipilih.Biji-bijian sebagai benda yang dikeringkan dimodelkan sebagai benda porous. hasil penelitian menunjukkan bahwa solusi numerik telah berhasil disusun beserta serangkaian syarat kesetabilan yang harus dipenuhi.
APA, Harvard, Vancouver, ISO, and other styles
13

Gavrilov, Milivoj B. "Numerische Methoden zur Lösung einer speziellen Form einer elliptischen Gleichung — mit numerischen Testrechnungen." Meteorologische Zeitschrift 5, no. 4 (September 18, 1996): 161–65. http://dx.doi.org/10.1127/metz/5/1996/161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Živanović, Saša, and Goran Vasilić. "A new CNC programming method using STEP-NC protocol." FME Transactions 45, no. 1 (2017): 149–58. http://dx.doi.org/10.5937/fmet1701149z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Derakhshan, S., and A. Tavaziani. "Study of Wind Turbine Aerodynamic Performance Using Numerical Methods." Journal of Clean Energy Technologies 3, no. 2 (2015): 83–90. http://dx.doi.org/10.7763/jocet.2015.v3.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Vasilyev, A. V., Yu S. Bakhracheva, Kabore Оusman, and Yu O. Zelenskiy. "Valve Cam Design Using Numerical Step-by-Step Method." Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 10. Innovatcionnaia deiatel’nost’, no. 1 (March 2014): 26–32. http://dx.doi.org/10.15688/jvolsu10.2014.1.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zeghdane, R. "Новый численный метод решения нелинейных стохастических интегральных уравнений." Владикавказский математический журнал, no. 4() (December 22, 2020): 68–86. http://dx.doi.org/10.46698/n8076-2608-1378-r.

Full text
Abstract:
The purpose of this paper is to propose the Chebyshev cardinal functions for solving Volterra stochastic integral equations. The method is based on expanding the required approximate solution as the element of Chebyshev cardinal functions. Though the way, a new operational matrix of integration is derived for the mentioned basis functions. More precisely, the unknown solution is expanded in terms of the Chebyshev cardinal functions including undetermined coefficients. By substituting the mentioned expansion in the original problem, the operational matrix reducing the stochastic integral equation to system of algebraic equations. The convergence and error analysis of the etablished method are investigated in Sobolev space. The method is numerically evaluated by solving test problems caught from the literature by which the computational efficiency of the method is demonstrated. From the computational point of view, the solution obtained by this method is in excellent agreement with those obtained by other works and it is efficient to use for different problems.
APA, Harvard, Vancouver, ISO, and other styles
18

Jain, P., P. B. Chand, and K. Sethi. "EFFICIENT NUMERICAL METHODS OF AITKEN TYPE AND THEIR DYNAMICS." Eurasian Mathematical Journal 9, no. 3 (2018): 58–72. http://dx.doi.org/10.32523/2077-9879-2018-9-3-58-72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Čiegis, Raimondas, Mečislavas Meilūnas, and Artūras Štikonas. "NUMERICAL METHODS FOR A VISCOUS INCOMPRESSIBLE HEAVY LIQUID MOTION EQUATIONS/SUNKIOJO NESPŪDŽIOJO SKYSČIO TEKĖJIMO LYGČIŲ SKAITINIAI SPRENDIMO METODAI." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 3, no. 10 (June 30, 1997): 32–36. http://dx.doi.org/10.3846/13921525.1997.10531681.

Full text
Abstract:
Darbe nagrinėjamas sunkiojo nespūdžiojo skysčio tekėjimo uždavinys, kai dalis paviršiaus yra laisva. Skaitiškai sprendžiant tokius uždavinius svarbiausios dviproblemos. Pirmoji—netiesinio Navjė-Stokso uždavinio diskrečioji aproksimacija srityje su fiksuotu paviršiumi, o antroji problema—judančių paviršių skaitinis aproksimavimas. Darbe suformuluoti trys algoritmai pagrindiniam uždaviniui spręsti. Pirmajame panaudota konstruktyvi Puchnačiovo diferencialinio uždavinio sprendinio egzistencijos įrodymo schema. Šiuo metodu iteracinio proceso metu netiesinis Navjė-Stokso uždavinys sprendžiamas fiksuotoje erdvės srityje ir tikslinamas laisvasis srities paviršius. Tai išskaido uždavinį į du paprastesnius uždavinius, kurių kiekvieno sprendimas yra pakankamai nuodugniai išnagrinėtas literatūroje. Tiriama Puchnačiovo metodo konvergavimo sritis. Antrasis algoritmas gaunamas sprendžiant linearizuotą nestacionarų Navjė-Stokso uždavinį, t.y. nereikalaujame, kad kiekvienoje išorinėje iteracijoje netiesinė diskrečioji Navjė-Stokso sistema būtu tiksliai išspredžiama. Šio algoritmo vienos iteracijos realizacija yra efektyvesnė, lyginant su pirmuoju algoritmu, tačiau iteracijų skaičius didesnis. Abiejų pirmųjų algoritmų konvergavimas gali būti naudojamas diferencialinio uždavinio sprendinio stabilumo tyrimui. Trečiajame algoritme realizuota Niutono metodo modifikacija. Šiame algoritme nėra atskiriamos NavjėStokso ir laisvojo paviršiaus lygtys. Gautoji netiesinių lygčių sistema sprendžiama Gauso-Zeidelio metodu. Svarbus skaičiavimo eksperimento uždavinys—palyginti visų trijų algoritmų konvergavimo sritis.
APA, Harvard, Vancouver, ISO, and other styles
20

Nasution, Mara Doli, Elfrianto Nasution, and Feri Haryati. "PENGEMBANGAN BAHAN AJAR METODE NUMERIK DENGAN PENDEKATAN METAKOGNITIF BERBANTUAN MATLAB." Mosharafa: Jurnal Pendidikan Matematika 6, no. 1 (August 24, 2018): 69–80. http://dx.doi.org/10.31980/mosharafa.v6i1.295.

Full text
Abstract:
Penelitian ini bertujuan untuk mengembangkan materi pembelajaran untuk metode numerik which dirancang dengan pendekatan metakognitif pemrograman dibantu matlab. Model pengembangan bahan pembelajaran menggunakan Penelitian dan Pengembangan (R & D) WHO metode dikembangkan oleh Borg dan Gall dan dikombinasikan dengan model pengembangan pengajaran Dick dan Carey. Populasi untuk uji coba produk adalah mahasiswa UMSU jurusan pendidikan matematika. Instrumen which digunakan adalah kuesioner. Produk ini memiliki tiga langkah uji gruops Termasuk pribadi, gruops kecil dan lapangan. Sebelum uji coba produk, peneliti tidak ahli sidang validasi atas isi dan desain bahan pembelajaran untuk metode numerik dengan menggunakan kuesioner Menurut indikator yang telah ditentukan. Kemudian kuesioner dianalisis untuk melihat persentase dan kriteria validasi bahan Learning. Hasil dari penelitian ini adalah metode numerik yang dirancang diktat digunakan metakognitif pendekatan dibantu pemrograman Matlab. This research aims to develop learning materials for numerical methods which be designed by Metacognitive approach assisted matlab programming . The development model of learning materials using Research and Development (R & D) methods who be developed by Borg and Gall and be combined with teaching development model Dick and Carey. The population for the product trials are UMSU students majoring in mathematics education. The instrument which be used is questionnaire . This products trials have three steps including personal gruops, small gruops and the field. Before products trials , the researcher does the expert validation trial for the content and design of learning materials for numerical methods using questionnaires according to the indicators that have been determined. Then the questionnaire be analysed to see the percentage and the validation criteria of Learning materials. The results of this research is a numerical method diktat be designed used metacognitive approach assisted matlab programming.
APA, Harvard, Vancouver, ISO, and other styles
21

Auinger, Bernhard, Michael Gadringer, Adam Tankielun, Christoph Gagern, and Wolfgang Bösch. "Numerical Analysis of the Decomposition Method Using LTE Reference Antennas." Journal of Advances in Computer Networks 3, no. 3 (2015): 191–96. http://dx.doi.org/10.7763/jacn.2015.v3.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rahbar-Ranji, Ahmad. "Modal analysis of a box-shape girder by numerical method." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 2 (August 20, 2016): 21–25. http://dx.doi.org/10.15276/opu.2.49.2016.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Herdiana, Ratna. "NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS USING IMPLICIT MILSTEIN METHOD." Journal of Fundamental Mathematics and Applications (JFMA) 3, no. 1 (June 10, 2020): 72–83. http://dx.doi.org/10.14710/jfma.v3i1.7416.

Full text
Abstract:
Stiff stochastic differential equations arise in many applications including in the area of biology. In this paper, we present numerical solution of stochastic differential equations representing the Malthus population model and SIS epidemic model, using the improved implicit Milstein method of order one proposed in [6]. The open source programming language SCILAB is used to perform the numerical simulations. Results show that the method is more accurate and stable compared to the implicit Euler method.
APA, Harvard, Vancouver, ISO, and other styles
24

Donghyuk, Kang, Shimamura Taisuke, Fujiwara Marie, Yokota Kazuhiko, and Sato Kotaro. "1035 NUMERICAL SIMULATION OF SYNTHETIC JET BY DISCRETE VORTEX METHOD." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1035–1_—_1035–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1035-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Segarra, Jaime. "MÉTODOS NUMÉRICOS RUNGE-KUTTA Y ADAMS BASHFORTH-MOULTON EN MATHEMATICA." Revista Ingeniería, Matemáticas y Ciencias de la Información 7, no. 14 (July 15, 2020): 13–32. http://dx.doi.org/10.21017/rimci.2020.v7.n14.a81.

Full text
Abstract:
n este estudio, el objetivo principal es realizar el análisis de los métodos numéricos Runge-Kutta y Adams Bashforth-Moulton. Para cumplir con el objetivo se utilizó el sistema de ecuaciones diferenciales del modelo Lotka-Volterra y se usó el software matemático Wolfram Mathematica. En los resultados se realiza la comparación de los métodos RK4, AB4 y AM4 con el comando NDSolve utilizando el modelo Lotka-Volterra. Los resultados obtenidos en los diagramas de fase y la tabla de puntos de la iteración indicaron que el método RK4 tiene mayor precisión que los métodos AB4 y AM4.
APA, Harvard, Vancouver, ISO, and other styles
26

Cviklovič, V., D. Hrubý, M. Olejár, and O. Lukáč. "Comparison of numerical integration methods in strapdown inertial navigation algorithm  ." Research in Agricultural Engineering 57, Special Issue (December 6, 2011): S30—S34. http://dx.doi.org/10.17221/58/2010-rae.

Full text
Abstract:
The numerical mathematical theory provides a few ways of numerical integration with different errors. It is necessary to make use of the most exact method with respect to the computing power for a majority of microprocessors, because errors are integrated within them due to the algorithm. In our contribution, trapezoidal rule and Romberg&rsquo;s method of numerical integration are compared in the velocity calculation algorithm of the strapdown inertial navigation. The sample frequency of acceleration and angular velocity measurement was 816.6599 Hz. Inertial navigation velocity was compared with precise incremental encoder data. Trapezoidal method velocity error in this example was 1.23 &times; 10<sup>&ndash;3</sup> m/s in the fifteenth-second measurement. Romberg&rsquo;s method velocity error was 0.16 &times; 10<sup>&ndash;3 </sup>m/s for the same input data. The numerical mathematical theory provides a few ways of numerical integration with different errors. It is necessary to make use of the most exact method with respect to the computing power for a majority of microprocessors, because errors are integrated within them due to the algorithm. In our contribution, trapezoidal rule and Romberg&rsquo;s method of numerical integration are compared in the velocity calculation algorithm of the strapdown inertial navigation. The sample frequency of acceleration and angular velocity measurement was 816.6599 Hz. Inertial navigation velocity was compared with precise incremental encoder data. Trapezoidal method velocity error in this example was 1.23 &times; 10<sup>&ndash;3</sup> m/s in the fifteenth-second measurement. Romberg&rsquo;s method velocity error was 0.16 &times; 10<sup>&ndash;3 </sup>m/s for the same input data.
APA, Harvard, Vancouver, ISO, and other styles
27

M.A.Mohamed, M. A. Mohamed. "Numerical Solution of Nonlinear Partial Differential Equation by Legendre Multiwavelet Method." International Journal of Scientific Research 3, no. 2 (June 1, 2012): 1–8. http://dx.doi.org/10.15373/22778179/feb2014/188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Aliev, Araz, Khanlar Hamzaev, Nigar Ismayilova, Eldar Jahangirbayov, Farid Jafarov, and Rahman Mammadov. "PARALLEL NUMERICAL METHOD OF AN INVERSE PROBLEM OF DOUBLE-PHASED FILTRATION." Azerbaijan Journal of High Performance Computing 2, no. 1 (June 30, 2019): 75–81. http://dx.doi.org/10.32010/26166127.2019.2.1.75.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Duarte, Julio, and Francisco Reyes. "Soluciones Numéricas para la Ecuación KdV Usando el MétodoWavelet-Petrov-Galerkin." Selecciones Matemáticas 6, no. 2 (December 30, 2019): 148–55. http://dx.doi.org/10.17268/sel.mat.2019.02.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

SEGARRA-ESCANDÓN, JAIME. "ANÁLISIS DE LOS MÉTODOS NUMÉRICOS EN ECUACIONES DIFERENCIALES ORDINARIAS UTILIZANDO MATHEMATICA." Revista Ingeniería, Matemáticas y Ciencias de la Información 7, no. 13 (January 31, 2020): 13–23. http://dx.doi.org/10.21017/rimci.2020.v7.n13.a72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

BRILLA, Igor, and František JANÍČEK. "NUMERICAL DETERMINATION OF VOLTAGE POTENTIAL INSIDE NONHOMOGENEOUS MEDIA USING VARIATIONAL METHODS." Acta Electrotechnica et Informatica 19, no. 1 (March 28, 2019): 25–31. http://dx.doi.org/10.15546/aeei-2019-0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Song, B., and R. S. Amano. "A NEW SIMULATION METHOD FOR SEPARATING AND RECIRCULATING FLOWS(Numerical Simulation)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 731–36. http://dx.doi.org/10.1299/jsmeicjwsf.2005.731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wibowo, Hari Anggit Cahyo. "Rancang Bangun Simulasi Komputer untuk Pembelajaran Fisika pada Topik Selektor Kecepatan dengan Metode Numerik Euler." JIPVA (Jurnal Pendidikan IPA Veteran) 2, no. 2 (October 22, 2018): 141. http://dx.doi.org/10.31331/jipva.v2i2.684.

Full text
Abstract:
Salah satu kesulitan dalam pembelajaran fisika adalah sedikitnya alat peraga atau praktikum yang mampu menggambarkan secara nyata fenomena fisis. Topik tersebut misalnya medan listrik dan medan magnet, khususnya pada topik selektor kecepatan pada spektrometer. Tujuan penelitian ini adalah mengembangkan simulasi komputer untuk pembelajaran Fisika pada topik gerak partikel dalam selektor kecepatan. Penelitian ini menggunakan model pengembangan sikuensial linier. Model pengembangan perangkat ini dipilih karena sangat mudah diaplikasikan, serta dapat dengan mudah dilakukan verifikasi dan testing pada setiap tahapnya. Pengembangan ini menggunakan perangkat lunak Microsoft VBA Excel. Metode numerik yang dipilih adalah metode numerik Euler dengan menyelesaikan secara numerik persamaan differensial orde dua persamaan gerak partikel tersebut. Hasil pengembangan simulasi ini didapatkan tingkat kesalahan setiap titik pada metode numerik dan analitik rata-rata yaitu sebesar 0.52 %. Hasil validasi simulasi tersebut mendapatkan nilai rata-rata 3,38 yang berdasarkan referensi nilai tersebut tergolong layak, sehingga pengembangan simulasi ini dapat disimpulkan memiliki arti fisis gerak partikel dalam selektor kecepatan. Design of Computer Simulation for Physics Learning on Velocity Selector Topic Using Euler Numerical Method One of the difficulties in learning physics is the less of teaching media or practicums that able to describe phenomena on the electric and magnetizm topic clearly. For example the topic is electric and magnetic field, particularly velocity selector in spectrometer. The aim of this research is to develop simulation for physics learning in this topic is expected as a solution. This research use sequential linear model development. The advantage of this model is simple to understand, each phase has specific deliverables and a review process. We use Microsoft VBA Excel to develop simulation. The Euler numerical method is used to solve the second-order differential equations of the particle’s motion. The error rate of each point in the numerical and analytical method is calculated and results the average error rate 0.52%. Validation result of this simulation gets an average score 3.38. Based on the reference, that score is concidered to be reasonable, so the development of this simulation can be concluded as a good physical interpretation.
APA, Harvard, Vancouver, ISO, and other styles
34

Leman, Sunarjo, Fanniwati Itang, and Jemy Wijaya. "KAJIAN KEKUATAN BALOK KERATON DENGAN ANALISIS METODE ELEMEN HINGGA." Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan 3, no. 1 (October 2, 2019): 113. http://dx.doi.org/10.24912/jmstkik.v3i1.3357.

Full text
Abstract:
Penelitian numerik sebelumnya mengenai segmen Bata Keraton telah diperoleh kekuatan pikul segmen Bata Keraton adalah lebih kurang 1 ton/m2. Pada penelitian lain uji laboratorium dengan merangkai segmen Bata Keraton menjadi Balok Keraton diperoleh kekuatan pikul untuk bentang 2.0 meter berkisar antara 105-200 Kg dan bentang 3.0 meter berkisar antara 60-170 Kg. Penelitian menggunakan cara uji laboratorium membutuhkan material uji, struktur yang diuji dengan ukuran sebenarnya, sumber daya manusia untuk merakit dari bentuk segmen Bata Keraton tersebut menjadi bentuk Balok Keraton dengan besi tulangan serta membuat adukan spesi untuk merangkai Balok Keraton. Alternatif lain untuk mengetahui kapasitas pikul pada Balok Keraton adalah dengan melakukan analisa numerik menggunakan metode elemen hingga menggunakan perangkat lunak Autodesk Inventor Professional 2017. Pemodelan Balok Keraton untuk analisis numerik dibuat sama dengan kondisi Balok Keraton pada saat diuji di laboratorium dengan bentang 2 meter dan 3 meter. Pola pembebanan pada analisis numerik dilakukan sama seperti pada uji laboratorium. Tujuan analisis numerik dengan metode elemen hingga ini adalah untuk mengetahui kapasitas pikul Balok Keraton dan membandingkan hasilnya dengan uji laboratorium. Hasil analisis pada penelitian ini diperoleh kapasitas pikul untuk Balok Keraton dengan bentang 2 meter menggunakan tulangan 8 mm dan 10 mm berkisar 80-110 Kg untuk 1 beban di tengah bentang dan untuk 2 beban berkisar 55-80 Kg/ perbeban, sedangkan untuk bentang 3 meter menggunakan tulangan 8 mm dan 10 mm diperoleh untuk 1 beban berkisar 65-85 Kg dan 2 beban berkisar 45-65 Kg/ perbeban. Hasil analisis numerik memberikan hasil kapasitas pikul beban lebih kecil 51-81 % dari pengujian di laboratorium. Previous numerical research on the Keraton Brick segment has obtained the strength of the Keraton Brick segment bearing weight is approximately 1 ton / m2. In another study the laboratory test by stringing the Bata Keraton segment into the Keraton Beam obtained the strength of the pikul for a span of 2.0 meters ranging from 105-200 kg and span of 3.0 meters ranging from 60-170 kg. Research using laboratory testing methods requires test materials, structures that are tested with actual size, human resources to assemble from the shape of the Keraton Bata segment into a Keraton Beam with reinforcing iron and make a specific mixture to assemble the Keraton Beams. Another alternative to determine the bearing capacity of the Keraton Beams is by conducting numerical analysis using the finite element method using Autodesk Inventor Professional 2017. The Keraton Beam Modeling for numerical analysis is made the same as the condition of the Keraton Beams when tested in a laboratory with a span of 2 meters and 3 meters . The pattern of loading in numerical analysis is done the same as in laboratory tests. The purpose of numerical analysis with finite element method is to determine the bearing capacity of the Keraton Beams and compare the results with laboratory tests. The results of the analysis in this study obtained bearing capacity for the KeratonBeams with a span of 2 meters using reinforcement 8 mm and 10 mm ranging from 80-110 kg for 1 load in the middle span and for 2 loads ranging from 55 to 80 kg / load, while for a span of 3 meters using 8 mm and 10 mm reinforcement obtained for 1 load ranging from 65 to 85 kg and 2 loads ranging from 45 to 65 kg / load. The results of numerical analysis give the result of a smaller load bearing capacity of 51-81% than in laboratory testing.
APA, Harvard, Vancouver, ISO, and other styles
35

Коrniyenko, Yu V., and M. G. Suryaninov. "Development of CAD implementing the algorithm of boundary elements’ numerical analytical method." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 1 (March 31, 2015): 128–33. http://dx.doi.org/10.15276/opu.1.45.2015.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mikhaylovskiy, Denis, and Dmytro Matyuschenko. "Numerical researches of DGRP-type experimental frames using the finite elements method." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 2 (August 20, 2016): 11–15. http://dx.doi.org/10.15276/opu.2.49.2016.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yadav, Chandrajeet Singh. "Comparative Analysis of Different Numerical Methods of Solving First Order Differential Equation." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 567–70. http://dx.doi.org/10.31142/ijtsrd13045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ivanyuk, V. A., and V. A. Fedorchuk. "Vector-Matrix Method of Numerical Implementation of the Polynomial Integral Volterra Operators." Mathematical and computer modelling. Series: Technical sciences 1, no. 20 (September 20, 2019): 40–50. http://dx.doi.org/10.32626/2308-5916.2019-20.40-50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hoppe, Ronald H. W., and Barbara Wohlmuth. "Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods." Applications of Mathematics 40, no. 3 (1995): 227–48. http://dx.doi.org/10.21136/am.1995.134292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jankowski, Tadeusz, and Marian Kwapisz. "Convergence of numerical methods for systems of neutral functional-differential-algebraic equations." Applications of Mathematics 40, no. 6 (1995): 457–72. http://dx.doi.org/10.21136/am.1995.134307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Galanin, M., E. Savenkov, and J. Temis. "FINITE SUPERELEMENTS METHOD FOR ELASTICITY PROBLEMS." Mathematical Modelling and Analysis 10, no. 3 (September 30, 2005): 237–46. http://dx.doi.org/10.3846/13926292.2005.9637284.

Full text
Abstract:
A Fedorenko Finite Superelements Method (FSEM) for 3D linear elasticity problems is considered. We present special weak statement for traces of original problem solution which natural Bubnov‐Galerkin approximation leads to the FSEM. Some applications of the FSEM for the problems of mechanics of composites are considered and results of numerical experiments are presented. Straipsnyje nagrinejamas Fedorenkos baigtiniu superelementu metodas trimačiams tiesiniams elastiškumo uždaviniams. Pasiulytas specialus silpnasis sprendinio pdsako formulavimas, kuris iprasta Bubnovo‐Galerkino aproksimacija susieja su baigtiniu superelementu metodu. Nagrinejami kai kurie baigtiniu superelementu metodo taikymai kompozitu mechanikos uždaviniams. Pateikti skaitinio eksperimento rezultatai.
APA, Harvard, Vancouver, ISO, and other styles
42

Doder, Đorđije, and Damir Đaković. "Proces sušenja oraha." Zbornici Kongresa o procesnoj industriji 30, no. 1 (June 12, 2017): 329. http://dx.doi.org/10.24094/ptk.017.30.1.329.

Full text
Abstract:
U ovom radu analiziran je postupak tretmana oraha koji se izlažu sušenju. Sugerisani su dijagrami tokova, kako za ceo proces koji uključuje i pripremne operacije, tako i za numeričku analizu posmatranog problema, koja je neophodna da bi se dobili preliminarni rezultati matematičkog modela procesa sušenja oraha. Detaljnije je objašnjena numerička strategija, kao i različiti metodi sušenja i skladištenja. Ovakva analiza problema pruža uopštenu sliku procesa sušenja, što može da omogući bolji uvid u partikularne probleme i pouzdanije planiranje procesa.
APA, Harvard, Vancouver, ISO, and other styles
43

Mansour Bacha, Mansour Bacha, and Abderrahmane Belghoraf Abderrahmane Belghoraf. "Evaluation of optical propagation and radiation in optical waveguide using a numerical method." Chinese Optics Letters 12, no. 7 (2014): 070801–70804. http://dx.doi.org/10.3788/col201412.070801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ko’shayevich, Khojaev Ismatullo. "Numerical Method for Calculating Axisymmetric Turbulent Jets of Reacting Gases During Diffusion Combustion." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 2061–74. http://dx.doi.org/10.5373/jardcs/v12sp7/20202324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xu, Xiao-yu, Chao Liu, Chao Zhu, and Zhen-yuan Lv. "STUDY ON THE DYNAMIC NUMERICAL ANALYSIS METHOD FOR THE SETTLEMENT OF FLEXIBLE PAVEMENT." Rudarsko-geološko-naftni zbornik 34, no. 4 (2019): 79–87. http://dx.doi.org/10.17794/rgn.2019.4.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kim, Nam-Sik. "Numerical Model Updating Based on Univariate Search Method for High Speed Railway Bridges." Journal of the Korean Society of Civil Engineers 34, no. 1 (2014): 17. http://dx.doi.org/10.12652/ksce.2014.34.1.0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yagami, Hisanori, and Tomomi Uchiyama. "NUMERICAL SIMULATION OF PARTICLE-LADEN MIXING LAYER BY VORTEX METHOD(Multiphase Flow 2)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 313–18. http://dx.doi.org/10.1299/jsmeicjwsf.2005.313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Božić-Tomić, Kristina, Nenad Šušić, and Mato Uljarević. "The systematization of analytical and numerical methods of landslide stability calculation." Gradjevinski materijali i konstrukcije 61, no. 1 (2018): 129–60. http://dx.doi.org/10.5937/grmk1801129b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Arfinanti, Nurul. "Pengembangan Media Pembelajaran Matakuliah Metode Numerik dengan Implementasi Scilab Berbantuan Software Latex." Al-Khwarizmi: Jurnal Pendidikan Matematika dan Ilmu Pengetahuan Alam 6, no. 2 (December 30, 2018): 121–38. http://dx.doi.org/10.24256/jpmipa.v6i2.370.

Full text
Abstract:
Abstract:The aim of this study is to develop media for learning using Scilab and Latex in Numerical Methods course. Numerical methods is a course which use a lot of numerical symbol. Scilab is used to solve a numerical problem, and Latex is used to write subject matter with a lot of numerical symbols. This study use Research and Development (R&D) models by Thiagarajan which compreised in three steps: defining, designing, and developing. The data were collect from two expert in content, two expert in media for learning, and 11 responses from students. Data were analyzed using qualitative method. The results of this study showed that the media for learning has fulfilled the criteria of the quality determined. This is based on the results of the assessment of content’s experts which get percentage of idealism score 94,53 (very good), the results of the assessment of media for learning’s experts which get percentage of idealism score 86,46 (very good), student response results with an average percentage of idealization score of 89.325 (very good), and students had fulfilled lesson learnead which designed.Abstrak:Penelitian ini bertujuan untuk mengembangkan media pembelajaran matakuliah Metode Numerik dengan implementasi Scilab berbantuan software Latex. Metode Numerik merupakan matakuliah yang banyak melibatkan simbol dan angka tetapi belum tersedia media pembelajarannya. Inovasi yang dilakukan dalam penelitian ini berupa penggunaan freeware Scilab dan Latex dalam pembuatan media pembelajarannya. Penelitian ini menggunakan metode penelitian dan pengembangan (R&D) yang dikembangkan oleh Thiagarajan, yang meliputi tahap define (pendefinisian), design (perancangan), dan develop (pengembangan). Data dikumpulkan dari dua orang ahli materi, dua orang ahli media, dan respon dari 11 mahasiswa. Analisis data menggunakan teknik deskriptif kuantitatif. Hasil penelitian menunjukkan bahwa media pembelajaran yang dikembangkan telah memenuhi kriteria kualitas yang ditetapkan. Hal ini didasarkan pada hasil penilaian dari ahli materi yang memperoleh persentase keidealan skor rata-rata 94,53 (sangat baik), hasil penilaian dari ahli media yang memperoleh persentase keidealan skor rata-rata 86,46 (sangat baik), hasil respon mahasiswa dengan persentase keidealan rata-rata skor sebesar 89,325 (sangat baik), serta penguasaan mahasiswa terhadap capaian pembelajaran telah dinyatakan lulus semuanya (nilai minimal 65 dan rata-rata 80,82).
APA, Harvard, Vancouver, ISO, and other styles
50

Darma, Eko, and Ninik Paryati. "Investigasi Keruntuhan Geser Balok Tinggi Beton Bertulang dan Beton Fiber Dengan Metode Eksperimental, Metode Numerik dan Metode Strut and Tie." BENTANG : Jurnal Teoritis dan Terapan Bidang Rekayasa Sipil 7, no. 2 (August 7, 2019): 69–78. http://dx.doi.org/10.33558/bentang.v7i2.1749.

Full text
Abstract:
One reinforced beam element that experiences a shear failure is a high beam; a beam that follows a requirement based on SNI-2847-2013 standard that have the proportion of sliding span (l) and the effective height (d) not more than three. The type of collapse in high beams generally is shear failure in which the crack appears from the area around the placement, propagates and reaching the maximum value at the point of loading. Observation of crack patterns and ultimate loads can be done by several methods based on both non-linearity and linearity of materials. Two specimens consisted of one high beam conventional reinforced concrete and one high beam concrete fiber with a dimension of 170 mm x 420 mm x 850 mm were prepared. Fiber from machine turning waste was used as coarse aggregate substitution with 100% composition in fiber concrete. Both specimens were tested in the laboratory and observed for crack patterns analysis and ultimate load achievement. The experimental test results were then compared with the numerical test results for the non-linearity properties of the material and the Strut and Tie method for the linearity properties of the material. The ultimate high beam of conventional reinforced concrete when experiencing shear failure in the experimental method, numeric method, and strut and tie method were 310 KN, 290 KN, and 236.917 KN respectively, whereas in the high beam fiber concrete, the ultimate load in the experimental method, numeric method, and in the strut and tie method were 280 KN, 260 KN, and 263,917 KN respectively. The biggest ratio of test results were obtained from the comparison between the numerical and the experimental methods in conventional concrete which was equal to 0.94. This showed the similarity of non-linearity properties of the material to produce adjacent test results.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography