Dissertations / Theses on the topic 'Nurbs Isogeometric analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Nurbs Isogeometric analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sun, Zhiyu. "Generating analysis-ready NURBS models of cloth for isogeometric analysis." Thesis, University of Iowa, 2015. https://ir.uiowa.edu/etd/2015.
Full textBoss, Matthew John. "Analysis-ready isogeometric model of skeletal muscles." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/2827.
Full textLi, Jingang. "Isogeometric Finite Element Analysis Using T-Splines." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3159.pdf.
Full textFredheim, Ole Jørgen. "Isogeometric Finite Element Analysis based on Bézier Extraction of NURBS and T-splines." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15890.
Full textNguyen, Thanh Ngan. "Isogeometric Finite Element Analysis based on Bézier Extraction of NURBS and T-Splines." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15917.
Full textNilsen, Oda Kulleseid. "Simulation of crack propagation using isogeometric analysis applied with NURBS and LR B-splines." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19545.
Full textKapoor, Hitesh. "Isogeometric Finite Element Code Development for Analysis of Composite Structures." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/50567.
Full textIsogeometric nonlinear/linear finite element code is developed for static and dynamic analysis of laminated composite plates. Nurbs linear, quadratic, higher-order and k-refined elements are constructed using various refinement procedures and validated with numerical testing. Nurbs post-processor for in-plane and interlaminar stress calculation in laminated composite and sandwich plates is developed. Nurbs post-processor is found to be superior than regular finite element and in good agreement with the literature. Nurbs Isgoemetric analysis is used for stress analysis of laminated composite plate with open-hole. Stress concentration factor is computed along the hole edge and good agreement is obtained with the literature. Nurbs Isogeometric finite element code for free-vibration and linear dynamics analysis of laminated composite plates also obtain good agreement with the literature.
Main highlights of the research are newly developed 9 control point linear Nurbs element, k-refined and higher-order Nurbs elements in isogeometric framework. Nurbs elements remove shear-locking and hourglass problems in thin plates in context of first-order shear deformation theory without the additional step and compute better stresses than Lagrange finite element and higher order shear deformation theory for comparatively thick plates i.e. a/h = 4. Also, Nurbs Isogeometric analysis perform well for vibration and dynamic problems and for straight and curved edge problems.
Ph. D.
Aoyama, Taiki, Shota Fukumoto, and Hideyuki Azegami. "Shape optimization of continua using NURBS as basis functions." Springer, 2013. http://hdl.handle.net/2237/21124.
Full textRibeiro, Carlos Fernando Morgado. "Development of computational tools for Isogeometric Analysis (IGA)." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14421.
Full textA few years ago drawings were made in the drawing boards and using pencils on vellum. There were no computers helping the designers in the parts modeling. After designing the object, the design was passed to the analysts. The designers and analysts were in constant communication. Nowadays, the designers used Computer Aided Design (CAD) tools in the parts modeling. For application the analysis at the geometries, initially a mesh to approximate the geometries is generated. After this, on the mesh the Finite Element Method (FEM) was applied. In complex engineering design, the generation and manipulation of meshes in FEA was estimated to take over 80% of the overall analysis time. The form to break down the barriers between engineering design and the analysis is with reconstruction the entire process, but at the same time maintaining compatibility with existing practices. Create only one geometric model is the focus of reconstruction process. This geometric model is used in the representation of the geometry, as well as in the analysis, and this concept is designated by Isogeometric Analysis (IGA). In this present work the development of the tools for generate the CAD and calculate the basis function for representation the object are proposed. Initially, the mathematical formulations for Bézier, B-Spline and NURBS, for curves and surfaces are presented. The algorithms developed to generate the curves and surfaces are demonstrated. The IGA and FEM formulation for tridimensional and bidimensional spaces are introduced. In this work, a development of a tools for application this method are proposed. The convergence of the results for FEM and IGA programs are studied and compared to the theoretical values and Abaqus comercial program. The results obtained with IGA formulation converge to the reference values.
Há alguns anos atrás, os objectos eram feitos pelos designers e a criação do desenho era feita com lápis e papel vegetal. Não existiam computadores nos gabinetes de desenho para ajudar na modelação dos objectos. Após o desenho estar concluído este era entregue aos analistas para calcularem a resistência do mesmos quando solicitados por cargas externas. Assim, o gabinete de design e o gabinete de análise estavam em constante comunicação. Nos tempos de hoje os designers utilizam as ferramentas de Computer-Aided Design (CAD) para gerar os objectos, representando assim a geometria original. Por outro lado, os analistas fazem a análise baseada no Método dos Elementos Finitos (MEF). Neste método, inicialmente, gera-se uma malha para fazer a aproximação do objecto e utiliza-se esta malha gerada na análise. A forma de combater esta barreira é a construção de um novo processo de análise, mas ao mesmo tempo manter a compatibilidade com a análise do Método de Elementos Finitos. Este novo método foca-se na geração de um modelo geométrico, sendo este modelo utilizado tanto para a representação da geometria como para a análise. A principal sustentação deste novo método é a utilização das funções de base da criação e representação dos objectos, posteriormente, utilizadas na análise dos mesmos. Este novo conceito é designado por Análise Isogeométrica. Neste trabalho é exposto o desenvolvimento de ferramentas para gerar curvas e superfícies utilizando as formulações de Bézier, B-spline e NURBS. Assim, desenvolveram-se sub-rotinas para calcular as funções de base. Inicialmente apresentaram-se as formulações matemáticas e posteriormente os algoritmos desenvolvidos para a representação das curvas e superfícies. O desenvolvimento de ferramentas de análise para problemas no espaço bidimensional e tridimensional utilizando o Método de Elementos Finitos e a Análise Isogeométrica também é abordado neste trabalho. Para ser mais fácil a sua aplicação, foi desenvolvida um interface. Por fim utilizaram-se problemas e estudaram-se as curvas de convergência dos resultados e compararando-os com as referência analíticas e com o programa Abaqus. Em termos de conclusão, os resultados obtidos com a Análise Isogeométrica convergem mais rapidamente para os valores de referência do que o Abaqus e o programa desenvolvido com base no método de elementos finitos.
Devarajan, Balakrishnan. "Thermomechanical and Vibration Analysis of Stiffened Unitized Structures and Threaded Fasteners." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/99425.
Full textPHD
Chivukula, Venkat Keshav. "Development of a NURBS-based particulate dynamics framework for modeling circulating cells." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/4591.
Full textLadecký, Martin. "Isogeometrická analýza a její použití v mechanice kontinua." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371938.
Full textShepherd, Kendrick Monroe. "Modeling Stokes Flow Using Hierarchical Structure-Preserving B-Splines." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5581.
Full textTonon, Patrícia. "Simulação numérica de escoamentos incompressíveis através da análise isogeométrica." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/139428.
Full textThis work aims to develop a numerical formulation based on Isogeometric Analysis for the study of incompressible flows of Newtonian fluids under isothermal conditions. By using this methodology, pre-processing and analysis procedures are unified, improving the conditions of continuity of the basis functions utilized in the approximations of the equation variables and spatial discretization of the problem. The system of fundamental equations of the fluid flow is constituted by the Navier-Stokes equations and the mass conservation equation, which is described according to the pseudo-compressibility hypothesis. In addition, a constitutive equation for viscous fluids according to Stokes' hypothesis is also provided. Turbulent flows are analyzed using LES (Large Eddy Simulation), where the Smagorinsky’s model is adopted for sub-grid scales. The explicit two-step Taylor-Galerkin method is applied into the context of Isogeometric Analysis for the discretization of the flow equations, where spatial discretization is carried out taking into account Non Uniform Rational Basis B-Splines (NURBS) basis functions. These basis functions have advantages over traditional functions employed in the FEM (Finite Element Method). Particularly, it is easier to obtain continuity order higher than C0 between adjacent elements and geometry representation is more accurate. Pre and post-processing tools for mesh generation and results visualization are also proposed considering the data structure inherent to Isogeometric Analysis. Some classic problems of Computational Fluid Dynamics are analyzed in order to validate the proposed methodology. Results obtained here show that the present formulation has good approximation when compared with predictions obtained by reference authors. Moreover, Isogeometric Analysis is more versatile than traditional finite element formulations when spatial discretization procedures are considered.
Espath, Luis Felipe da Rosa. "Otimização de forma estrutural e aerodinâmica usando análise IsoGeométrica e Elementos Finitos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/85033.
Full textConsolidation of the link among optimization problems in continuum mechanics, involving different fields, such as mathematical optimization, automatic differentiation, structural analysis, aerodynamic analysis, curves, surfaces and solids parameterization using Non Uniform Rational B-spline (NURBS), IsoGeometric Analysis (IGA), Finite Element Analysis (FEA) is looked for. Structural shape optimization of shell structures and aerodynamic shape optimization of immersed bodies in compressible flows are the main goals of this work. Concerning structural analysis, the so-called IsoGeometric analysis is employed. An accurate and comprehensive corotational kinematic based on the exact polar decomposition is developed in order to study highly nonlinear static and dynamic problems. Static analysis is carried out with Newton-Raphson and Generalized Displacement Control Method, while dynamic analysis is carried out with Generalized- (G) and Generalized Energy-Momentum Method (GEMM+). Aerodynamic analysis is carried out via Finite Element Analysis (FEA) in order to solve compressible flows in transonic and supersonic regimes. A Characteristic Based Split (CBS) method is employed to obtain an accurate time integration, which is based on the splitting of the momentum equation. Concerning mathematical optimization, the so-called Sequential Quadratic Programming (SQP) is employed, which is a gradient-based method, where the Fréchet derivatives are evaluated using Automatic Differentiation (AD). Final results consisting in structural optimization shown an optimal behaviour with respect to internal strain energy. While, results concerning aerodynamic bi-dimensional shape optimization exhibit a optimal behaviour with respect drag/lift ratio, for a large range of Mach number, and a simple result for tri-dimensional case is presented in order to show the efficiency and robustness of the implementation. Bases for future research in aeroelastic optimization problems are established in this work.
Cordeiro, Sérgio Gustavo Ferreira. "Contribuições às análises de fratura e fadiga de componentes tridimensionais pelo Método dos Elementos de Contorno Dual." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-05062018-104832/.
Full textThe present work consists in the development of a computational tool for fracture and fatigue analysis of three-dimensional components obtained from geometrical models of Computer-Aided Design (CAD). Crack propagation models associated with empirical fatigue laws allow the determination of residual life for structural-mechanical pieces. These analyses are vital to ensure the structural safety in several engineering projects such as in bridges, offshore platforms and aircraft. However, the creation of the analysis models from geometrical CAD models requires several intermediary steps in order to obtain suitable volumetric meshes of the problems. The majority of CAD models represent solids with parametric surfaces to describe its boundaries, which is known as the Boundary representation (B-representation). The most common parametric surfaces are Non-Uniform Rational B-Splines (NURBS). To generate a volumetric mesh it is required that the set of surfaces that describe the object must be watertight, i.e., without gaps or superposition at the surfaces connections, which is not possible to unsure using NURBS. The contributions proposed at the present thesis are applicable to models based on the Dual Boundary Element Method (DBEM), which require only the discretization of the surfaces of the problems, i.e., boundary and cracks. A special collocation strategy was developed in order to create the analysis models efficiently from the geometrical CAD models. The collocation strategy allows discretizing independently each one of the NURBS surfaces that compose the geometrical solid models. Therefore, the difficulties in the treatment of the surface connections are avoided and it becomes possible to create analysis models from non-watertight geometrical models. The implementation covers trimmed and non-trimmed NURBS surfaces of any polynomial orders and also triangular and quadrilateral boundary elements of linear order. The displacement and traction boundary integral equations are regularized and the strong and hypersingular integrals are treated with the Guiggiani\'s method. Edge cracks are inserted in the models by a simple remeshing procedure based on dimensional tolerances. The same remeshing approach is adopted for the incremental crack propagation analysis. Three techniques were adopted to extract the Stress Intensity Factors (SIF) in the context of Linear Elastic Fracture Mechanics (LEFM), i.e., the displacement correlation, extrapolation and fitting techniques. The extension of this last technique to three-dimensional problems is another contribution of the present work. Both the general maximum energy realise rate and the Schöllmann\'s criteria were adopted to determine the equivalent SIF and the crack propagation path. The deflection angle is obtained by an optimization algorithm and the torsion angle, defined for the Schöllmann\'s criterion, is imposed in the propagation vector through a one-dimensional variational formulation defined over the crack front line. The concepts of LEFM are adopted together with the Paris-Erdogan equation in order to determine the fatigue life of pre-existing defects. An iterative procedure was developed to avoid the self-intersection of the crack surfaces allowing fatigue analysis with alternate loadings. Finally, as suggestion for future researches, it was started the study of isogeometric boundary element formulations in order to perform fracture and fatigue analysis directly from CAD geometries, without surface mesh generation. A preliminary numerical study involving an isogeometric version of the DBEM using NURBS and the conventional DBEM using linear and quadratic Lagrange elements was presented. From the study it was possible to point out the advantages and disadvantages of each approach and suggest improvements for both.
Froehly, Algiane. "Couplage d’un schéma aux résidus distribués à l’analyse isogéométrique : méthode numérique et outils de génération et adaptation de maillage." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14563/document.
Full textDuring high order simulations, the approximation error may be dominated by the errors linked to the sub-parametric discretization used for the geometry representation. Many works propose to use an isogeometric analysis approach to better represent the geometry and hence solve this problem. In this work, we will present the coupling between the limited stabilized Lax-Friedrichs residual distributed scheme and the isogeometric analysis. Especially, we will build a family of basis functions defined on both triangular and quadrangular elements and allowing the exact representation of conics : the rational Bernstein basis functions. We will then focus in how to generate accurate meshes for isogeometric analysis. Our idea is to create a curved mesh from a classical piecewise-linear mesh of the geometry. We obtain a conforming unstructured mesh which ensures the continuity of the basis functions over the entire mesh. Last, we will detail the curved mesh adaptation methods developed : the order elevation and the isotropic mesh refinement. Of course, the adaptation processes preserve the exact geometry of the initial curved mesh
Bekrová, Martina. "Isogeometrická analýza v aplikacích." Master's thesis, 2017. http://www.nusl.cz/ntk/nusl-365592.
Full text(9739652), Chun-Pei Chen. "Enriched Isogeometric Analysis for Parametric Domain Decomposition and Fracture Analysis." Thesis, 2020.
Find full text