Academic literature on the topic 'Nutrient interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nutrient interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nutrient interaction"
Combet, Emilie, and Stuart R. Gray. "Nutrient–nutrient interactions: competition, bioavailability, mechanism and function in health and diseases." Proceedings of the Nutrition Society 78, no. 1 (February 2019): 1–3. http://dx.doi.org/10.1017/s0029665118002732.
Full textLOURENÇO, R. "Enteral feeding: Drug/nutrient interaction." Clinical Nutrition 20, no. 2 (April 2001): 187–93. http://dx.doi.org/10.1054/clnu.2000.0155.
Full textCrocker, GJ, KP Sheridan, and ICR Holford. "Lucerne responses to lime and interactions with other nutrients on granitic soils." Australian Journal of Experimental Agriculture 25, no. 2 (1985): 337. http://dx.doi.org/10.1071/ea9850337.
Full textZaini, Mohd Rasdi, Nurul Farahana Hazira Hazlee, and Fathul Nabila Abdul Karim. "Interaction Between Oryctes Rhinoceros and Leaves’ Nutrient Content in Oil Palm." JOURNAL OF ADVANCES IN AGRICULTURE 8 (August 30, 2018): 1408–14. http://dx.doi.org/10.24297/jaa.v8i1.7585.
Full textMabry, C. M., M. Jasieński, J. S. Coleman, and F. A. Bazzaz. "Genotypic variation in Polygonum pensylvanicum: nutrient effects on plant growth and aphid infestation." Canadian Journal of Botany 75, no. 4 (April 1, 1997): 546–51. http://dx.doi.org/10.1139/b97-060.
Full textAnderson, Leif G., Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, et al. "Shelf–Basin interaction along the East Siberian Sea." Ocean Science 13, no. 2 (April 27, 2017): 349–63. http://dx.doi.org/10.5194/os-13-349-2017.
Full textFahnenstiel, G. L., R. A. Stone, M. J. McCormick, C. L. Schelske, and S. E. Lohrenz. "Spring isothermal mixing in the Great Lakes: evidence of nutrient limitation and nutrient-light interactions in a suboptimal light environment." Canadian Journal of Fisheries and Aquatic Sciences 57, no. 9 (September 1, 2000): 1901–10. http://dx.doi.org/10.1139/f00-144.
Full textLópez-Carrillo*, Lizbeth, Aubrey V. Herrera, R. Ulises Hernández-Ramirez, Walter Klimecki, A. Jay Gandolfi, and Mariano E. Cebrián. "Nutrient-Gene Interaction in Arsenic Metabolism." ISEE Conference Abstracts 2014, no. 1 (October 20, 2014): 2026. http://dx.doi.org/10.1289/isee.2014.p3-767.
Full textChan, Lingtak-Neander. "Drug-nutrient interaction in clinical nutrition." Current Opinion in Clinical Nutrition and Metabolic Care 5, no. 3 (May 2002): 327–32. http://dx.doi.org/10.1097/00075197-200205000-00014.
Full textJeyakumar, P., R. Amutha, and T. N. Balamohan. "NUTRIENT-BIOREGULATOR INTERACTION EFFECTS ON BANANA." Acta Horticulturae, no. 884 (December 2010): 517–24. http://dx.doi.org/10.17660/actahortic.2010.884.66.
Full textDissertations / Theses on the topic "Nutrient interaction"
Rhodes, Phillip Steven. "The interaction between maternal nutrient restriction and postnatal nutrient excess in an ovine model." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/12092/.
Full textChapman, K. "Interaction between tree species : Decomposition and nutrient release from litters." Thesis, Lancaster University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234635.
Full textHamzah, Norhayati. "A bifurcation analysis of a multi compartment plankton-zooplankton-nutrient interaction." Thesis, University of Canterbury. Mathematics and Statistics, 2004. http://hdl.handle.net/10092/5702.
Full textFotopoulos, Vasileios. "Molecular analysis of nutrient transfer in the host/powdery mildew interaction." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398738.
Full textWan, Hon Chi Judy. "Interaction of earthworms and microorganisms on nutrient availability and crop growth." HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/588.
Full textMillar, Kristina K. "Antibiotic Efficacy and Interaction in Escherichia coli during Varying Nutrient Conditions." Scholarship @ Claremont, 2016. http://scholarship.claremont.edu/scripps_theses/809.
Full textWilson, Carol Patricia. "The MTHFR C677T polymorphism and riboflavin : a novel gene-nutrient interaction affecting blood pressure." Thesis, University of Ulster, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554915.
Full textFernández, Del-Saz Néstor. "In vivo metabolic regulation of plant respiration under salt and nutrient stress. Interaction with mycorrhyza." Doctoral thesis, Universitat de les Illes Balears, 2017. http://hdl.handle.net/10803/462999.
Full text- Introducción El papel fisiológico y regulación de la oxidasa alternativa (AOX) en plantas bajo estreses nutricionales y salinos no es del todo comprendida. Ambos estreses inducen cambios metabólicos relacionados con el metabolismo del carbono, estado redox y demanda energética que pueden llevar a cambios en la actividad in vivo de AOX para conferir tolerancia a estrés. Más investigación es necesaria para descifrar el papel de la respiración alternativa confiriendo flexibilidad metabólica. Por ejemplo, el uso de la simbiosis con micorrizas arbusculares (AM) reputadas por incrementar en plantas la nutrición y tolerancia a estrés abiótico nos permite hipotetizar que la actividad in vivo de AOX está regulada por cambios metabólicos y nutricionales. - Contenido de la investigación Esta Tesis está basada en la idea de que el uso de micorrizas aportará importante información sobre la regulación de la actividad de AOX bajo salinidad y limitación de fósforo en suelo. Yo hipotetizo que (1) La actividad AOX confiere tolerancia en plantas bajo salinidad; (2) La actividad AOX confiere flexibilidad metabólica bajo salinidad; (3) La actividad AOX contribuye a incrementar el crecimiento en plantas micorrizadas bajo déficit de fósforo y salinidad; (4) La actividad AOX contribuye a disminuir la respiración en raíces de plantas colonizadas debido a la reducida síntesis de carboxilatos rizosféricos; and (5) La actividad AOX está regulada por cambios en la concentración de fósforo en plantas. -Conclusiones 1) La actividad AOX permite la síntesis de protectores aminoácidos y ácidos orgánicos en una colección de genotipos de Medicago truncatula bajo severo y corto estrés salino. 2) La actividad AOX permite la continuidad de las reacciones del ciclo de los ácidos tricarboxílicos bajo severo y corto estrés osmótico en Abidopsis thaliana. 3) La actividad AOX contribuye a incrementar el crecimiento de la parte aérea en plantas de Nicotiana tabacum colonizadas con Rhizophagus intraradices bajo prolongada limitación de fósforo y exposición a salinidad. 4) La actividad AOX contribuye a disminuir la respiración radicular en plantas de Nicotiana tabacum debido a la reducida síntesis de carboxilatos rizosféricos. 5) La actividad AOX está regulada por cambios en la concentración de fósforo en plantas de Solanum lycopersicum. Por lo tanto, el uso de micorrizas ha aportado importante información sobre la regulación de la actividad AOX bajo diferentes escenarios de concentraciones variables de sal y disponibilidad de fósforo en suelos, demostrando ser dependiente de cambios nutricionales y metabólicos, como fue originalmente hipotetizado.
- Introduction Physiological role and regulation of alternative oxidase (AOX) in plants under both nutrient and salt stresses is still not well understood. Both stresses induce metabolic changes related to carbon metabolism, redox state and energy demand that may induce changes on the activity in vivo of AOX in order to provide tolerance to stress. Further research is needed to decipher the role of alternative respiration confering metabolic flexibility. For instance, the use of symbiosis with arbuscular mycorrhiza (AM), reputed by increase plant nutrition and tolerance to abiotic stresses, allows us to hypothesize that AOX activity in vivo is regulated by nutritional and metabolic changes. In addition, the effect of AM colonization on plant respiration is a controversial issue in literature. - About this Thesis The present Thesis is based on the idea that the use of mycorrhiza will provide important information about the regulation of AOX activity under salinity and P limitation. I hypothesized that: (1) AOX activity confers tolerance in plants under salinity; (2) AOX activity confers metabolic flexibility under salt stress; (3) AOX activity contributes to increase growth in AM colonized plants under phosphorus (P) limitation and salinity; (4) AOX activity contributes to decrease respiration in AM colonized roots due to the reduced synthesis of rhizosphere carboxylates; and (5) AOX activity is regulated by changes on plant P concentration. Results are presented in a form of 5 manuscript. Each resarch chapter includes one manuscript, submitted or already published. Introduction and Material and methods section are also presented in the form of submitted manuscripts. -Conclusions 1) AOX activity allows the synthesis of protectives aminoacids and organic acids in a particular collection of Medicago truncatula genotypes under sudden severe salt stress. 2) AOX activity allows the continuity of TCA cycle under sudden severe osmotic stress in Arabidopsis thaliana. 3) AOX activity contributes to increase shoot growth in Nicotiana tabacum colonized with Rhizophagus intraradices under long-term P limitation and salinity. 4) AOX activity contributes to decrease respiration in AM colonized roots of Nicotiana tabacum due to the reduced synthesis of rhizosphere carboxylates. 5) AOX activity is regulated by changes on P concentration in Non-AM and AM colonized plants of Solanum lycopersicum grown at different P availability in soil. Therefore, the use of mycorrhiza has provided important information about the regulation of AOX activity under different scenarios of changing concentrations of salt and P availability in soils, which was dependent on metabolic and nutritional status, as originally hypothesized.
Sonawala, Unnati Subhash. "Understanding the role of host amino acid transporters in nutrient acquisition by oomycete pathogens." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/102868.
Full textDoctor of Philosophy
Holderness, M. "Interaction of host stress and pathogen ecology on Phytophthora infection and symptom expression in nutrient film-grown tomatoes." Thesis, University of Reading, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370136.
Full textBooks on the topic "Nutrient interaction"
Microbiology, Indian Agricultural Research Institute) Summer School (1998 Division of. Soil-plant-microbe interaction in relation to integrated nutrient management. New Delhi: Division of Microbiology, Indian Agricultural Research Institute, 1998.
Find full textRintoul, Stephen R. Mass, heat and nutrient fluxes in the Atlantic Ocean determined by inverse methods. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1989.
Find full textWeibert, Robert T. Drug interactions index. 2nd ed. Oradell, N.J: Medical Economics Books, 1988.
Find full textDanielle, Ruel, and Locong Alice, eds. Guide des interactions médicaments, nutriments et produits naturels. Québec, Qué: Presses de l'Université Laval, 2003.
Find full textCarbon and nutrient fluxes in continental margins: A global synthesis. Berlin: Springer Verlag, 2010.
Find full textPronsky, Zaneta M. Food-medication interactions. Birchrunville, PA: Food-Medication Interactions, 2002.
Find full textFood medication interactions. Birchrunville, PA: Food-Medication Interactions, 2004.
Find full textBook chapters on the topic "Nutrient interaction"
Markell, Mariana. "Dietary Supplement Interaction With Nutrients." In Handbook of Drug-Nutrient Interactions, 235–40. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-781-9_12.
Full textBailey, David G. "Grapefruit Juice-Drug Interaction Issues." In Handbook of Drug-Nutrient Interactions, 175–94. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-781-9_9.
Full textTuakli-Wosornu, Yetsa, Nida Naushad, Amos Laar, Christine Townsend, and Emerald Lin. "Medical Issues, Pharmacology and Nutrient Interaction." In Sports Nutrition for Paralympic Athletes, 219–43. Second edition. | Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429491955-12.
Full textChan, Lingtak-Neander. "Interaction of Natural Products with Medication and Nutrients." In Handbook of Drug-Nutrient Interactions, 341–66. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-362-6_12.
Full textMoretti, Myla E., and Danela L. Caprara. "Drug–Nutrient Interaction Considerations in Pregnancy and Lactation." In Handbook of Drug-Nutrient Interactions, 593–616. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-362-6_21.
Full textHoover, Kathleen L., Marcia Silkroski, Leslie Schechter, and Patricia Worthington. "Drug-Nutrient Interaction Considerations in Pregnancy and Lactation." In Handbook of Drug-Nutrient Interactions, 345–61. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-781-9_19.
Full textFoster, Andrew J., George R. Littlejohn, Darren M. Soanes, and Nicholas J. Talbot. "Strategies for Nutrient Acquisition byMagnaporthe oryzaeduring the Infection of Rice." In Host - Pathogen Interaction, 93–108. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527682386.ch6.
Full textReeds, Peter, and Jack Odle. "Pigs as Models for Nutrient Functional Interaction." In Advances in Swine in Biomedical Research, 709–11. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5885-9_26.
Full textRhodes, Jonathan J., Clarence M. Skau, and John C. Brown. "An Areally Intensive Approach to Hydrologic Nutrient Transport in Forested Watersheds." In The Forest-Atmosphere Interaction, 255–70. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5305-5_16.
Full textEllis-Evans, J. C., and D. D. Wynn-Williams. "The Interaction of Soil and Lake Microflora at Signy Island." In Antarctic Nutrient Cycles and Food Webs, 662–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82275-9_92.
Full textConference papers on the topic "Nutrient interaction"
Debabrata Sahoo, Indrajeet Chaubey, Brian E. Haggard, and Marty D. Matlock. "Stream nutrient dynamics and sediment nutrient interaction in an agricultural." In 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003. http://dx.doi.org/10.13031/2013.13826.
Full textJANG, SOPHIA R. J., and JAMES BAGLAMA. "NUTRIENT-PLANKTON INTERACTION WITH A TOXIN IN A VARIABLE INPUT NUTRIENT ENVIRONMENT." In Proceedings of the Conference on Mathematical Biology and Dynamical Systems. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706799_0007.
Full textBan, Byunghyun. "Mathematical Model and Simulation for Nutrient-Plant Interaction Analysis." In 2020 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2020. http://dx.doi.org/10.1109/ictc49870.2020.9289083.
Full textPAL, SAMARES, and ANAL CHATTERJEE. "PLANKTON NUTRIENT INTERACTION MODEL WITH HARVESTING UNDER CONSTANT ENVIRONMENT." In International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814602228_0002.
Full textJames, Jason, and Rob Harrison. "INTERACTION BETWEEN CARBON AND NUTRIENT CYCLES IN DEEP SOILS OF THE PACIFIC NORTHWEST." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-303364.
Full textShuler, Christopher K., Olkeba Tolessa Leta, and Henrietta Dulai. "GROUNDWATER-STREAM WATER INTERACTION, SUBMARINE GROUNDWATER DISCHARGE, AND QUANTIFICATION OF ASSOCIATED NUTRIENT LOADING IN FAGAALU WATERSHED, AMERICAN SAMOA." In 113th Annual GSA Cordilleran Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017cd-292708.
Full text"Simulating the interaction between plant roots, soil water and nutrient flows, and barriers and objects in soil using ROOTMAP." In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.b3.dunbabin.
Full textSharifullina, D. T., R. N. Nizamov, R. N. Nizamov, I. R. Yunusov, and G. I. Rakhmatullina. "STUDYING THE POSSIBILITY OF JOINT CULTIVATION OF B.BIFIDUM AND E.COLI ON ADAPTED NUTRIENT MEDIA." In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS Volume 2. DSTU-Print, 2020. http://dx.doi.org/10.23947/interagro.2020.2.423-426.
Full textGueimonde, Miguel. "Microbiota-Diet Interaction Along Ageing." In The 1st International Electronic Conference on Nutrients - Nutritional and Microbiota Effects on Chronic Disease. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iecn2020-06980.
Full textHochhalter, Matthew, and Stephen P. Gent. "Incorporating Light and Algal Effects Into CFD for Photobioreactor Design." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21310.
Full textReports on the topic "Nutrient interaction"
Cseke, Leland. Nutrient cycling for biomass: Interactive proteomic/transcriptomic networks for global carbon management processes within poplar-mycorrhizal interactions. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1325004.
Full text