Academic literature on the topic 'NW Himalaya'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NW Himalaya.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "NW Himalaya"

1

Thakur, V. C., R. Jayangondaperumal, and V. Joevivek. "Seismotectonics of central and NW Himalaya: plate boundary–wedge thrust earthquakes in thin- and thick-skinned tectonic framework." Geological Society, London, Special Publications 481, no. 1 (December 17, 2018): 41–63. http://dx.doi.org/10.1144/sp481.8.

Full text
Abstract:
AbstractThe tectonic framework of NW Himalaya is different from that of the central Himalaya with respect to the position of the Main Central Thrust and Higher Himalayan Crystalline and the Lesser and Sub Himalayan structures. The former is characterized by thick-skinned tectonics, whereas the thin-skinned model explains the tectonic evolution of the central Himalaya. The boundary between the two segments of Himalaya is recognized along the Ropar–Manali lineament fault zone. The normal convergence rate within the Himalaya decreases from c. 18 mm a−1 in the central to c. 15 mm a−1 in the NW segments. In the last 800 years of historical accounts of large earthquakes of magnitude Mw ≥ 7, there are seven earthquakes clustered in the central Himalaya, whereas three reported earthquakes are widely separated in the NW Himalaya. The earthquakes in central Himalaya are inferred as occurring over the plate boundary fault, the Main Himalayan Thrust. The wedge thrust earthquakes in NW Himalaya originate over the faults on the hanging wall of the Main Himalayan Thrust. Palaeoseismic evidence recorded on the Himalayan front suggests the occurrence of giant earthquakes in the central Himalaya. The lack of such an event reported in the NW Himalaya may be due to oblique convergence.
APA, Harvard, Vancouver, ISO, and other styles
2

Puniya, M. K., R. C. Patel, and P. D. Pant. "Structural and thermochronological studies of the Almora klippe, Kumaun, NW India: implications for crustal thickening and exhumation of the NW Himalaya." Geological Society, London, Special Publications 481, no. 1 (December 19, 2018): 81–110. http://dx.doi.org/10.1144/sp481-2017-74.

Full text
Abstract:
AbstractCrystalline klippen over the Lesser Himalayan Metasedimentary Sequence (LHMS) zone in the NW Himalaya have specific syn- and post-emplacement histories. These tectonics also provide a means to understand the driving factors responsible for the exhumation of the rocks of crystalline klippen during the Himalayan Orogeny. New meso- and microscale structural analyses, and thermochronological studies across the LHMS zone, Ramgarh Thrust (RT) sheet and Almora klippe in the eastern Kumaun region, NW Himalaya, indicate that the RT sheet and Almora klippe were a part of the Higher Himalayan Crystalline (HHC) of the Indian Plate which underwent at least one episode of pre-Himalayan deformation and polyepisodic Himalayan deformation in ductile and brittle–ductile regimes. The deformation temperature pattern within the Almora klippe records a normal thermal profile from its base to top but an inverted thermal profile from the base of Almora klippe down towards the LHMS zone. New fission-track data collected across the RT sheet and Almora klippe along Chalthi–Champawat–Pithoragarh traverse in the east Kumaun region document the exhumation of both units since Eocene times. Zircon fission-track (ZFT) ages from the Almora klippe range between 28.7 ± 2.4 and 17.6 ± 1.1 Ma, and from the RT sheet between 29.8 ± 1.6 and 22.6 ± 1.9 Ma; and the apatite fission-track (AFT) ages from the Almora klippe range between 15.1 ± 1.7 and 3.4 ± 0.5 Ma, and from the RT sheet between 8.7 ± 1.2 and 4.6 ± 0.6 Ma. The age pattern and diverse patterns of the exhumation rates reflect a clear tectonic signal in the RT sheet and the Almora klippe which acknowledge that the Cenozoic tectonics influenced the exhumation pattern in the Himalaya.
APA, Harvard, Vancouver, ISO, and other styles
3

Jaiswal, Manoj, Pradeep Srivastava, Jayant Tripathi, and Rafique Islam. "Feasibility of the Sar Technique on Quartz Sand of Terraces of NW Himalaya: A Case Study from Devprayag." Geochronometria 31, no. -1 (January 1, 2008): 45–52. http://dx.doi.org/10.2478/v10003-008-0015-8.

Full text
Abstract:
Feasibility of the Sar Technique on Quartz Sand of Terraces of NW Himalaya: A Case Study from DevprayagOptically Stimulated Luminescence (OSL) dating technique based on the Single Aliquot Regenerative dose (SAR) protocol is being used increasingly as a means of establishing sediment burial age in the late Quaternary studies. Thermal transfer, low and changing luminescence sensitivity of quartz grains of young sedimentary belts of the New Zealand Alps and the north-east Himalaya poses problems in using SAR protocol. Records of active tectonics and signatures of palaeo-climate are preserved in the Quaternary - Holocene terrace sediments. Therefore, to unfold the history of successive tectonic and palaeo-climate events, robust chronological technique is needed. Palaeoflood deposits in NW Lesser Himalayan region receive quartz from the weathering of various rock types such as quartzite and phyllite in the Alaknanda Basin. A series of tests e.g. dose recovery, preheat plateau, thermal recuperation and change in sensitivity, were performed to check the suitability of quartz grains collected from the terrace sediment of Devprayag of the NW Himalaya, for OSL studies. Inferences were drawn regarding the source of the quartz grains on the basis of the geochemistry and luminescence intensity of the terrace sediment. The study shows that though quartz from the North West Himalaya are low in luminescence intensity but the reproducibility of De value makes the quartz sand suitable for SAR dating technique. Relation between luminescence intensity with CIA values help to predict the provenance of quartz sand. Tests show that the quartz from NW Himalaya is suitable for SAR protocol in OSL.
APA, Harvard, Vancouver, ISO, and other styles
4

Jain, Arvind K. "Continental subduction in the NW-Himalaya and Trans-Himalaya." Italian Journal of Geosciences 136, no. 1 (February 2017): 89–102. http://dx.doi.org/10.3301/ijg.2015.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dey, Saptarshi, Rasmus C. Thiede, Arindam Biswas, Naveen Chauhan, Pritha Chakravarti, and Vikrant Jain. "Implications of the ongoing rock uplift in NW Himalayan interiors." Earth Surface Dynamics 9, no. 3 (June 2, 2021): 463–85. http://dx.doi.org/10.5194/esurf-9-463-2021.

Full text
Abstract:
Abstract. The Lesser Himalaya exposed in the Kishtwar Window (KW) of the Kashmir Himalaya exhibits rapid rock uplift and exhumation (∼3 mm yr−1) at least since the late Miocene. However, it has remained unclear if it is still actively deforming. Here, we combine new field, morphometric and structural analyses with dating of geomorphic markers to discuss the spatial pattern of deformation across the window. We found two steep stream segments, one at the core and the other along the western margin of the KW, which strongly suggest ongoing differential uplift and may possibly be linked to either crustal ramps on the Main Himalayan Thrust (MHT) or active surface-breaking faults. High bedrock incision rates (>3 mm yr−1) on Holocene–Pleistocene timescales are deduced from dated strath terraces along the deeply incised Chenab River valley. In contrast, farther downstream on the hanging wall of the MCT, fluvial bedrock incision rates are lower (<0.8 mm yr−1) and are in the range of long-term exhumation rates. Bedrock incision rates largely correlate with previously published thermochronologic data. In summary, our study highlights a structural and tectonic control on landscape evolution over millennial timescales in the Himalaya.
APA, Harvard, Vancouver, ISO, and other styles
6

Quasim Jan, M. "Phase chemistry of blueschists from eastern Ladakh, NW Himalaya." Neues Jahrbuch für Geologie und Paläontologie - Monatshefte 1987, no. 10 (October 1, 1987): 613–35. http://dx.doi.org/10.1127/njgpm/1987/1987/613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Rohtash, Satish J. Sangode, and Sumit K. Ghosh. "A multistorey sandstone complex in the Himalayan Foreland Basin, NW Himalaya, India." Journal of Asian Earth Sciences 23, no. 3 (July 2004): 407–26. http://dx.doi.org/10.1016/s1367-9120(03)00176-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bungum, Hilmar, Conrad D. Lindholm, and Ambrish K. Mahajan. "Earthquake recurrence in NW and central Himalaya." Journal of Asian Earth Sciences 138 (May 2017): 25–37. http://dx.doi.org/10.1016/j.jseaes.2017.01.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zeitler, Peter K. "Cooling history of the NW Himalaya, Pakistan." Tectonics 4, no. 1 (January 1985): 127–51. http://dx.doi.org/10.1029/tc004i001p00127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chamoli, Ashutosh, and R. B. S. Yadav. "Multifractality in seismic sequences of NW Himalaya." Natural Hazards 77, S1 (September 7, 2013): 19–32. http://dx.doi.org/10.1007/s11069-013-0848-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "NW Himalaya"

1

Hintersberger, Esther. "The role of extension during the evolution of the NW Indian Himalaya." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6617/.

Full text
Abstract:
The evolution of most orogens typically records cogenetic shortening and extension. Pervasive normal faulting in an orogen, however, has been related to late syn- and post-collisional stages of mountain building with shortening focused along the peripheral sectors of the orogen. While extensional processes constitute an integral part of orogenic evolution, the spatiotemporal characteristics and the kinematic linkage of structures related to shortening and extension in the core regions of the orogen are often not well known. Related to the India-Eurasia collision, the Himalaya forms the southern margin of the Tibetan Plateau and constitutes the most prominent Cenozoic type example of a collisional orogen. While thrusting is presently observed along the foothills of the orogen, several generations of extensional structures have been detected in the internal, high-elevation regions, both oriented either parallel or perpendicular to the strike of the orogen. In the NW Indian Himalaya, earthquake focal mechanisms, seismites and ubiquitous normal faulting in Quaternary deposits, and regional GPS measurements reveal ongoing E-W extension. In contrast to other extensional structures observed in the Himalaya, this extension direction is neither parallel nor perpendicular to the NE-SW regional shortening direction. In this study, I took advantage of this obliquity between the trend of the orogen and structures related to E-W oriented extension in order to address the question of the driving forces of different extension directions. Thus, extension might be triggered triggered by processes within the Tibetan Plateau or originates from the curvature of the Himalayan orogen. In order to elaborate on this topic, I present new fault-kinematic data based on systematic measurements of approximately 2000 outcrop-scale brittle fault planes with displacements of up to several centimeters that cover a large area of the NW Indian Himalaya. This new data set together with field observations relevant for relative chronology allows me to distinguish six different deformation styles. One of the main results are that the overall strain pattern derived from this data reflects the regionally important contractional deformation pattern very well, but also reveals significant extensional deformation. In total, I was able to identify six deformation styles, most of which are temporally and spatially linked and represent protracted shortening, but also significant extensional directions. For example, this is the first data set where a succession of both, arc-normal and E-W extension have been documented in the Himalaya. My observations also furnish the basis for a detailed overview of the younger extensional deformation history in the NW Indian Himalaya. Field and remote-sensing based geomorphic analyses, and geochronologic 40Ar/39Ar data on synkinematic muscovites along normal faults help elucidate widespread E-W extension in the NW Indian Himalaya which must have started at approximately 14-16 Ma, if not earlier. In addition, I documented and mapped fault scarps in Quaternary sedimentary deposits using satellite imagery and field inspection. Furthermore, I made field observations of regional normal faults, compiled structures from geological maps and put them in a regional context. Finally, I documented seismites in lake sediments close to the currently most active normal fault in the study area in order to extend the (paleo) seismic record of this particular fault. Taken together, this data sets document that E-W extension is the dominant active deformation style in the internal parts of the orogen. In addition, the combined field, geomorphic and remote-sensing data sets prove that E-W extension occurs in a much more larger region toward the south and west than the seismicity data have suggested. In conclusion, the data presented here reveal the importance of extension in a region, which is still dominated by ongoing collision and shortening. The regional fault distribution and cross-cutting relationships suggest that extension parallel and perpendicular to the strike of the orogen are an integral part of the southward propagation of the active thrust front and the associated lateral growth of the Himalayan arc. In the light of a wide range of models proposed for extension in the Himalaya and the Tibetan plateau, I propose that E-W extension in the NW Indian Himalaya is transferred from the Tibetan Plateau due the inability of the Karakorum fault (KF) to adequately accommodate ongoing E-W extension on the Tibetan Plateau. Furthermore, in line with other observations from Tibet, the onset of E-W normal faulting in the NW Himalaya may also reflect the attainment of high topography in this region, which generated crustal stresses conducive to spatially extensive extension.
Die Hauptaufgabe von MHC-kodierten Proteinen ist die Erkennung von körperfremden Molekülen sowie das Einleiten einer adäquaten Immunantwort, womit sie eine Schlüsselrolle im Immunsystem der Wirbeltiere einnehmen. Man nimmt an, dass ihre außergewöhnliche Vielfalt eine Antwort auf die sich ständig anpassenden Parasiten und Krankheitserreger ist, durch adaptive Selektion erhalten wird und dass die individuelle Allelausstattung einen Großteil der Parasitenbelastung erklärt, wofür bereits zahlreiche MHC-Studien Hinweise gefunden haben. Trotzdem ist unser Verständnis über die wirkenden Mechanismen teilweise noch lückenhaft. Ein stark vernachlässigter Aspekt hierbei sind z.B. eventuelle Unterschiede in der Genexpression der MHC-Allele und eine geringere Expression wäre gleichbedeutend mit einer geringeren Aktivierung des Immunsystems. Ich habe hierzu zwei frei lebende Kleinsäugerarten (Delomys sublineatus, Apodemus flavicollis) unter natürlichen Selektionsbedingungen untersucht. Dabei habe ich neben der genotypischen Diversität von MHC-Genen auch deren Expression, sowie die Genexpression immunregulativer Zytokine mit in Betracht gezogen und in Relation zur individuellen Belastung mit gastrointestinalen Helminthen Das gleichzeitige Auftreten von Verkürzung und Dehnung (Extension) ist ein charakteristisches Kennzeichen bei der Bildung von Kollisionsgebirgen. Eine bis heute gängige These beinhaltet ein weit verbreitetes Auftreten von bschiebungen jedoch erst in späteren Stadien der Gebirgsbildung, bzw. nach deren Abschluÿ. Verkürzung ist hingegen während der gesamten Gebirgsbildung zu beobachten. Auch wenn Extensionsprozesse einen wesentlichen Bestandteil der Gebirgsbildung darstellen, ist deren räumlichen und zeitlichen Abfolge sowie ihre kinematische Kopplung zu Verkürzungstrukturen nur wenig gesichert. Der Himalaja, durch die Kollision von Indien und Eurasien entstanden, bildet den südlichen Rand des tibetischen Hochplateaus und stellt ein typisches aktives Kollisionsgebilde dar. Während heutzutage an der Gebirgsfront Überschiebungen beobachtet werden, können mehrere Generationen an Extensionsstrukturen in den hochgelegenen Regionen des Himalajas dokumentiert werden, die sowohl parallel als auch senkrecht zur Gebirgsfront verlaufen. Im NW Indiens zeugen Erdbebendaten sowie regionale GPS-Daten von andauernder E-W-Extension. Im Gegensatz zu anderen im Himalaja beschriebenen Extensionsstrukturen ist diese Extensionsrichtung jedoch weder parallel noch senkrecht zur NE-SW orientierten regionalen Verkürzungsrichtung. In der vorliegenden Arbeit nutze ich diesen schiefen Winkel zwischen der Ausrichtung des Gebirges einerseits und den mit E-W-Extension assoziierten Strukturen andererseits, um mögliche Ursachen für verschiedene Extensionsarten differenzieren zu können. So könnte Extension entweder durch Prozesse innerhalb des tibetischen Hochplateaus gesteuert werden, oder durch die Krümmung des Himalajas, der bogenförmig verläuft. Um dies zu untersuchen, verwende ich einen neuen störungskinematischen Datensatz aus systematischen Messungen von ca. 2000 spröden Störungsflächen im Aufschlussmaßstab über den gesamten Bereich des Himalajas in NW Indien. Zusammen mit Geländebeobachtungen, aus denen eine relative Altersabfolge abgeleitet werden konnte, ermöglicht mir dieser Datensatz zwischen sechs einzelnen Deformationsarten zu differenzieren. Die meisten dieser Deformationsarten sind zeitlich und räumlich verbunden und zeigen fortschreitende Verkürzung an, gleichzeitig werden auch signifikante Extensionsrichtungen dokumentiert. Unter anderem kann ich hier zum ersten Mal eine separierte Abfolge von Extension parallel zum Himalaja-Bogen bzw. E-W-Extension dokumentieren. Ein weiteres Ziel dieser Studie ist es, einen detaillierten Überblick über die E-W-Extension im NW indischen Himalaja zu erhalten. Basierend auf Kartierung von jungen Bruchstufen sowie geomorphologische Auswertungen, 40Ar/39Ar-daten von synkinematisch gewachsenen Muskoviten auf Abschiebungen, sowie einer Kompilierung von eigene Geländebeobachtungen gröÿerer Abschiebungen mit schon publizierten Strukturen, konnte ich die räumliche Ausdehnung der E-W-Extension sowie deren zeitliche Einordnung als jüngstes Deformationsereignis belegen. Schlussendlich konnte ich anhand von Deformation in Seeablagerungen in der Nähe der momentan aktivsten Abschiebung im Untersuchungsgebiet den Nachweis an paläoseismologischen Ereignissen entlang dieser Störung ausweiten. Mit diesem Datensatz kann ich nachweisen, dass E-W-Extension in einem wesentlich ausgedehnteren Gebiet nach Süden und Westen hin auftritt, als bisher vorhandene Daten dies vermuten lassen, und dass E-W-Extension vor 14-16 Ma begann, wenn nicht sogar noch früher. Zusammenfassend bezeugen die hier präsentierten Daten die Relevanz von Extension in einer von Verkürzung geprägten Region. Die räumliche Verteilung von Störungen sowie Überschneidungskriterien lassen vermuten, dass Extension sowohl parallel wie auch senkrecht zum Himalaja-Bogen ein essentieller Teil des südwärts gerichteten Wanderns der aktiven Überschiebungsfront und des damit assoziierten lateralen Wachstums des Gebirges ist. Nach Abwägung der groÿen Bandbreite an Modellen für Extension im Himalaja und im tibetischen Hochplateau, bin ich der Meinung, dass E-W-Extension im NW indischen Himalaja ihren Ursprung im tibetischen Hochplateau hat. Grund dafür ist, dass die Bewegung entlang der Karakorum-Störung nicht ausreichend ist, um die fortdauernde E-W-Extension im tibetischen Hochplateau zu kompensieren. In Übereinstimmung mit anderen Beobachtungen in Tibet ist es auÿerdem möglich, dass das Einsetzen von E-W-Extension im NW Himalaja ebenfalls Erreichen der hohen Topographie in dieser Gegend widerspiegelt, durch die krustale Prozesse in Gang gesetzt werden, die wiederum zu räumlich ausgedehnten Extensionsprozessen führen können.. Anhand von Leber und Milzproben beider Arten habe ich die Methode der ‚real-time PCR‘ zur relativen Quantifizierung von mRNA im Labor etabliert. Bereits für die Labormaus etablierte PCR-Primersysteme wurden an beiden Arten getestet und so konnten stabile Referenzgene gefunden werden, die Grundvoraussetzung für zuverlässige Genexpressionsmessungen. Für D. sublineatus konnte gezeigt werden, dass Helminthenbefall eine typische Th2 Immunantwort induziert, und dass der Zytokin Il4 Gehalt mit Befallsintensität strongyler Nematoden zunimmt. Es wurde für D. sublineatus kein signifikanter Zusammenhang zwischen MHC Expression oder anderen Zytokinen mit Helminthenbefall gefunden. In A. flavicollis wurde ein negativer Zusammenhang zwischen haptischer MHC-Expression und dem parasitären Nematoden Heligmosomoides polygyrus festgestellt, was auf eine Immunvermeidungsstrategie des Nematoden hindeutet. Ich fand typische positive und negative Assoziationen zwischen MHC-Allelen und anderen Helminthenarten, sowie Zeichen eines positiven Selektionsdruckes auf den MHC-Sequenzen, was sich durch eine erhöhte Rate aminosäureverändernder Mutationen zeigte. Diese nicht-synonymen Veränderungen waren auf Positionen innerhalb des zweiten Exons des DRB-Genes beschränkt, wohingegen die untersuchten Bereiche des ersten und dritten Exons stark konserviert vorlagen. Diese variablen Positionen kodieren Schlüsselstellen im Bereich der Antigenbindungsstelle im MHC Molekül. Zusammenfassend zeigt diese Arbeit, dass Genexpressionsstudien auch an Wildtieren durchgeführt und verlässliche Daten erzeugt werden können. Zusätzlich zur strukturellen Vielfalt sollten zukünftig auch mögliche Genexpressionsunterschiede bei MHC-Studien berücksichtigt werden, um ein kompletteres Bild der koevolutiven Wirt-Parasiten-Beziehungen zeichnen zu können. Dies ist vor allem dann von evolutiver Bedeutung, wenn die Parasiten in der Lage sind die MHC Expression aktiv zu beeinflussen. Die Studien konnten nicht die exakte Bedeutung von MHC-Genexpression in der antagonistischen Koevolution definieren, aber sie konnten zeigen dass diese Bedeutung stark von den jeweils beteiligten Partnern abzuhängen vermag.
APA, Harvard, Vancouver, ISO, and other styles
2

Sharma, Milap Chand. "Quaternary history and landscape evolution of NW Garhwal, central Himalaya." Thesis, Royal Holloway, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wallis, David. "Micro-geodynamics of the Karakoram Fault Zone, Ladakh, NW Himalaya." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/6805/.

Full text
Abstract:
Microgeodynamics relates grain-scale deformation microstructures to macroscopic tectonic processes. Here the microgeodynamic approach combines optical and electron microscopy, including electron backscattered diffraction (EBSD), with field geology, geothermobarometry and microphysical modelling to study fault rocks deformed within a major continental strike-slip fault to quantify changes in fault zone structure and rheology with crustal depth. The overall thesis rational therefore is to test existing fault models against an exhumed example of a continental strike-slip fault zone, namely the central Karakoram Fault Zone (KFZ), NW India. This approach establishes changes in deformation processes with depth in the upper- to mid-crust and suggests that a range of fault weakening mechanisms have reduced fault rock shear strengths, typified by friction coefficients of 0.3-0.4. Metamorphic petrology and geothermobarometry are used to place the KFZ in the context of regional tectono-metamorphic evolution. It is shown using diagnostic microstructures and pressure-temperature-time paths that the fault initiated after peak metamorphism (677-736°C, 875-1059 MPa) and subsequent migmatisation (688±44°C, 522±91 MPa) and leucogranite emplacement (448±100 MPa). Retrograde phyllonites formed during later strike-slip deformation are investigated in detail using EBSD, geothermometry and microphysical modelling. The phyllonites formed at 351±34°C and had low shear strength (<30 MPa) during frictional-viscous flow. EBSD is also used to derive a novel strain proxy based on quartz crystal preferred orientation intensity. Application of this method distinguishes deformation distributions in transects across the KFZ. Deformation intensity varies from <0.2 in essentially undeformed domains to 1.6 within shear zone strands formed at 500-550°C and c. 15 km depth. Evaluation of the history of the KFZ suggests that whilst it plays a relatively minor role in accommodating India-Asia collision, it can nevertheless be used as an analogue for major continental strike-slip fault zone structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Herren, Eveline. "Structures, deformation and metamorphism of the Zanskar area (Ladakh, NW Himalaya) /." [S.l.] : [s.n.], 1987. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khattak, Ghazanfar A. "Evolution of earthquake triggered landslides in the Kashmir Himalaya, NW Pakistan." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250617592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spencer, David A. "Tectonics of the higher- and tethyan Himalaya, Upper Kaghan Valley, NW Himalaya, Pakistan : implications of an early collisional, high pressure (eclogite facies) metamorphism to the Himalayan belt /." Zürich, 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clark, Ryan J. "Structural constraints on the exhumation of the Tso Morari Dome, NW Himalaya." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33724.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2005.
Includes bibliographical references (p. 35-38).
The Tso Morari culmination in the Ladakh region of northwest India is a large (>3,000 km²) structural dome cored by coesite-bearing rocks of Indian continental crustal affinity. As one of only two localities in the Himalaya where ultrahigh-pressure rocks have been found, the culmination offers important insights into the orogenic processes responsible for exhumation of subducted continental crust. New, 1:50,000 scale geologic mapping and structural analysis in the Tso Morari area reveals evidence for five distinct deformational events. Rather than simple, one step processes envisioned by investigators in many ultrahigh-pressure terrains, exhumation of the Tso Morari culmination was a polyphase process. From >90 km to mid-crustal depths, exhumation was accommodated by a diachronous set of rooted, ductile, extensional detachments that were active [approx.] 53-40 Ma. Beginning in the Late Oligocene, continued exhumation occurred by progressive unroofing along a younger, brittle-ductile detachment. Through a rolling-hinge mechanism similar to that proposed for many metamorphic core complexes of the North American Cordillera, this unroofing led to the development of the culmination into a NW trending structural dome.
(cont.) More recently, N-S-striking normal faults accommodated continued upper crustal extension throughout much of the remainder of Cenozoic time, despite the culmination's setting in the Himalayan collisional orogen.
by Ryan J. Clark.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
8

Henderson, Alexandra Louise. "The geology of the Indus Basin sedimentary rocks, Ladakh Himalaya, NW India." Thesis, Lancaster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Orr, Elizabeth N. "''Deciphering tectonic and climatic controls on erosion and sediment transfer in the NW Himalaya''." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560866634385041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Foster, Gavin Lee. "The pre-Neogene thermal history of the Nanga Parbat Haramosh Massif and the NW Himalaya." Thesis, Open University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "NW Himalaya"

1

Group, Meeting on "Seismotectonics and Geodynamics of the Himalaya" (1995 Dept of Earth Sciences University of Roorkee). Geodynamics of the NW Himalaya. Osaka, Japan: Field Science Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nüsser, Marcus. Nanga Parbat (NW-Himalaya): Naturräumliche Ressourcenausstattung und humanökologische Gefügemuster der Landnutzung. Bonn: Ferd. Dümmlers Verlag, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Girard, Matthieu. Metamorphism and tectonics of the transition between non metamorphic Tethayan Himalaya sediments and the North Himalayan Crystalline Zone (Rupshu area, Ladakh, NW India). [Lausanne]: Section des sciences de la terre, Institut de géologie et paléontologie, Université de Lausanne, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dickoré, Wolf Bernhard. Flora of Nanga Parbat (NW Himalaya, Pakistan): An annotated inventory of vascular plants with remarks on vegetation dynamics. Berlin: Botanic Garden and Botanical Museum Berlin-Dahlem, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nusser, Marcus. Naga Parbat (NW-Himalaya): Naturraumliche Ressourcenausstattung und humanokologische Gefugemuster der Landnutzung (Bonner geographische Abhandlungen). In Kommission bei Ferd. Dummlers Verlag, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "NW Himalaya"

1

Shah, Afroz Ahmad, Adi Ameza Binti Mohd Addly, and Mohammad Iskandar Bin Abdul Samat. "Geomorphic Mapping Reveals ~NW-SE Extension in NW Himalaya." In Recent Advances in Geo-Environmental Engineering, Geomechanics and Geotechnics, and Geohazards, 385–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01665-4_89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hewitt, Kenneth. "Transglacial Hazards: Karakoram and NW Himalaya, Inner Asia." In Landslide Science for a Safer Geoenvironment, 535–41. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04996-0_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Phartiyal, Binita, Randheer Singh, and Debarati Nag. "Trans- and Tethyan Himalayan Rivers: In Reference to Ladakh and Lahaul-Spiti, NW Himalaya." In Springer Hydrogeology, 367–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-2984-4_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhutiyani, M. R. "Spatial and Temporal Variability of Climate Change in High-Altitude Regions of NW Himalaya." In Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya, 87–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28977-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, Tejpal, and A. K. Awasthi. "Deformation in the Kangra Reentrant, Himachal Pradesh of NW-Sub Himalaya of India: A Paradox." In Tectonics and Structural Geology: Indian Context, 381–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99341-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Negi, H. S., and Neha Kanda. "An Appraisal of Spatio-Temporal Characteristics of Temperature and Precipitation Using Gridded Datasets over NW- Himalaya." In Climate Change and the White World, 219–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21679-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Sunil, Vaneet Jishtu, J. S. Thakur, and T. N. Lakhanpal. "Studies on Mycorrhiza in Pinus gerardiana Wall. ex D. Don, a Threatened Pine of the NW Himalaya." In Developments in Fungal Biology and Applied Mycology, 359–89. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4768-8_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dutta, Sharat, S. A. I. Mujtaba, R. Bhavani, Mohammad Atif Raza, R. Chunchekar, and Mohd Sadiq. "Responses of Indian Summer Monsoon Dynamics and Late Quaternary Fluvial Development: Records from Yamuna River Valley, NW-Himalaya." In Climate Change and the White World, 187–218. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21679-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ali, Umair, and Syed Ahmad Ali. "Investigation of Drainage for Structures, Lithology and Priority (Flood and Landslide) Assessment Using Geospatial Technology, J&K, NW Himalaya." In Hydrologic Modeling, 135–60. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Verma, R. K., and K. A. V. L. Prasad. "Gravity field, deep seismic sounding and nature of continental crust underneath NW Himalayas." In Properties and Processes of Earth' Lower Crust, 279–84. Washington, D. C.: American Geophysical Union, 1989. http://dx.doi.org/10.1029/gm051p0279.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "NW Himalaya"

1

Chamoli, A., and V. P. Dimri. "Spectral Analysis of Gravity Data of NW Himalaya." In EGM 2010 International Workshop. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.165.c_op_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parvez, I. A., and R. R. Mir. "Simulation of Ground Motion in NW Himalaya and Adjacent Areas Using Stochastic Finite-fault Method." In 79th EAGE Conference and Exhibition 2017. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orr, Elizabeth, Lewis Owen, Sourav Saha, and Marc W. Caffee. "TIMING AND NATURE OF ALLUVIAL/ DEBRIS FLOW FAN FORMATION IN THE NW HIMALAYA OF NORTHERN INDIA." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-315806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

PAN, Ruiguang, Catherine A. Macris, and Carrie A. Menold. "INVESTIGATING THE METAMORPHIC EVOLUTION, WATER-ROCK INTERACTION, AND GEOCHEMISTRY OF TSO MORARI UHP TERRANE, NW HIMALAYA." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Orr, Elizabeth, Lewis Owen, and Marc W. Caffee. "PERIGLACIAL LANDSCAPE CHANGE OF THE UPPER BHAGIRATHI CATCHMENT, NW HIMALAYA: CONSTRAINING BEDROCK SLOPE EROSION RATES USING 10BE." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-315808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martin, Alison, Laurent Godin, and John M. Cottle. "TIMING AND SOURCE OF MELTING AT THE EASTERN EDGE OF THE GURLA MANDHATA CORE COMPLEX, NW NEPAL HIMALAYA." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-353209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Basu, Asish, Souvik Das, and Barun Mukherjee. "MANTLE UPWELLING FROM ~ 410 KM TRANSITION ZONE BELOW THE NEO - TETHYAN INDUS OPHIOLITE IN NIDAR, NW HIMALAYA. BASU,." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-283157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jessup, Micah J., Jackie Langille, John M. Cottle, and Talat Ahmad. "CRUSTAL THICKENING, METAMORPHISM, AND EXHUMATION OF MID-CRUSTAL ROCKS DURING DOMING AND EXTRUSION: INSIGHTS INTO THE LEO PARGIL DOME, NW INDIAN HIMALAYA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-286628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shah*, Mumtaz M., Asghar Ali, and Syed Aosaf Hassan. "Facies Control on Selective Dolomitization in the Samana Suk Formation (Middle Jurassic), Southern Hazara Basin (NW Himalaya, Pakistan): Implications on Reservoir Characterization." In International Conference and Exhibition, Melbourne, Australia 13-16 September 2015. Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2015. http://dx.doi.org/10.1190/ice2015-2209960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singla, Garry, Sajid Ali, Birendra Pratap Singh, Om N. Bhargava, Ramanpreet Kaur, and Stanzin Stopden. "Provenance, Tectonic Settings and Depositional Environmental Records of the Cambrian Wuliuan (Miaolingian) Kunzam La (Parahio) Formation in the Sumna Valley, Spiti, NW Himalaya." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography