Academic literature on the topic 'Object Based Image Analysis (OBIA)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Object Based Image Analysis (OBIA).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Object Based Image Analysis (OBIA)"
Kavzoglu, T., M. Yildiz Erdemir, and H. Tonbul. "A REGION-BASED MULTI-SCALE APPROACH FOR OBJECT-BASED IMAGE ANALYSIS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (June 21, 2016): 241–47. http://dx.doi.org/10.5194/isprsarchives-xli-b7-241-2016.
Full textKavzoglu, T., M. Yildiz Erdemir, and H. Tonbul. "A REGION-BASED MULTI-SCALE APPROACH FOR OBJECT-BASED IMAGE ANALYSIS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (June 21, 2016): 241–47. http://dx.doi.org/10.5194/isprs-archives-xli-b7-241-2016.
Full textSofyan, Agus. "Classification of Land Cover by Using Aerial Photo At CV. Alaska Prima Coal, Cooling Village, Sanga-Sanga Sub-district, Kutai Kartanegara District, East Kalimantan Province." AGRIFOR 17, no. 1 (March 9, 2018): 1. http://dx.doi.org/10.31293/af.v17i1.3090.
Full textKavzoglu, T., and M. Yildiz. "Parameter-Based Performance Analysis of Object-Based Image Analysis Using Aerial and Quikbird-2 Images." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-7 (September 19, 2014): 31–37. http://dx.doi.org/10.5194/isprsannals-ii-7-31-2014.
Full textZatelli, P., S. Gobbi, C. Tattoni, N. La Porta, and M. Ciolli. "OBJECT-BASED IMAGE ANALYSIS FOR HISTORIC MAPS CLASSIFICATION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W14 (August 23, 2019): 247–54. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w14-247-2019.
Full textBlaschke, T., S. Lang, D. Tiede, M. Papadakis, and A. Györi. "OBJECT-BASED IMAGE ANALYSIS BEYOND REMOTE SENSING – THE HUMAN PERSPECTIVE." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (June 22, 2016): 879–82. http://dx.doi.org/10.5194/isprs-archives-xli-b7-879-2016.
Full textBlaschke, T., S. Lang, D. Tiede, M. Papadakis, and A. Györi. "OBJECT-BASED IMAGE ANALYSIS BEYOND REMOTE SENSING – THE HUMAN PERSPECTIVE." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (June 22, 2016): 879–82. http://dx.doi.org/10.5194/isprsarchives-xli-b7-879-2016.
Full textFernandez Galarreta, J., N. Kerle, and M. Gerke. "UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning." Natural Hazards and Earth System Sciences 15, no. 6 (June 1, 2015): 1087–101. http://dx.doi.org/10.5194/nhess-15-1087-2015.
Full textFernandez Galarreta, J., N. Kerle, and M. Gerke. "UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning." Natural Hazards and Earth System Sciences Discussions 2, no. 9 (September 2, 2014): 5603–45. http://dx.doi.org/10.5194/nhessd-2-5603-2014.
Full textApriyanto, Dwi Putra, I. Nengah Surati Jaya, and Nining Puspaningsih. "Examining the object-based and pixel-based image analyses for developing stand volume estimator model." Indonesian Journal of Electrical Engineering and Computer Science 15, no. 3 (September 1, 2019): 1586. http://dx.doi.org/10.11591/ijeecs.v15.i3.pp1586-1596.
Full textDissertations / Theses on the topic "Object Based Image Analysis (OBIA)"
Ortega-García, José Antonio. "Forest stand delineation through remote sensing and Object-Based Image Analysis." Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-28005.
Full textNo
Chima, C. I. "Monitoring and modelling of urban land use in Abuja Nigeria, using geospatial information technologies." Thesis, Coventry University, 2012. http://curve.coventry.ac.uk/open/items/286e264c-3d26-4448-8049-6f2ef3fda727/1.
Full textInomata, Takeshi, Flory Pinzón, José Luis Ranchos, Tsuyoshi Haraguchi, Hiroo Nasu, Juan Carlos Fernandez-Diaz, Kazuo Aoyama, and Hitoshi Yonenobu. "Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, Guatemala." MDPI AG, 2017. http://hdl.handle.net/10150/624959.
Full textPedrassoli, Júlio César. "Análise orientada a objeto para detecção de favelas e classificação do uso do solo em Taboão da Serra/SP." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/8/8135/tde-03052012-085635/.
Full textThe accelerated growth of the cities and the reflections of the increase of the urban population has been a constant concern nowadays. In this process, the occurrence of precarious occupancies, mainly in the metropolitan regions, has become one of the most explicit characteristics, describing the logic of occupancy itself, unequal use and right to the territory. The monitoring of these areas, their lineup and expansion, are an increasing need in several places in the world, as the inclusion of these areas in the formal city is considered a trigger for the living conditions improvement of over 100 million people who live in slums all over the world, as the Developments Goals of the Millennium proposed by the United Nations Organization. However, in order to meet the rights to a dignified life of the slums inhabitants, it is necessary to know about them mainly their number and where they are. An important tool related to the beneficial relation among the acquisition time, application cost and possibility of applying again, and transference of knowledge is the use of data from Remote Sensing. These data make it possible to establish the methodologies through the detection of features procedures and classification of the land use for these areas identification. Nevertheless the classical methods of classification cannot obtain, in certain cases, information on the interurban use, in a satisfactory way. In the interim, new paradigms of images classification appear like the Object Based Image Analysis (OBIA) which goes from the defined geographic object to the image segmentation, approaching the object to features of the real world. The application of pertinent rules and context over these objects is possible through specific languages and softwares that allow the transference of human knowledge of photo interpretation and contextual relation to the computing environment. This work aimed at evaluating the use of this classification technique for detection and zoning of slums in Taboão da Serra/SP town using supporting data for the areas characterization, its grades and kinds of precarious conditions. The results show the validity of the technique application.
Martinová, Olga. "Extrakce krajinných prvků z dat dálkového průzkumu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226365.
Full textLübker, Tillmann. "Object-based remote sensing for modelling scenarios of rural livelihoods in the highly structured farmland surrounding Kakamega Forest, western Kenya." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-150628.
Full textDie vorliegende Arbeit untersucht räumlich-expliziten das stark strukturierte und dicht besiedelte Agrarland um den Kakamega Wald (Westkenia). Dabei kombiniert der interdisziplinäre Ansatz Methoden und Technologien verschiedener Wissenschaftsbereiche: die Fernerkundung mit der objekt-basierten Bildanalyse (OBIA), GIS und die räumlich-explizite Modellierung (Geoinformatik und Geographie) mit sozio- und agro-ökonomische Aspekten (Human- und Sozialwissenschaft) sowie der Kartographie. Zudem steht die Arbeit in Bezug zum Schutz der biologischen Vielfalt (Biologie). Ausgehend von einer Referenzdatenerfassung vor Ort und einer visuellen Bildinterpretation wurden räumlich sehr hochauflösende QuickBird-Satellitenbilddaten, die 466 km² des Agrarlandes abdecken, mit Hilfe von OBIA ausgewertet. In einem integrativen Ansatz wurden dabei statistische Verfahren und Expertenwissen kombiniert, um einen ausgefeilten Regelsatz zur Klassifizierung zu erzeugen. Das Klassifizierungsergebnis unterscheidet 15 Klassen der Landnutzung bzw. -bedeckung; zusammen mit zeitlich extrapolierten und räumlich neu verteilten Bevölkerungsdaten sowie sozio- und agro-ökonomischen Faktoren ermöglichte es, eine räumlich-explizite Typologie des Agrarlandes zu erstellen und Szenarien zum ländlichen Auskommen zu modellieren. Die Agrarlandtypologie unterscheidet zehn Landtypen: 3 Zuckerrohr-dominierte Typen (48% des Gebietes), 3 Tee-dominierte Typen (30%), 2 Übergangstypen (15%), 1 Typ steilen Geländes (2%) und 1 zentralen Typ (5%). Die Szenarien betrachten mögliche zukünftige Entwicklungen der Erträge und Preise der Hauptanbauarten Zuckerrohr, Tee und Mais. Von allen Agrarlandtypen ist der „marginal Zuckerrohr-dominierte Typ“ am besten gerüstet, um zukünftigen Problemen zu begegnen. Bezeichnend für diesen Typ sind – neben einer vergleichsweise geringen Bevölkerungsdichte – ein hoher Anteil an Nahrungsmittelanbau zusammen mit einem gemäßigten Anbau von exportorientierten Agrarprodukten. Als Teil der Forschungsarbeit werden verschiedene neuartige Methoden vorgestellt, u.a. ein neuer konzeptioneller Rahmen für das Kategorisieren von Studien zur Parameteroptimierung, die „area fitness rate“ (AFR) als neue Messgröße für Flächendiskrepanzen, die klassifikations-basierte Nächster-Nachbar Klassifizierung sowie ein Ansatz zum Bestimmen der Güte von OBIA-Klassifizierungen. Schließlich gibt die Arbeit eine Reihe von Empfehlungen und bietet vielversprechende Ausgangspunkte für weiterführende wissenschaftliche Forschungen
Marpu, Prashanth Reddy. "Geographic object-based image analysis." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:bsz:105-5519610.
Full textTurcat, Jean-Philippe. "Object-based content representation and analysis for image retrieval." Thesis, Staffordshire University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394142.
Full textVolotão, Carlos Frederico de Sá. "Image segmentation using IHS space and object-based analysis." Instituto Nacional de Pesquisas Espaciais (INPE), 2013. http://urlib.net/sid.inpe.br/mtc-m19/2013/01.21.22.42.
Full textSegmentation is an important procedure in remote sensing image analysis, which divides an image into parts with uniform properties and changes the smallest unit of an image from pixel to segmento Some factors produce undesired results in the segmentation of remote sensing imagery and one of such factors is due to illumination: the occurrence of shadows. Lighting affects image segmentation because variations on scene lighting modifies the pixel values in all spectral bands. The concentration of intensity on the sensed signal in one channel produces two other channels, hue and saturation, where the effects of glare, shadows and gradients are minimized. The hue is being used to identify objects that are distinguishable by this attribute, and the same principle of detection is being extended to multi-band images, but it is not suitable for all cases. To improve the process it is being presented a way to produce a saturation-weighted synthetic hue channel for multispectral imagery. The central idea behind this object-based approach is the ability to evaluate and change any segment before finishing the segmentation processo A turning function is a representation of polygons by angles and lengths and it may be analyzed and modified as necessary. Every segment identified as foreground undergoes to analysis and the corresponding segment is subject to changes. To obtain the turning function, the segment is first identified as a blob and then converted into a Freeman's chain co de formato The use of indexes is helpful to categorize shapes and some metrics are being presented. The algorithm is implemented in IDL language and it have two modes: unsupervised and supervised. The unsupervised uses a region growing algorithm with random seeds. The supervised consists on the manual indication of a small area of the object. Besides the enhancements on the algorithms and the proposal of a object-based approach for a chosen segmentation technique, this thesis also proposes a feasible way to make segmentation based on phase extracted from multispectral imagery using any segmentation software in addition to creating a synthetic hue band from the combinations of color compositions of the original imagery.
Li, Yi. "Object and concept recognition for content-based image retrieval /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/7006.
Full textBooks on the topic "Object Based Image Analysis (OBIA)"
Blaschke, Thomas, Stefan Lang, and Geoffrey J. Hay, eds. Object-Based Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77058-9.
Full textThomas, Blaschke, Gärtner Georg, Hay, Geoffrey J. (Geoffrey Joseph), 1966-, Lang, Stefan (Stefan M.), Meng Liqiu, Peterson Michael P, and SpringerLink (Online service), eds. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Find full text1956-, Menz Gunter, ed. Object-based image analysis and treaty verification: New approaches in remote sensing - applied to nuclear facilities in Iran. Dordrecht: Springer, 2008.
Find full textDhawan, Atam P. A knowledge-based object recognition system for applications in the space station: NASA/KBOR annual report : final report ... Feb. 1, 1987 to Jan. 31, 1988. [Washington, DC: National Aeronautics and Space Administration, 1988.
Find full textObject-Based Image Analysis and Treaty Verification. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6961-1.
Full textBlaschke, Thomas, Stefan Lang, and Geoffrey Hay. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. Springer, 2016.
Find full textMenz, Gunter, and Sven Nussbaum. Object-Based Image Analysis and Treaty Verification: New Approaches in Remote Sensing - Applied to Nuclear Facilities in Iran. Springer, 2010.
Find full textUnited States. National Aeronautics and Space Administration., ed. A knowledge-based object recognition system for applications in the space station: NASA/KBOR annual report : final report ... Feb. 1, 1987 to Jan. 31, 1988. [Washington, DC: National Aeronautics and Space Administration, 1988.
Find full textBook chapters on the topic "Object Based Image Analysis (OBIA)"
Prathiba, A. P., Kriti Rastogi, Gaurav V. Jain, and V. V. Govind Kumar. "Building Footprint Extraction from Very-High-Resolution Satellite Image Using Object-Based Image Analysis (OBIA) Technique." In Lecture Notes in Civil Engineering, 517–29. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7067-0_41.
Full textNussbaum, Sven. "Object-based Image Analysis." In International Safeguards and Satellite Imagery, 107–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79132-4_8.
Full textNelson, Stacy A. C., and Siamak Khorram. "Object Based Image Analysis." In Image Processing and Data Analysis with ERDAS IMAGINE®, 231–47. Boca Raton, FL : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b21969-11.
Full textGevers, T., and A. W. M. Smeulders. "Color based object recognition." In Image Analysis and Processing, 319–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63507-6_217.
Full textJiang, Fangyuan, Olof Enqvist, Fredrik Kahl, and Kalle Åström. "Improved Object Detection and Pose Using Part-Based Models." In Image Analysis, 396–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38886-6_38.
Full textEhlers, Arne, Florian Baumann, and Bodo Rosenhahn. "Exploiting Object Characteristics Using Custom Features for Boosting-Based Classification." In Image Analysis, 420–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38886-6_40.
Full textBalázs, Péter, and Mihály Gara. "An Evolutionary Approach for Object-Based Image Reconstruction Using Learnt Priors." In Image Analysis, 520–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02230-2_53.
Full textPontil, Massimiliano, and Alessandro Verri. "Direct aspect-based 3-D object recognition." In Image Analysis and Processing, 300–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63508-4_136.
Full textPaletta, Lucas, Gerald Fritz, and Christin Seifert. "Perception-Action Based Object Detection from Local Descriptor Combination and Reinforcement Learning." In Image Analysis, 639–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499145_65.
Full textOrrite, Carlos, and Elena Pollo. "Feature-Based Scaffolding for Object Tracking." In Pattern Recognition and Image Analysis, 411–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58838-4_45.
Full textConference papers on the topic "Object Based Image Analysis (OBIA)"
Dragozi, E., Ioannis Z. Gitas, Dimitris G. Stavrakoudis, and C. Minakou. "Burn severity estimation using GeoEye imagery, object-based image analysis (OBIA), and Composite Burn Index (CBI) measurements." In Third International Conference on Remote Sensing and Geoinformation of the Environment, edited by Diofantos G. Hadjimitsis, Kyriacos Themistocleous, Silas Michaelides, and Giorgos Papadavid. SPIE, 2015. http://dx.doi.org/10.1117/12.2193149.
Full textFormaggio, Antonio Roberto, Matheus Alves Vieira, and Camilo Daleles Renno. "Object Based Image Analysis (OBIA) and Data Mining (DM) in Landsat time series for mapping soybean in intensive agricultural regions." In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351047.
Full textVasylenko, N., and I. Tishaev. "Object based image analysis for cropland mapping." In 17th International Conference on Geoinformatics - Theoretical and Applied Aspects. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801813.
Full textMEZARIS, V., I. KOMPATSIARIS, and M. G. STRINTZIS. "ONTOLOGIES FOR OBJECT-BASED IMAGE RETRIEVAL." In Proceedings of the 4th European Workshop on Image Analysis for Multimedia Interactive Services. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704337_0018.
Full textWang, Lu, Erxue Chen, Zengyuan Li, Wanqiang Yao, and Shiming Li. "Object-based analysis for forest inventory." In Eighth International Symposium on Multispectral Image Processing and Pattern Recognition, edited by Jinwen Tian and Jie Ma. SPIE, 2013. http://dx.doi.org/10.1117/12.2031127.
Full textXie, Zhi-ping, Geng-sheng Zheng, and Gui-ming He. "Moving object extraction based on Markov random field models." In MIPPR 2005 Image Analysis Techniques, edited by Deren Li and Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.655091.
Full textZuo, Zhengrong, Huafeng Chen, and Tianxu Zhang. "Study on object matching method based on Hausdorff distance." In MIPPR 2005 Image Analysis Techniques, edited by Deren Li and Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.655283.
Full textJovanovic, Dusan, Miro Govedarica, Ivana Dordevic, and Vladimir Pajic. "Object based image analysis in forestry change detection." In 2010 IEEE 8th International Symposium on Intelligent Systems and Informatics (SISY 2010). IEEE, 2010. http://dx.doi.org/10.1109/sisy.2010.5647487.
Full text"A GENERIC CONCEPT FOR OBJECT-BASED IMAGE ANALYSIS." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002848105300533.
Full textLizarazo, Ivan, and Paul Elsner. "Fuzzy segmentation for geographic object-based image analysis." In SPIE Europe Remote Sensing, edited by Ulrich Michel and Daniel L. Civco. SPIE, 2009. http://dx.doi.org/10.1117/12.830477.
Full textReports on the topic "Object Based Image Analysis (OBIA)"
Diesing, M., S. Archer, J. Bremner, T. Dolphin, A. L. Downie, and C. Scougal. Drone based very-high resolution imagery analysed with geographic object-based image analysis: the perfect match for mapping intertidal habitats? Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305846.
Full textHofmann, Peter, Robert Marschallinger, Michael Unterwurzacher, and Fritz Zobl. Designation of marble provenance: State-of-the-art rock fabric characterization in thin sections by object based image analysis. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0284.
Full textReshitnyk, L. Y., and E. M. Rubidge. Distinguishing between two canopy-forming kelp species (Macrocystis sp. and Nereocystis sp.) on the central coast of British Columbia using object-based image analysis with WorldView-2 pansharpened imagery. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305918.
Full textStelmakh, Marta. HISTORICAL CONTEXT IN THE COLLECTION OF ARTICLES BY TIMOTHY SNYDER «UKRAINIAN HISTORY, RUSSIAN POLITICS, EUROPEAN FUTURE». Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11098.
Full text