Academic literature on the topic 'Object contour detection method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Object contour detection method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Object contour detection method"
Wu, Shaofei. "A Traffic Motion Object Extraction Algorithm." International Journal of Bifurcation and Chaos 25, no. 14 (December 30, 2015): 1540039. http://dx.doi.org/10.1142/s0218127415400398.
Full textZhang, Jianhua, Sheng Liu, Y. F. Li, and Jianwei Zhang. "Target Contour Recovering for Tracking People in Complex Environments." Computational and Mathematical Methods in Medicine 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/506908.
Full textWang, Bo, Kun Zhang, Liang Shi, and Hui Hui Zhong. "An Edge Detection Algorithm of Moving Object Based on Background Modeling and Active Contour Model." Advanced Materials Research 765-767 (September 2013): 2393–98. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2393.
Full textKhan, Umer Sadiq, Xingjun Zhang, and Yuanqi Su. "Active Contour Model Using Fast Fourier Transformation for Salient Object Detection." Electronics 10, no. 2 (January 15, 2021): 192. http://dx.doi.org/10.3390/electronics10020192.
Full textHermawan, Hendra. "Experimental Vision Robot for General Working Application using Raspberry Pi and Single Camera with Python-OpenCV." ACMIT Proceedings 3, no. 1 (March 18, 2019): 231–38. http://dx.doi.org/10.33555/acmit.v3i1.50.
Full textXiang, Jinhai, Heng Fan, Honghong Liao, Jun Xu, Weiping Sun, and Shengsheng Yu. "Moving Object Detection and Shadow Removing under Changing Illumination Condition." Mathematical Problems in Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/827461.
Full textPark, Hyun Jun, and Kwang Baek Kim. "Estimation of object location probability for object detection using brightness feature only." International Journal of Electrical and Computer Engineering (IJECE) 9, no. 6 (December 1, 2019): 5227. http://dx.doi.org/10.11591/ijece.v9i6.pp5227-5234.
Full textXu, Yang, Cheng Dong Wu, Ying Zhao, Ji Zhao, and Xue Dong Zhang. "Moving Object Detection Based on Improved Variational GAC Model." Advanced Materials Research 562-564 (August 2012): 1309–14. http://dx.doi.org/10.4028/www.scientific.net/amr.562-564.1309.
Full textВасильева, Ирина Карловна, and Анатолий Владиславович Попов. "МЕТОД СИНТЕЗА МНОГОКОМПОНЕНТНОЙ МОДЕЛИ АТРИБУТИВНЫХ ПРИЗНАКОВ ОБЪЕКТОВ." RADIOELECTRONIC AND COMPUTER SYSTEMS, no. 2 (October 8, 2018): 13–25. http://dx.doi.org/10.32620/reks.2018.2.02.
Full textZhu, Xin, Xin Xu, and Nan Mu. "Saliency Detection Based on the Combination of High-Level Knowledge and Low-Level Cues in Foggy Images." Entropy 21, no. 4 (April 6, 2019): 374. http://dx.doi.org/10.3390/e21040374.
Full textDissertations / Theses on the topic "Object contour detection method"
Vylíčil, Radek. "Detektor objektů v obrazech založený na metodě C4." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-220400.
Full textBerjass, Hisham. "Hardware Implementation Of An Object Contour Detector Using Morphological Operators." Thesis, Linköpings universitet, Institutionen för systemteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66353.
Full textГолінка, А. Ю. "Інтелектуальна система керування автомобільною стоянкою." Master's thesis, Сумський державний університет, 2020. https://essuir.sumdu.edu.ua/handle/123456789/79551.
Full textChe, Peining. "ZERO-SHOT OBJECT DETECTION METHOD COMPARISON AND ANALYSIS." Miami University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=miami1567160037757546.
Full textFurundzic, Bojan, and Fabian Mathisson. "Dataset Evaluation Method for Vehicle Detection Using TensorFlow Object Detection API." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43345.
Full textInom fältet av objektdetektering har ny utveckling demonstrerat stor kvalitetsvariation mellan visuella dataset. Till följd av detta finns det ett behov av standardiserade valideringsmetoder för att jämföra visuella dataset och deras prestationsförmåga. Detta examensarbete har, med ett fokus på fordonsigenkänning, som syfte att utveckla en pålitlig valideringsmetod som kan användas för att jämföra visuella dataset. Denna valideringsmetod användes därefter för att fastställa det dataset som bidrog till systemet med bäst förmåga att detektera fordon. De dataset som användes i denna studien var BDD100K, KITTI och Udacity, som tränades på individuella igenkänningsmodeller. Genom att applicera denna valideringsmetod, fastställdes det att BDD100K var det dataset som bidrog till systemet med bäst presterande igenkänningsförmåga. En analys av dataset storlek, etikettdistribution och genomsnittliga antalet etiketter per bild var även genomförd. Tillsammans med ett experiment som genomfördes för att testa modellerna i verkliga sammanhang, kunde det avgöras att valideringsmetoden stämde överens med de fastställda resultaten. Slutligen studerades TensorFlow Object Detection APIs förmåga att förbättra prestandan som erhålls av ett visuellt dataset. Genom användning av ett modifierat dataset, kunde det fastställas att TensorFlow Object Detection API är ett lämpligt modifieringsverktyg som kan användas för att öka prestandan av ett visuellt dataset.
Yiu, Wai-sing Boris, and 姚維勝. "A fast probabilistic method for vehicle detection and tracking with anexplicit contour model." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B35057178.
Full textMOREIRA, GUSTAVO COSTA GOMES. "A METHOD FOR REAL-TIME OBJECT DETECTION IN HD VIDEOS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24507@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A detecção e o subsequente rastreamento de objetos em sequencias de vídeo é um desafio no que tange o processamento de vídeos em tempo real. Nesta tese propomos um método de detecção em tempo real adequado para o processamento de vídeos de alta definição. Neste método utilizamos um procedimento de segmentação de quadros usando as imagens integrais de frente, o que permite o rápido descarte de várias partes da imagem a cada quadro, desta maneira atingindo uma alta taxa de quadros processados por segundo. Estendemos ainda o algoritmo proposto para que seja possível detectar múltiplos objetos em paralelo. Além disto, através da utilização de uma GPU e técnicas que podem ter seu desempenho aumentado por meio de paralelismo, como o operador prefix sum, conseguimos atingir um desempenho ainda melhor do algoritmo, tanto para a detecção do objeto, como na etapa de treinamento de novas classes de objetos.
The detection and subsequent tracking of objects in video sequences is a challenge in terms of video processing in real time. In this thesis we propose an detection method suitable for processing high-definition video in real-time. In this method we use a segmentation procedure through integral image of the foreground, which allows a very quick disposal of various parts of the image in each frame, thus achieving a high rate of processed frames per second. Further we extend the proposed method to be able to detect multiple objects in parallel. Furthermore, by using a GPU and techniques that can have its performance enhanced through parallelism, as the operator prefix sum, we can achieve an even better performance of the algorithm, both for the detection of the object, as in the training stage of new classes of objects.
Yiu, Wai-sing Boris. "A fast probabilistic method for vehicle detection and tracking with an explicit contour model." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B35057178.
Full textHE, LEI. "A COMPARISON OF DEFORMABLE CONTOUR METHODS AND MODEL BASED APPROACH USING SKELETON FOR SHAPE RECOVERY FROM IMAGES." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1059746287.
Full textYe, Fanjie. "A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1752364/.
Full textBook chapters on the topic "Object contour detection method"
Cao, Yuan-yuan, Guang-you Xu, and Thomas Riegel. "Moving Object Contour Detection Based on S-T Characteristics in Surveillance." In Human Interface and the Management of Information. Methods, Techniques and Tools in Information Design, 575–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73345-4_66.
Full textFerrari, Vittorio, Tinne Tuytelaars, and Luc Van Gool. "Object Detection by Contour Segment Networks." In Computer Vision – ECCV 2006, 14–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11744078_2.
Full textLi, Xin, Fan Yang, Hong Cheng, Wei Liu, and Dinggang Shen. "Contour Knowledge Transfer for Salient Object Detection." In Computer Vision – ECCV 2018, 370–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01267-0_22.
Full textKelm, André Peter, Vijesh Soorya Rao, and Udo Zölzer. "Object Contour and Edge Detection with RefineContourNet." In Computer Analysis of Images and Patterns, 246–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29888-3_20.
Full textWeiler, Daniel, Volker Willert, and Julian Eggert. "A Probabilistic Prediction Method for Object Contour Tracking." In Artificial Neural Networks - ICANN 2008, 1011–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87536-9_103.
Full textMemar, Sara, Karen Jin, and Boubakeur Boufama. "Object Detection Using Active Contour Model with Depth Clue." In Lecture Notes in Computer Science, 640–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39094-4_73.
Full textShi, Xin, Tao Xue, and Xueqing Zhao. "Moving Object Detection Based on Self-adaptive Contour Extraction." In Lecture Notes in Computer Science, 126–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87355-4_11.
Full textZhu, Qihui, Liming Wang, Yang Wu, and Jianbo Shi. "Contour Context Selection for Object Detection: A Set-to-Set Contour Matching Approach." In Lecture Notes in Computer Science, 774–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88688-4_57.
Full textGhadiri, Farnoosh, Robert Bergevin, and Guillaume-Alexandre Bilodeau. "Carried Object Detection Based on an Ensemble of Contour Exemplars." In Computer Vision – ECCV 2016, 852–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46478-7_52.
Full textMohanty, Mihir Narayan, and Subhashree Rout. "An Intelligent Method for Moving Object Detection." In Advances in Intelligent Systems and Computing, 343–51. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2009-1_39.
Full textConference papers on the topic "Object contour detection method"
Kim, Shin-Hyoung, and Jong Whan Jang. "An Improved Snake-Based Method for Object Contour Detection." In 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4378938.
Full textZirakchi, Armaan, Cody Lee Lundberg, and Hakki Erhan Sevil. "Omni Directional Moving Object Detection and Tracking With Virtual Reality Feedback." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5352.
Full textTheodoracatos, Vassilios E., and Ranganath R. Katti. "An Automated and Interactive Approach for Fitting B-Spline Surfaces Through 3D Planar Visual Data." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0102.
Full textSchlecht, Joseph, and Björn Ommer. "Contour-based object detection." In British Machine Vision Conference 2011. British Machine Vision Association, 2011. http://dx.doi.org/10.5244/c.25.50.
Full textHwang, Kao-Shing, Ming-Dar Tsai, and Ming-Yi Ju. "3D Collision-Free Trajectory Planning for Mobile Robot Based on Quadric Modeling." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/mech-5995.
Full textLoke, Kar Seng. "Wedgelets-based automatic object contour detection." In 2010 Sixth International Conference on Natural Computation (ICNC). IEEE, 2010. http://dx.doi.org/10.1109/icnc.2010.5583731.
Full textBi, Wei, Yongping Zhang, Weiguo Huang, and Guanqi Gao. "Salient Contour Matching for Object Detection." In 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2016. http://dx.doi.org/10.1109/ihmsc.2016.37.
Full textShotton, J., A. Blake, and R. Cipolla. "Contour-based learning for object detection." In Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. IEEE, 2005. http://dx.doi.org/10.1109/iccv.2005.63.
Full textXu, Changhai, and Benjamin Kuipers. "Object Detection Using Principal Contour Fragments." In 2011 Canadian Conference on Computer and Robot Vision (CRV). IEEE, 2011. http://dx.doi.org/10.1109/crv.2011.55.
Full textKezheng, Lin, and Li Xinyuan. "Improved Contour-Based Object Detection and Segmentation." In 2008 International Multi-symposiums on Computer and Computational Sciences (IMSCCS). IEEE, 2008. http://dx.doi.org/10.1109/imsccs.2008.48.
Full textReports on the topic "Object contour detection method"
Christie, Benjamin, Osama Ennasr, and Garry Glaspell. ROS integrated object detection for SLAM in unknown, low-visibility environments. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42385.
Full textClausen, Jay, Christopher Felt, Michael Musty, Vuong Truong, Susan Frankenstein, Anna Wagner, Rosa Affleck, Steven Peckham, and Christopher Williams. Modernizing environmental signature physics for target detection—Phase 3. Engineer Research and Development Center (U.S.), March 2022. http://dx.doi.org/10.21079/11681/43442.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full textKirichek, Galina, Vladyslav Harkusha, Artur Timenko, and Nataliia Kulykovska. System for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3743.
Full text