Academic literature on the topic 'Oblique boundary value problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oblique boundary value problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oblique boundary value problem"
Turmetov, Batirkhan, Maira Koshanova, and Moldir Muratbekova. "On some analogues of periodic problems for Laplace equation with an oblique derivative under boundary conditions." e-Journal of Analysis and Applied Mathematics 2020, no. 1 (January 1, 2020): 13–27. http://dx.doi.org/10.2478/ejaam-2020-0002.
Full textNazarova, Kulzina Zh, Batirkhan Kh Turmetov, and Kairat Id Usmanov. "On a nonlocal boundary value problem with an oblique derivative." Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 22, no. 1 (March 31, 2020): 81–93. http://dx.doi.org/10.15507/2079-6900.22.202001.81-93.
Full textNazarov, A. I., and N. N. Uraltseva. "The oblique boundary-value problem for a quasilinear parabolic equation." Journal of Mathematical Sciences 77, no. 3 (November 1995): 3212–20. http://dx.doi.org/10.1007/bf02364713.
Full textBauer, Frank. "Split operators for oblique boundary value problems." Applicable Analysis 87, no. 1 (January 2008): 45–57. http://dx.doi.org/10.1080/00036810701603029.
Full textDíaz, G., J. I. Díaz, and J. Otero. "On an oblique boundary value problem related to the Backus problem in Geodesy." Nonlinear Analysis: Real World Applications 7, no. 2 (April 2006): 147–66. http://dx.doi.org/10.1016/j.nonrwa.2005.01.001.
Full textBorsuk, Mikhail. "Boundary value problems for singular p- and p(x)- Laplacian equations in a domain with conical point on the boundary." Ukrainian Mathematical Bulletin 17, no. 4 (December 13, 2020): 455–83. http://dx.doi.org/10.37069/1810-3200-2020-17-4-1.
Full textMacák, Marek, Zuzana Minarechová, and Karol Mikula. "A novel scheme for solving the oblique derivative boundary-value problem." Studia Geophysica et Geodaetica 58, no. 4 (May 8, 2014): 556–70. http://dx.doi.org/10.1007/s11200-013-0340-x.
Full textDoumic, Marie. "Boundary Value Problem for an Oblique Paraxial Model of Light Propagation." Methods and Applications of Analysis 16, no. 1 (2009): 119–38. http://dx.doi.org/10.4310/maa.2009.v16.n1.a7.
Full textGutting, Martin. "Fast multipole accelerated solution of the oblique derivative boundary value problem." GEM - International Journal on Geomathematics 3, no. 2 (May 30, 2012): 223–52. http://dx.doi.org/10.1007/s13137-012-0038-1.
Full textJiang, Feida, Neil S. Trudinger, and Ni Xiang. "On the Neumann Problem for Monge-Ampére Type Equations." Canadian Journal of Mathematics 68, no. 6 (December 1, 2016): 1334–61. http://dx.doi.org/10.4153/cjm-2016-001-3.
Full textDissertations / Theses on the topic "Oblique boundary value problem"
Axelsson, Andreas, and kax74@yahoo se. "Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces." The Australian National University. School of Mathematical Sciences, 2002. http://thesis.anu.edu.au./public/adt-ANU20050106.093019.
Full textFei, Zhiling. "Refinements of geodectic boundary value problem solutions." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0019/NQ54776.pdf.
Full textBondarenko, Oleksandr. "Optimal Control for an Impedance Boundary Value Problem." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/36136.
Full textMaster of Science
Harutjunjan, Gohar, and Bert-Wolfgang Schulze. "The Zaremba problem with singular interfaces as a corner boundary value problem." Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2008/2685/.
Full texti.e., Au = f in int X, T±u = g± on int Y±, where Y is subdivided into subsets Y± with an interface Z and boundary conditions T± on Y± that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume that Z ⊂ Y is a manifold with conical singularity v. As an example we consider the Zaremba problem, where A is the Laplacian and T− Dirichlet, T+ Neumann conditions. The problem is treated as a corner boundary value problem near v which is the new point and the main difficulty in this paper. Outside v the problem belongs to the edge calculus as is shown in [3]. With a mixed problem we associate Fredholm operators in weighted corner Sobolev spaces with double weights, under suitable edge conditions along Z {v} of trace and potential type. We construct parametrices within the calculus and establish the regularity of solutions.
Mbiock, Aristide. "Radiative heat transfer in furnaces : elliptic boundary value problem." Rouen, 1997. http://www.theses.fr/1997ROUEA002.
Full textForgoston, Eric T. "Initial-Value Problem for Perturbations in Compressible Boundary Layers." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/195810.
Full textWintz, Nick. "Eigenvalue comparisons for an impulsive boundary value problem with Sturm-Liouville boundary conditions." Huntington, WV : [Marshall University Libraries], 2004. http://www.marshall.edu/etd/descript.asp?ref=414.
Full textAlsaedy, Ammar, and Nikolai Tarkhanov. "Normally solvable nonlinear boundary value problems." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6507/.
Full textTamasan, Alexandru Cristian. "A two dimensional inverse boundary value problem in radiation transport /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/5752.
Full textStamic̆ar, Robert Nikola. "A free boundary problem modelling zoning in rocks /." *McMaster only, 1998.
Find full textBooks on the topic "Oblique boundary value problem"
I͡Anushauskas, Alʹgimantas Ionosovich. The oblique derivative problem of potential theory. New York: Consultants Bureau, 1989.
Find full textPopivanov, Peter R. The degenerate oblique derivative problem for elliptic and parabolic equations. Berlin: Akademie Verlag, 1997.
Find full text1951-, Weber Roman, ed. Radiation in enclosures: Elliptic boundary value problem. Berlin: Springer, 2000.
Find full textGovorov, N. V. Riemann's boundary problem with infinite index. Basel: Birkhäuser Verlag, 1994.
Find full textVuik, C. The solution of a one-dimensional Stefan problem. Amsterdam, Netherlands: Centrum voor Wiskunde en Informatica, 1993.
Find full textSansò, Fernando, and Michael G. Sideris. Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46358-2.
Full textHartley, T. T. Insights into the fractional order initial value problem via semi-infinite systems. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textGelderen, Martin van. The geodetic boundary value problem in two dimensions and its iterative solution. Delft, The Netherlands: Nederlandse Commissie voor Geodesie, 1991.
Find full textTsaoussi, Lucia S. A simulation study of the overdetermined geodetic boundary value problem using collocation. Columbus, Ohio: Dept. of Geodetic Science and Surveying, Ohio State University, 1989.
Find full textBook chapters on the topic "Oblique boundary value problem"
Grothaus, Martin, and Thomas Raskop. "Oblique Stochastic Boundary-Value Problem." In Handbook of Geomathematics, 1049–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01546-5_35.
Full textGrothaus, Martin, and Thomas Raskop. "Oblique Stochastic Boundary Value Problem." In Handbook of Mathematical Geodesy, 491–516. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57181-2_6.
Full textGrothaus, Martin, and Thomas Raskop. "Oblique Stochastic Boundary-Value Problem." In Handbook of Geomathematics, 2285–315. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-54551-1_35.
Full textGrothaus, Martin, and Thomas Raskop. "Oblique Stochastic Boundary-Value Problem." In Handbook of Geomathematics, 1–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-27793-1_35-2.
Full textGrothaus, Martin, and Thomas Raskop. "Oblique Stochastic Boundary-Value Problem." In Handbook of Geomathematics, 1–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27793-1_35-3.
Full textGrothaus, Martin, and Thomas Raskop. "Oblique Stochastic Boundary-Value Problem." In Handbook of Geomathematics, 1–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27793-1_35-4.
Full textFreeden, Willi, and Carsten Mayer. "Multiscale Solution of Oblique Boundary-Value Problems by Layer Potentials." In International Association of Geodesy Symposia, 90–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10735-5_12.
Full textČunderlík, Róbert, Marek Macák, Matej Medl’a, Karol Mikula, and Zuzana Minarechová. "Numerical Methods for Solving the Oblique Derivative Boundary Value Problems in Geodesy." In Handbuch der Geodäsie, 1–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-46900-2_105-1.
Full textČunderlík, Róbert, Marek Macák, Matej Medl’a, Karol Mikula, and Zuzana Minarechová. "Numerical Methods for Solving the Oblique Derivative Boundary Value Problems in Geodesy." In Mathematische Geodäsie/Mathematical Geodesy, 575–622. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55854-6_105.
Full textBradji, Abdallah. "Note on the Convergence of a Finite Volume Scheme Using a General Nonconforming Mesh for an Oblique Derivative Boundary Value Problem." In Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, 149–57. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05684-5_13.
Full textConference papers on the topic "Oblique boundary value problem"
Nihei, Yasunori, Sota Sugimoto, Takashi Tsubogo, Weiguang Bao, and Takeshi Kinoshita. "Non-Linear Wave Loads Acting on Obliquely Slowly Advancing Platform." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79627.
Full textArhrrabi, Elhoussain, Abdellah Taqbibt, M'hamed Elomari, Said Melliani, and Lalla saadia Chadli. "Fuzzy fractional boundary value problem." In 2021 7th International Conference on Optimization and Applications (ICOA). IEEE, 2021. http://dx.doi.org/10.1109/icoa51614.2021.9442654.
Full textGera, Amos. "A nonlinear boundary value problem in control." In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268836.
Full textAshyralyev, Allaberen, and Mahmut Modanli. "Nonlocal boundary value problem for telegraph equations." In ADVANCEMENTS IN MATHEMATICAL SCIENCES: Proceedings of the International Conference on Advancements in Mathematical Sciences. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930504.
Full textPriyadi, A., N. Yorino, M. Eghbal, Y. Zoka, Y. Sasaki, H. Yasuda, and H. Kakui. "Transient stability assessment as boundary value problem." In Energy Conference (EPEC). IEEE, 2008. http://dx.doi.org/10.1109/epc.2008.4763304.
Full textFung, Hei Tao, and Kevin J. Parker. "Image interpolation as a boundary value problem." In Visual Communications and Image Processing '96, edited by Rashid Ansari and Mark J. T. Smith. SPIE, 1996. http://dx.doi.org/10.1117/12.233195.
Full textКац, Давид. "Riemann's boundary value problem for bianalytic functions." In International scientific conference "Ufa autumn mathematical school - 2021". Baskir State University, 2021. http://dx.doi.org/10.33184/mnkuomsh1t-2021-10-06.74.
Full textTorebek, Berikbol T., and Batirkhan Kh Turmetov. "On solvability of exterior boundary value problem with fractional boundary condition." In ADVANCEMENTS IN MATHEMATICAL SCIENCES: Proceedings of the International Conference on Advancements in Mathematical Sciences. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930522.
Full textFedorov, Alexander, and Anatoli Tumin. "Initial value problem for hypersonic boundary layer flows." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2781.
Full textWessel-Berg, D. "Solution to Boundary Value Problem Relevant in Upscaling." In ECMOR VI - 6th European Conference on the Mathematics of Oil Recovery. European Association of Geoscientists & Engineers, 1998. http://dx.doi.org/10.3997/2214-4609.201406658.
Full textReports on the topic "Oblique boundary value problem"
Menken, Hamza. On the Inverse Problem of the Scattering Theory Fora Boundary-Value Problem. GIQ, 2012. http://dx.doi.org/10.7546/giq-7-2006-226-236.
Full textKunisch, K., and L. W. White. Identifiability under Approximation for an Elliptic Boundary Value Problem. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada158542.
Full textFerguson, Warren E., and Jr. Analysis of a Singularly-Perturbed Linear Two-Point Boundary-Value Problem. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada172582.
Full textHeitman, Joshua L., Alon Ben-Gal, Thomas J. Sauer, Nurit Agam, and John Havlin. Separating Components of Evapotranspiration to Improve Efficiency in Vineyard Water Management. United States Department of Agriculture, March 2014. http://dx.doi.org/10.32747/2014.7594386.bard.
Full text