Academic literature on the topic 'Ocean acidification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ocean acidification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ocean acidification"
Schnoor, Jerald L. "Ocean Acidification." Environmental Science & Technology 47, no. 21 (November 5, 2013): 11919. http://dx.doi.org/10.1021/es404263h.
Full textFenchel, Tom. "Ocean Acidification." Marine Biology Research 7, no. 4 (May 2011): 418–19. http://dx.doi.org/10.1080/17451000.2010.550051.
Full textHuo, Chuan Lin, Cheng Huo, and Dao Ming Guan. "Advances in Studies of Ocean Acidification." Applied Mechanics and Materials 295-298 (February 2013): 2191–94. http://dx.doi.org/10.4028/www.scientific.net/amm.295-298.2191.
Full textFalkenberg, Laura J., Richard G. J. Bellerby, Sean D. Connell, Lora E. Fleming, Bruce Maycock, Bayden D. Russell, Francis J. Sullivan, and Sam Dupont. "Ocean Acidification and Human Health." International Journal of Environmental Research and Public Health 17, no. 12 (June 24, 2020): 4563. http://dx.doi.org/10.3390/ijerph17124563.
Full textBoyd, Philip W. "Beyond ocean acidification." Nature Geoscience 4, no. 5 (April 29, 2011): 273–74. http://dx.doi.org/10.1038/ngeo1150.
Full textContestabile, Monica. "Ocean acidification costs." Nature Climate Change 2, no. 3 (February 24, 2012): 146–47. http://dx.doi.org/10.1038/nclimate1439.
Full textPope, Aaron, and Elizabeth Selna. "Communicating Ocean Acidification." Journal of Museum Education 38, no. 3 (October 2013): 279–85. http://dx.doi.org/10.1080/10598650.2013.11510780.
Full textRidgwell, Andrew, and D. Schmidt. "Dangerous ocean acidification." IOP Conference Series: Earth and Environmental Science 6, no. 7 (February 1, 2009): 072005. http://dx.doi.org/10.1088/1755-1307/6/7/072005.
Full textLan, Yilin. "The review of how ocean acidification affect organisms and ecological environment." Applied and Computational Engineering 58, no. 1 (April 30, 2024): 43–47. http://dx.doi.org/10.54254/2755-2721/58/20240689.
Full textOllier, Clifford. "The hoax of ocean acidification." Quaestiones Geographicae 38, no. 3 (September 10, 2019): 59–66. http://dx.doi.org/10.2478/quageo-2019-0029.
Full textDissertations / Theses on the topic "Ocean acidification"
Bednarsek, Nina. "Vulnerability of Southern ocean pteropods to anthropogenic ocean acidification." Thesis, University of East Anglia, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533722.
Full textSpence, Elspeth Mairi. "Public risk perceptions of ocean acidification." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/104099/.
Full textWilliams, Maria C. "The pelagic record of ocean acidification." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686814.
Full textVance, Thomas. "The response of marine assemblages to ocean acidification." Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1451.
Full textHopkins, Frances Elizabeth. "Ocean acidification and marine biogenic trace gas production." Thesis, University of East Anglia, 2010. https://ueaeprints.uea.ac.uk/10582/.
Full textCripps, Gemma Louise. "Ocean acidification : impacts on copepod growth and reproduction." Thesis, Swansea University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678388.
Full textWilliamson, Christopher James. "The impacts of ocean acidification on calcifying macroalgae." Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/73409/.
Full textSuckling, Coleen Claire. "Calcified marine invertebrates : the effects of ocean acidification." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608228.
Full textKhanna, Nikki. "The biological response of foraminifera to ocean acidification." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/8089.
Full textIngrosso, Gianmarco. "Ocean acidification processes in coastal and offshore ecosystems." Doctoral thesis, Università degli studi di Trieste, 2015. http://hdl.handle.net/10077/10916.
Full textSince the beginning of Industrial Revolution a massive amount of atmospheric carbon dioxide, produced by human activity, has been absorbed by the World’s Oceans. This process has led to an acidification of marine waters on a global scale and is one of the most serious threats facing marine ecosystems in this century. The negative impacts of ocean acidification could be much more relevant in coastal ecosystems, where marine life is concentrated and biogeochemical processes are more active. However, future projections of pH reduction in these areas are difficult to estimate because result from multiple physical and biological drivers, including watershed weathering, river-born nutrient inputs, and changes in ecosystem structure and metabolism. In order to assess the sensibility of the Gulf of Trieste to the ocean acidification, high quality determination of the marine carbonate system (pHT, total alkalinity, dissolved inorganic carbon-DIC, buffer capacity) and other related biogeochemical parameters were carried out along a transect from the Isonzo River mouth to the centre of the gulf and at the coastal Long Term Ecological Research station C1. At the same time the biological influence of organic matter production and decomposition on the marine CO2 system was estimated using 14C primary production and heterotrophic prokaryote production (by 3H-leucine incorporation). The two years long measurements revealed a complex dynamic of the marine carbonate system, due to the combined effects of local freshwater inputs, biological processes, and air-sea CO2 exchange. However, it was possible to estimate the influence of the different drivers on a seasonal time scale. In winter the very low seawater temperature (minima = 2.88 °C) and strong Bora events determined a marked dissolution of atmospheric CO2 and elevated DIC concentration. During warm seasons the DIC concentration gradually decreased in the surface layer, due to biological drawdown (primary production) and thermodynamic equilibria (CO2 degassing), whereas under the pycnocline the respiration and remineralisation of organic matter prevailed, causing a temporary acidification of bottom waters. The winter seawater invasion of atmospheric CO2 was balanced by high riverine AT input (maxima ∼ 2933 µmol kg-1), derived mainly from chemical weathering of carbonate rocks of the surrounding karstic area, which increased the buffer capacity of this system and probably could mitigate the effect of ocean acidification. The marine carbonate system was also analysed in the Middle and Southern Adriatic Sea, in order to estimate the concentration of anthropogenic carbon dioxide currently present in this area. The results suggested that the entire water column was contaminated by a large amount of anthropogenic CO2 and very high concentration was detected near the bottom, in correspondence of the North Adriatic Dense Waters. This finding supported the hypothesis that during dense water formation events the very low seawater temperature can favour the physical dissolution of atmospheric carbon dioxide, and also revealed the active role of the North Adriatic Sea in sequestering and storing anthropogenic CO2 into the deep layers of Mediterranean Sea.
Dall’inizio della Rivoluzione Industriale ad oggi, una grande quantità di anidride carbonica antropogenica presente in atmosfera è stata assorbita dagli Oceani di tutto il mondo. Questo processo ha portato all’acidificazione del mare su scala globale e rappresenta una delle più gravi minacce per gli ecosistemi marini in questo secolo. L’impatto negativo di tale fenomeno, noto come ocean acidification, potrebbe essere maggiore soprattutto negli ecosistemi costieri, poiché è qui che si concentrano gli organismi marini ed è qui che i cicli biogeochimici risultano più attivi. Tuttavia è difficile stimare il futuro abbassamento del pH in queste aree a causa della loro complessità e della moltitudine dei processi fisici, chimici e biologici coinvolti (cambiamenti dello stato trofico e del metabolismo dell’ecosistema, input fluviale di nutrienti, materia organica e prodotti di dissoluzione delle rocce, ecc.). Allo scopo di valutare la vulnerabilità del Golfo di Trieste rispetto al processo di ocean acidification, per due anni sono state eseguite misure di elevata precisione del sistema carbonatico marino (pHT, alcalinità totale, carbonio inorganico disciolto-DIC, capacità tamponante) e di altri parametri biogeochimici correlati lungo un transetto che congiunge la foce del fiume Isonzo al centro del Golfo e nella stazione C1 sito LTER (Long Time Ecological Research C1). Inoltre, per valutare in maniera più approfondita l’influenza dei processi biologici sulla variabilità del sistema carbonatico, è stata stimata la produzione primaria, attraverso il metodo dell’incorporazione di 14C, e la produzione procariotica eterotrofa, attraverso l’incorporazione di 3H-leucina. I risultati hanno evidenziato una complessa dinamica del sistema carbonatico dovuta all’effetto e all’interazione degli apporti fluviali, dei processi biologici e dello scambio di CO2 tra atmosfera e mare. Su scala stagionale, tuttavia, è stata stimata l’influenza e il contributo dei diversi processi. In inverno, la bassa temperatura dell’acqua, che in un caso estremo ha raggiunto i 2.88 °C, e i forti venti di Bora hanno favorito la dissoluzione della CO2 atmosferica, determinando un incremento della concentrazione di DIC. Durante la primavera e l’estate i livelli di DIC sono diminuiti gradualmente negli strati superficiali, grazie all’effetto combinato della produzione primaria e alla perdita di CO2 verso l’atmosfera per degassamento. Nel periodo tardo estivo-autunnale, invece, al di sotto del picnoclino i processi di respirazione e remineralizzazione della materia organica sono risultati predominanti determinando, a causa dell’elevata concentrazione di CO2 prodotta, una temporanea acidificazione delle acque di fondo. Il forte assorbimento di CO2 atmosferica stimato durante l’inverno era, però, controbilanciato dall’apporto fluviale di alcalinità totale, derivante dal processo di dissoluzione delle rocce calcaree presenti nell’area carsica. Tale fenomeno ha determinato un aumento della capacità tamponante del sistema, mitigando probabilmente il processo di ocean acidification in quest’area. Parallelamente alle analisi nel Golfo di Trieste, il sistema carbonatico marino è stato analizzato anche nel Medio e Sud Adriatico, con lo scopo di stimare la concentrazione di anidride carbonica antropogenica attualmente presente in questi sottobacini. I risultati hanno dimostrato come tutta la colonna d’acqua avesse assorbito una grande quantità di CO2 antropica. In particolare elevate concentrazioni sono state individuate sul fondo, in corrispondenza delle acque dense di origine nord adriatica. Tali risultati hanno confermato l’ipotesi secondo la quale in inverno, durante il processo di formazione di acque dense nel Nord Adriatico, le basse temperature raggiunte dalle acque possono favorire la dissoluzione fisica della CO2 atmosferica. Hanno dimostrato, inoltre, l’importante ruolo svolto da tutto il bacino nord adriatico nel sequestrare e trasportare la CO2 antropica nelle profondità del mare, estendendo il processo di ocean acidification anche ad aree meno contaminate.
XXVII Ciclo
1982
Books on the topic "Ocean acidification"
Carballo, José Luis, and James J. Bell, eds. Climate Change, Ocean Acidification and Sponges. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59008-0.
Full textFeely, Richard A., Rik Wanninkhof, John E. Stein, Michael Frederick Sigler, Elizabeth Bromley Jewett, Luis Felipe Arzayus, Dwight Kuehl Gledhill, and Adrienne J. Sutton. NOAA ocean and Great Lakes acidification research plan. [Silver Spring, Md.]: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, 2010.
Find full textSecretariat of the Convention on Biological Diversity. Scientific synthesis of the impacts of ocean acidification on marine biodiversity. Montreal, Quebec, Canada: Secretariat of the Convention on Biological Diversity, 2009.
Find full textOcean acidification: A national strategy to meet the challenges of a changing ocean. Washington, D.C: National Academies Press, 2010.
Find full text1948-, Mason Geoffrey, ed. Poisoning and acidification of the Earth's oceans. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textBausch, Alexandra Renee. Interactive effects of ocean acidification with other environmental drivers on marine plankton. [New York, N.Y.?]: [publisher not identified], 2018.
Find full textThe environmental and economic impacts of ocean acidification: Hearing before the Subcommittee on Oceans, Atmosphere, Fisheries, and Coast Guard of the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Eleventh Congress, second session, April 22, 2010. Washington: U.S. G.P.O., 2011.
Find full textLatif, Mojib. Das Ende der Ozeane: Warum wir ohne die Meere nicht überleben werden. Freiburg im Breisgau: Herder, 2014.
Find full textBook chapters on the topic "Ocean acidification"
Iglesias-Rodriguez, Maria Debora. "Ocean ocean/oceanic Acidification ocean/oceanic acidification." In Encyclopedia of Sustainability Science and Technology, 7229–42. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_494.
Full textIglesias-Rodriguez, Maria Debora. "Ocean Acidification." In Earth System Monitoring, 269–89. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5684-1_12.
Full textMukherjee, Swapna, Kaushik Kiran Ghosh, and Abhra Chanda. "Ocean Acidification." In Environmental Oceanography and Coastal Dynamics, 205–12. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34422-0_12.
Full textThor, Peter, and Sam Dupont. "Ocean Acidification." In Handbook on Marine Environment Protection, 375–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60156-4_19.
Full textSpellman, Frank R. "Ocean Acidification." In The Science of Ocean Pollution, 187–92. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003407638-16.
Full textFaria, Ana M. "CO2-Induced Ocean Acidification." In Encyclopedia of the UN Sustainable Development Goals, 1–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-71064-8_44-1.
Full textFaria, Ana M. "CO2-Induced Ocean Acidification." In Encyclopedia of the UN Sustainable Development Goals, 121–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-98536-7_44.
Full textGaldies, Charles, Rachel Tiller, and Beatriz Martinez Romera. "Global Ocean Governance and Ocean Acidification." In Encyclopedia of the UN Sustainable Development Goals, 421–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-98536-7_109.
Full textGaldies, Charles, Rachel Tiller, and Beatriz Martinez Romera. "Global Ocean Governance and Ocean Acidification." In Encyclopedia of the UN Sustainable Development Goals, 1–12. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-71064-8_109-1.
Full textRoleda, Michael Y., and Catriona L. Hurd. "Seaweed Responses to Ocean Acidification." In Ecological Studies, 407–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28451-9_19.
Full textConference papers on the topic "Ocean acidification"
Potty, Gopu R. "Ocean acidification: Implications to underwater acoustics." In 2009 International Symposium on Ocean Electronics (SYMPOL 2009). IEEE, 2009. http://dx.doi.org/10.1109/sympol.2009.5664163.
Full textBarry, J. P., C. Lovera, C. Okuda, E. Nelson, and E. Pane. "A Gas-Controlled Aquarium System for Ocean Acidification Studies." In OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean. IEEE, 2008. http://dx.doi.org/10.1109/oceanskobe.2008.4531029.
Full textKirkwood, W., E. Peltzer, P. Walz, and P. Brewer. "Cabled observatory technology for ocean acidification research." In OCEANS 2009-EUROPE (OCEANS). IEEE, 2009. http://dx.doi.org/10.1109/oceanse.2009.5278337.
Full textThompson, Cara K., Astrid Schnetzer, and Michelle Kinzel. "STUDENT-CENTERED TEACHING DEMONSTRATION FOR OCEAN ACIDIFICATION." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-324085.
Full textFeely, R. A., R. A. Feely, R. A. Feely, R. A. Feely, R. A. Feely, R. A. Feely, R. A. Feely, et al. "An International Observational Network for Ocean Acidification." In OceanObs'09: Sustained Ocean Observations and Information for Society. European Space Agency, 2010. http://dx.doi.org/10.5270/oceanobs09.cwp.29.
Full textIglesias-Rodriguez, M. Debora, Kenneth R. N. Anthony, Jella Bijma, Andrew G. Dickson, Scott C. Doney, Victoria J. Fabry, Richard A. Feely, et al. "Developing a Global Ocean Acidification Observation Network." In OceanObs'09: Sustained Ocean Observations and Information for Society. European Space Agency, 2010. http://dx.doi.org/10.5270/oceanobs09.pp.24.
Full textReggiani, Emanuele R., Richard G. J. Bellerby, and Kai Sorensen. "Underwater spectrophotometric detection: Scaling down ocean acidification monitoring." In 2014 IEEE Sensor Systems for a Changing Ocean (SSCO). IEEE, 2014. http://dx.doi.org/10.1109/ssco.2014.7000376.
Full textWang, Jiuyuan, Gabriella Kitch, Benjamin J. Linzmeier, Andrew D. Jacobson, Bradley B. Sageman, and Matthew T. Hurtgen. "CALCIUM ISOTOPE VARIABILITY ACROSS ANCIENT CANDIDATE OCEAN ACIDIFICATION EVENTS." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-355894.
Full textRamdas, Rithvik, Balivada Srinivas Patnaik, Ansh Parmar, Satya Kiranmai Tadepalli, and K. Vasanth. "Beyond pH Levels: A Comprehensive Survey on Ocean Acidification." In 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE). IEEE, 2024. http://dx.doi.org/10.1109/ic-etite58242.2024.10493656.
Full textKirkwood, W. J., E. T. Peltzer, P. Walz, K. Headley, B. Herlien, C. Kecy, T. Maughan, et al. "Cabled instrument technologies for ocean acidification research — FOCE (free ocean CO2 enrichment)." In 2011 IEEE Symposium on Underwater Technology (UT) and Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC). IEEE, 2011. http://dx.doi.org/10.1109/ut.2011.5774089.
Full textReports on the topic "Ocean acidification"
Baird, Kaitlin, Anne Cohen, and Samantha de Putron. Ocean Acidification: Building a Skeleton in a Changing Ocean. American Museum of Natural History, 2015. http://dx.doi.org/10.5531/cbc.ncep.0168.
Full textBaker, T. Ocean Acidification and Fisheries: Alaska's Challenge and Response. Alaska Sea Grant, University of Alaska Fairbanks, 2012. http://dx.doi.org/10.4027/oafacr.2012.
Full textPeter Girguis, Peter Girguis. Do seawater microbes help oysters cope with ocean acidification? Experiment, April 2023. http://dx.doi.org/10.18258/50593.
Full textWard, Nicholas. Electrochemical Acid Sequestration to Ease Ocean Acidification (EASE-OA) - CRADA 600 (Abstract). Office of Scientific and Technical Information (OSTI), June 2023. http://dx.doi.org/10.2172/1995374.
Full textJewett, L., and A. Romanou. Ch. 13: Ocean Acidification and Other Ocean Changes. Climate Science Special Report: Fourth National Climate Assessment, Volume I. Edited by D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock. U.S. Global Change Research Program, 2017. http://dx.doi.org/10.7930/j0qv3jqb.
Full textKeller, David P. Quantification of “constrained” potential of ocean NETs. OceanNets, 2022. http://dx.doi.org/10.3289/oceannets_d4.1.
Full textKessler, John, and Carolyn Ruppel. Final Scientific/Technical Report: Characterizing Ocean Acidification and Atmospheric Emission caused by Methane Released from Gas Hydrate Systems along the US Atlantic Margin. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1634089.
Full textKing, E. L., A. Normandeau, T. Carson, P. Fraser, C. Staniforth, A. Limoges, B. MacDonald, F. J. Murrillo-Perez, and N. Van Nieuwenhove. Pockmarks, a paleo fluid efflux event, glacial meltwater channels, sponge colonies, and trawling impacts in Emerald Basin, Scotian Shelf: autonomous underwater vehicle surveys, William Kennedy 2022011 cruise report. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331174.
Full textOcean Acidification: What It Means to Alaskans and How We Can Adapt. Alaska Sea Grant, University of Alaska Fairbanks, July 2011. http://dx.doi.org/10.4027/oawimahwca.2011.
Full text