Academic literature on the topic 'Ocean Thermal Energy Conversion (OTEC)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ocean Thermal Energy Conversion (OTEC).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ocean Thermal Energy Conversion (OTEC)"

1

Vega, L. A. "Ocean Thermal Energy Conversion Primer." Marine Technology Society Journal 36, no. 4 (2002): 25–35. http://dx.doi.org/10.4031/002533202787908626.

Full text
Abstract:
The vertical temperature distribution in the open ocean can be simplistically described as consisting of two layers separated by an interface. The upper layer is warmed by the sun and mixed to depths of about 100 m by wave motion. The bottom layer consists of colder water formed at high latitudes. The interface or thermocline is sometimes marked by an abrupt change in temperature but more often the change is gradual. The temperature difference between the upper (warm) and bottom (cold) layers ranges from 10°C to 25°C, with the higher values found in equatorial waters. This implies that there a
APA, Harvard, Vancouver, ISO, and other styles
2

Abhishek, Kishore, and Uddin Ahmad Ameen. "Ocean Thermal Energy Conversion." International Journal of Trend in Scientific Research and Development 1, no. 5 (2017): 412–15. https://doi.org/10.31142/ijtsrd2314.

Full text
Abstract:
OTEC stands for Ocean Thermal Energy Conversion. It use a temperature difference 20 °C between the upper layer of ocean surface and bottom layer of ocean surface is required to run the turbine to generate an electricity. Ocean covered 70 of earth's surface which is abundant form of solar collector and solar storage capacity. Ocean has an abundant form of renewable source of energy which has a potential to fulfill billions of watts of electricity. Now a days, OTEC is required to generate electricity due to sky rocketing price of oil, natural gas and coal. The objective was how to minimi
APA, Harvard, Vancouver, ISO, and other styles
3

Sumitsingh, Mohansingh Chopdar1 &. A.R.Thorat2. "OCEAN THERMAL ENERGY CONVERSION: A BETTER SOLUTION." GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES [NC-Rase 18] (November 16, 2018): 101–4. https://doi.org/10.5281/zenodo.1489852.

Full text
Abstract:
Today the world is facing major problems like pollution and global warming. And it is because of the world’s heavy dependence on fossil fuels for electricity. Most of the countries those are still using diesel generators as their main source of energy are facing environmental problems. The practical alternative energy sources which can meet the global demand without causing any damage to environment are very less. Ocean Thermal Energy Conversion (OTEC) is a concept that has the potential to address this growing issue. It is basically a mechanism that uses the temperature difference betwe
APA, Harvard, Vancouver, ISO, and other styles
4

Hammad, Fadhil Karunia, Baskoro Rochaddi, Purwanto Purwanto, and Harjo Susmoro. "Identifikasi Potensi Ocean Thermal Energy Conversion (OTEC) di Selat Makassar." Indonesian Journal of Oceanography 2, no. 2 (2020): 147–57. http://dx.doi.org/10.14710/ijoce.v2i2.8058.

Full text
Abstract:
Ocean Thermal Energy Conversion (OTEC) adalah salah satu dari banyak sumber energi terbarukan dari lautan yang bisa menjadi solusi untuk energi hijau. Selat Makassar merupakan salah satu wilayah perairan yang sangat berpotensi untuk pembangkit OTEC. Hal tersebut karena Selat Makassar memenuhi kaidah OTEC, dimana termasuk kategori laut dalam dan berada di equator yang memiliki suhu permukaan yang hangat dan konstan, serta memiliki selisih suhu sebesar 20℃ antara permukaan laut dan laut dalam dengan kedalaman 1000 m. Tujuan dari penelitian ini adalah untuk mengetahui potensi energi OTEC, titik p
APA, Harvard, Vancouver, ISO, and other styles
5

Nihous, Gérard C. "A Preliminary Assessment of Ocean Thermal Energy Conversion Resources." Journal of Energy Resources Technology 129, no. 1 (2006): 10–17. http://dx.doi.org/10.1115/1.2424965.

Full text
Abstract:
Worldwide power resources that could be extracted from Ocean Thermal Energy Conversion (OTEC) plants are estimated with a simple one-dimensional time-domain model of the thermal structure of the ocean. Recently published steady-state results are extended by partitioning the potential OTEC production region in one-degree-by-one-degree “squares” and by allowing the operational adjustment of OTEC operations. This raises the estimated maximum steady-state OTEC electrical power from about 3TW(109kW) to 5TW. The time-domain code allows a more realistic assessment of scenarios that could reflect the
APA, Harvard, Vancouver, ISO, and other styles
6

Sinuhaji, Adrian Rizki. "Potential Ocean Thermal Energy Conversion (OTEC) in Bali." KnE Energy 1, no. 1 (2015): 5. http://dx.doi.org/10.18502/ken.v1i1.330.

Full text
Abstract:
<p>OTEC is a method for generating electricity which uses the temperature difference that exist between deep and shallow water with the minimal difference about 20°C. This paper aim to determine the potential and the provision of new and renewable energy in Indonesia.OTEC is very compatible build in Indonesian sea because Indonesia is placed in equator teritory, a lot of island, strain and many difference of topography especially in North Bali Sea. A calculation ocean thermal distribution in Indonesia for OTEC is doing with statistics from ocean thermal surface.The maximum efficiency of
APA, Harvard, Vancouver, ISO, and other styles
7

Yasunaga, Takeshi, Kevin Fontaine, and Yasuyuki Ikegami. "Performance Evaluation Concept for Ocean Thermal Energy Conversion toward Standardization and Intelligent Design." Energies 14, no. 8 (2021): 2336. http://dx.doi.org/10.3390/en14082336.

Full text
Abstract:
Ocean thermal energy conversion (OTEC) uses a very simple process to convert the thermal energy stored mainly in tropical oceans into electricity. In designs, operations, and evaluations, we need to consider the unique characteristics of OTEC to achieve the best performance or lower the electricity cost of projects. The concept and design constraints of OTEC power generation differ from those of conventional thermal power plants due to the utilization of a low temperature difference. This research theoretically recognizes the unique characteristics of the energy conversion system and summarize
APA, Harvard, Vancouver, ISO, and other styles
8

Hendrawan, Andi, Aji K. Hendrawan, Sri Pramomo, and Lusiani Lusiani. "Thermohydraulic Analysis of Ocean Thermal Energy Conversion." Saintara : Jurnal Ilmiah Ilmu-Ilmu Maritim 7, no. 2 (2023): 52–56. http://dx.doi.org/10.52475/saintara.v7i2.233.

Full text
Abstract:
Thermohydraulic analysis is a mandatory analysis for power plants, including in this case marine thermal power plants (OTEC = ocens thermal energy conversion). The application to OTEC shows that temperature and pressure are things that must be considered, the higher the surface temperature, the greater the output power. Calculation of heat flow is a variable that is determined before a plant is built. This study aims to make a mathematical analysis of heat flow or thermohydraulic. The study uses the study of the heritage of Mendalan so that modeling and determination of design variables are fo
APA, Harvard, Vancouver, ISO, and other styles
9

Muliana, Besse, Pou Anda, Muliddin Muliddin, and Irawati Irawati. "IDENTIFIKASI POTENSI OCEAN THERMAL ENERGY CONVERSION (OTEC) DI PERAIRAN BUTON UTARA." Jurnal Rekayasa Geofisika Indonesia 3, no. 02 (2021): 32. http://dx.doi.org/10.56099/jrgi.v3i02.23578.

Full text
Abstract:
Penelitian ini dilakukan untuk mengidentifikasi potensi Ocean Thermal Energy Conversion (OTEC) di Perairan Buton Utara dan menentukan titik lokasi paling ideal untuk adaptasi pembangkit listrik OTEC yang layak (viable). Potensi OTEC ditentukan dengan menghitung efisiensi Carnot dan daya OTEC menggunakan parameter perbedaan temperatur laut antara di kedalaman 20 m dengan di kedalaman 900 m, sedangkan titik lokasi yang paling ideal untuk instalasi OTEC ditentukan berdasarkan besar potensial daya bersih dan kestrategisan lokasi yang ditinjau dari kemiringan dasar laut. Penelitian ini menggunakan
APA, Harvard, Vancouver, ISO, and other styles
10

Cavrot, D. E. "Economics of Ocean Thermal Energy Conversion (OTEC)." Renewable Energy 3, no. 8 (1993): 891–96. http://dx.doi.org/10.1016/0960-1481(93)90047-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ocean Thermal Energy Conversion (OTEC)"

1

Laestander, Joakim, and Simon Laestander. "OTEC - Ocean Thermal Energy Conversion." Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98974.

Full text
Abstract:
OTEC is a technology where power is produced by utilizing the temperature difference in the oceans between surface water and water from the deep. It is considered that a temperature difference of 20K is required – a temperature difference found close to the equator.This report investigates if OTEC can produce enough electricity to provide 100 000 people, living on a generic island of 10 km2 somewhere alongside the equator in the pacific ocean, with their electricity needs. In this project a literature review has been made to establish a basic knowledge of OTEC and later a mathematical model ha
APA, Harvard, Vancouver, ISO, and other styles
2

Rizea, Steven Emanoel. "Optimization of Ocean Thermal Energy Conversion Power Plants." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5462.

Full text
Abstract:
A proprietary Ocean Thermal Energy Conversion (OTEC) modeling tool, the Makai OTEC Thermodynamic and Economic Model (MOTEM), is leveraged to evaluate the accuracy of finite-time thermodynamic OTEC optimization methods. MOTEM is a full OTEC system simulator capable of evaluating the effects of variation in heat exchanger operating temperatures and seawater flow rates. The evaluation is based on a comparison of the net power output of an OTEC plant with a fixed configuration. Select optimization methods from the literature are shown to produce between 93% and 99% of the maximum possible amount o
APA, Harvard, Vancouver, ISO, and other styles
3

Rodríguez, Buño Mariana. "Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79495.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2013.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 126-130).<br>The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can provide renewable energy by making use of the temperature difference between the surface ocean and deep ocean water in a Rankine cycle. An OTEC plant pumps huge volumes of wa
APA, Harvard, Vancouver, ISO, and other styles
4

Eller, Michael R. "Utilizing Economic and Environmental Data from the Desalination Industry as a Progressive Approach to Ocean Thermal Energy Conversion (OTEC) Commercialization." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1733.

Full text
Abstract:
Ocean Thermal Energy Conversion (OTEC) is a renewable energy technology that has to overcome several key challenges before achieving its ultimate goal of producing baseload power on a commercial scale. The economic challenge of deploying an OTEC plant remains the biggest barrier to implementation. Although small OTEC demonstration plants and recent advances in subsystem technologies have proven OTEC’s technical merits, the process still lacks the crucial operational data required to justify investments in large commercial OTEC plants on the order of 50-100 megawatts of net electrical power (MW
APA, Harvard, Vancouver, ISO, and other styles
5

Muralidharan, Shylesh. "Assessment of ocean thermal energy conversion." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76927.

Full text
Abstract:
Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2012.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 103-109).<br>Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil agriculture. Previous studies on the technology have focused on promoting it to generate electricity and produce energy
APA, Harvard, Vancouver, ISO, and other styles
6

Dijoux, Alexandre. "Influence du fluide du travail, de la technologie des échangeurs et du pilotage dynamique d’un cycle ORC sur l’intérêt et les performances d’un système de conversion d’Énergie Thermique des Mers." Thesis, La Réunion, 2020. http://www.theses.fr/2020LARE0036.

Full text
Abstract:
La différence de température entre l’eau de mer chaude de surface (d’origine solaire tropicale) et celle qui est froide en profondeur (qui vient des pôles) constitue une source d’énergie stable, propre et renouvelable disponible dans l’océan. Cette énergie thermique des mers (ETM) peut être convertie en électricité par le cycle organique de Rankine (ORC). Le faible écart de température entre les sources chaudes et froides représente ce-pendant un défi technique à la fois pour les transferts thermiques et pour les performances du cycle. L’objectif de cette thèse est d’explorer les possibilités
APA, Harvard, Vancouver, ISO, and other styles
7

Al-Witry, Ali Qais. "Thermal performance of roll-bonded aluminium plate heat exchanger panels for use in ocean thermal energy conversion." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banerjee, S. "Ocean energy assessment : an integrated methodology." Thesis, Coventry University, 2011. http://curve.coventry.ac.uk/open/items/16196d0d-e671-489a-ba71-f20cdb6c8df3/1.

Full text
Abstract:
The huge natural energy resources available in the world’s oceans are attracting increasing commercial and political interest. In order to evaluate the status and the degree of acceptability of future Ocean Energy (OE) schemes, it was considered important to develop an Integrated Assessment Methodology (IAM) for ascertaining the relative merits of the competing OE devices being proposed. Initial studies included the gathering of information on the present status of development of the ocean energy systems on wave, OTEC and tidal schemes with the challenges faced for their commercial application
APA, Harvard, Vancouver, ISO, and other styles
9

Giraud, Mélanie. "Evaluation de l'impact potentiel d'un upwelling artificiel lié au fonctionnement d'une centrale à énergie thermique des mers sur le phytoplancton." Thesis, Brest, 2016. http://www.theses.fr/2016BRES0007/document.

Full text
Abstract:
Dans le cadre de l’implantation d’une centrale pilote à énergie thermique des mers (ETM) prévue au large des côtes caribéennes de la Martinique d’ici 2020, ces travaux de thèse visent à évaluer les impacts potentiels de la décharge d’eau profonde en surface sur le phytoplancton. La centrale pilote offshore NEMO conçue par DCNS et mise en oeuvre par Akuo Energy prévoit une production d’environ 10 MW. Les eaux froides et riches en nutriments pompées au fond et rejetées en surface par la centrale ETM avec un débit d’environ 100 000 m3.h-1 devraient enrichir les eaux de surface du site d’étude, pa
APA, Harvard, Vancouver, ISO, and other styles
10

Sinama, Frantz. "Étude de la production d'électricité à partir de l'énergie thermique des mers à l'île de la Réunion : modélisation et optimisation du procédé." Phd thesis, Université de la Réunion, 2011. http://tel.archives-ouvertes.fr/tel-00873263.

Full text
Abstract:
L'énergie thermique des mers (ETM) offre une alternative intéressante pour la réduction de l'utilisation des énergies fossiles. En utilisant le gradient de température présent entre l'eau de surface et l'eau en profondeur, il est possible de produire de l'électricité grâce à un cycle thermodynamique. Les expérimentations sont peu nombreuses à l'heure actuelle, en raison d'un coût relativement élevé. Une approche fondamentale est donc développée avec la création de modèles numériques en régime permanent et dynamique. Le modèle en régime statique a été développé à partir d'une description mathém
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ocean Thermal Energy Conversion (OTEC)"

1

P, Myers Edward, and United States. National Marine Fisheries Service., eds. The potential impact of ocean thermal energy conversion (OTEC) on fisheries. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1936-, Wu Chih, ed. Renewable energy from the ocean: A guide to OTEC. Oxford University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takahashi, Patrick K. Ocean thermal energy conversion. John Wiley, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andrew, Trenka, ed. Ocean thermal energy conversion. Wiley, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. Dept. of Energy. Wind/Ocean Technologies Division and Solar Energy Research Institute, eds. Ocean thermal energy conversion: An overview. Solar Energy Research Institute, Division of Midwest Research Institute, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

United States. Dept. of Energy. Wind/Ocean Technologies Division. and Solar Energy Research Institute, eds. Ocean thermal energy conversion: An overview. Solar Energy Research Institute, Division of Midwest Research Institute, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lennard, D. E. Prospects & potential for ocean thermal energy conversion. World Energy Conference, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bank, Asian Development, ed. Wave energy conversion and ocean thermal energy conversion potential in developing member countries. Asian Development Bank, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

R, Ramesh, Udayakumar K, and Anandakrishnan M, eds. Renewable energy technologies: Ocean thermal energy conversion and other sustainable energy options. Narosa, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bharathan, D. Staging Rankine cycles using ammonia for OTEC power production. National Renewable Energy Laboratory, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Ocean Thermal Energy Conversion (OTEC)"

1

Borowitz, Sidney. "Ocean Thermal Energy Conversion (OTEC)." In Monographiae Biologicae. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4899-6519-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vega, Luis A. "Ocean ocean/oceanic Thermal Energy Conversion ocean/oceanic thermal energy conversion (OTEC)." In Encyclopedia of Sustainability Science and Technology. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Capareda, Sergio C. "Ocean Thermal Energy Conversion (OTEC) Systems." In Introduction to Renewable Energy Conversions. CRC Press, 2019. http://dx.doi.org/10.1201/9780429199103-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gauthier, Michel, Lars Golmen, and Don Lennard. "Ocean Thermal Energy Conversion (OTEC) and Deep Ocean Water Applications (DOWA): Market Opportunities for European Industry." In New and Renewable Technologies for Sustainable Development. Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0296-8_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Majumdar, A., A. Mani, and P. Jalihal. "Structural analysis of low pressure steam turbine rotor for Open Cycle Ocean Thermal Energy Conversion (OC-OTEC) based desalination plant." In Trends in Renewable Energies Offshore. CRC Press, 2022. http://dx.doi.org/10.1201/9781003360773-99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vega, Luis A. "Ocean Thermal Energy Conversion." In Renewable Energy Systems. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ravindran, Muthukamatchi, and Raju Abraham. "Ocean Thermal Energy Conversion." In Springer Handbook of Ocean Engineering. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16649-0_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Zhen. "Ocean Thermal Energy Conversion." In Encyclopedia of Ocean Engineering. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-6963-5_189-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vega, Luis. "Ocean Thermal Energy Conversion." In Power Stations Using Locally Available Energy Sources. Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7510-5_695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Zhen. "Ocean Thermal Energy Conversion." In Encyclopedia of Ocean Engineering. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6946-8_189.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ocean Thermal Energy Conversion (OTEC)"

1

Rasgianti, Ristiyanto Adiputra, Ruly Bayu Sitanggang, Navik Puryantini, and Nurman Firdaus. "Ocean Thermal Energy Conversions (OTEC) Working Fluid Comparison Based on the Numerical and Analytical Analysis." In 2024 International Conference on Technology and Policy in Energy and Electric Power (ICTPEP). IEEE, 2024. http://dx.doi.org/10.1109/ict-pep63827.2024.10733395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hakim, Mas Omar Mas Rosemal, Fitri Yakub, Nurdayana Natasha Mohd Johan, Rahayu Tasnin, Muhammad Fikri Zhafran, and Mohd Fikri Akmal Mohd Khodzori. "Modeling Hybrid Ocean Thermal Energy Conversion System for Malaysia Landscape." In 2024 IEEE 12th Region 10 Humanitarian Technology Conference (R10-HTC). IEEE, 2024. https://doi.org/10.1109/r10-htc59322.2024.10778774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qingqing, Xu, Tian Hao, and Gao Feng. "Maximum Efficiency Point Tracking Control for the Liquid-Electric Conversion Process in Ocean Thermal Energy Generation." In 2025 IEEE 16th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2025. https://doi.org/10.1109/pedg62294.2025.11060391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anderson, James H. "Ocean Thermal Energy Conversion (OTEC): Choosing a Working Fluid." In ASME 2009 Power Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/power2009-81211.

Full text
Abstract:
Ocean thermal energy plants are thermal power plants that use warm ocean surface water as a source of heat and cold seawater from the deep ocean as a heat sink. A historical perspective along with the development of the technology will be presented. A short description describing the subtle differences between OTEC and fossil and nuclear plants will be presented. Open cycle OTEC and closed cycle OTEC will be described with a focus on the influence of choice of working fluid on the design of a plant. Various working fluids could be selected for use in closed cycle OTEC plants. A review and comp
APA, Harvard, Vancouver, ISO, and other styles
5

Juan, Yue, Li Dashu, Li Zhichuan, et al. "Performance Simulation of Solar-Ocean Thermal Energy Conversion." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78551.

Full text
Abstract:
Compared to the restriction of intermittency of solar power generation, ocean thermal energy conversion (OTEC) is not only 24/7 base-load, but also comprehensive utilization of fresh water production, air-conditioning, mariculture etc. However, limited temperature difference between warm surface seawater and the cold deep seawater is a crucial factor that restricts the thermal efficiency of OTEC. But today, with the appliance of solar collector in OTEC net power output and the net thermal efficiency have been significantly improved. In this study theoretical analysis and performance simulation
APA, Harvard, Vancouver, ISO, and other styles
6

Vega, Luis A. "Economics of Ocean Thermal Energy Conversion (OTEC): An Update." In Offshore Technology Conference. Offshore Technology Conference, 2010. http://dx.doi.org/10.4043/21016-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shapiro, Laurence J. "Ocean Thermal Energy Conversion (OTEC) as Base Load Renewable Power." In ASME 2014 Power Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/power2014-32175.

Full text
Abstract:
Ocean Thermal Energy Conversion (OTEC) is a form of renewable solar energy that has the capability to provide 24 hour base load, dispatchable power to electrical systems. This is a major advantage over solar PV and wind, which are intermittent and can have significant adverse effects on grid stability once penetration exceeds 10% of grid capacity. This paper describes OTEC technology, suitable areas for implementation, current levels of technology development, regulatory barriers, problems posed by intermittent power generation as well as how it is differentiated from intermittent renewable te
APA, Harvard, Vancouver, ISO, and other styles
8

Srinivasan, Nagan. "A New Improved Ocean Thermal Energy Conversion System With Suitable Floating Vessel Design." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80092.

Full text
Abstract:
Demand for energy worldwide is increasing significantly. A need for alternate energy sources has been brought to the attention of scientists and engineers. Ocean Thermal Energy Conversion (OTEC) is one among them which is in the development stage for the past three to four decades. Great amount of energy is available in deep-ocean with temperature difference between in upper surface-layer and in deep-ocean layer with maximum range of say up to 25 degree C in localized offshore locations near of equatorial waters. However, the technology is not in commercial operation due to the need of large c
APA, Harvard, Vancouver, ISO, and other styles
9

Yamada, Noboru, Akira Hoshi, and Yasuyuki Ikegami. "Thermal Efficiency Enhancement of Ocean Thermal Energy Conversion (OTEC) Using Solar Thermal Energy." In 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sinama, Frantz, Franck Lucas, and Franc¸ois Garde. "Modeling of Ocean Thermal Energy Conversion (OTEC) Plant in Reunion Island." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90394.

Full text
Abstract:
Renewable Energy has a crucial interest for a remote area like Reunion Island. The supply of electricity based on renewable energy has many advantages but the major drawback is the production of electricity which varies highly according to the availability of the resource (wind, solar, wave, etc...). This causes a real problem for non interconnected electrical grid where intermittent renewable energies should be limited to a maximum of 30%. The ocean Thermal Energy Conversion (OTEC) provides an alternative of electricity production from the available energy of the oceans present all the time.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ocean Thermal Energy Conversion (OTEC)"

1

Zangrando, F., D. Bharathan, H. J. Green, et al. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6193607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bharathan, D., H. J. Green, H. F. Link, B. K. Parsons, J. M. Parsons, and F. Zangrando. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE). Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6625364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, D. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants. Office of Scientific and Technical Information (OSTI), 1985. http://dx.doi.org/10.2172/5451995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Valent, P. J., and M. Riggins. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5855259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martel, Laura, Paul Smith, Steven Rizea, et al. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1045340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

PAT GRANDELLI, P. E., GREG ROCHELEAU, Ph D. JOHN HAMRICK, Ph D. MATT CHURCH, and Ph D. BRIAN POWELL. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1055480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johnston, Sweyn, John McGlynn, Veronica R. Prado, and Joseph Williams. Ocean Energy in the Caribbean: Technology Review, Potential Resource and Project Locational Guidance. Inter-American Development Bank, 2021. http://dx.doi.org/10.18235/0003783.

Full text
Abstract:
This publication assesses the potential for deployment of the leading Marine Renewable Energy (MRE) technologies including Fixed Offshore Wind, Floating Offshore Wind, Ocean Thermal Energy Conversion across nine Countries of Interest (COI) in the Caribbean region. This is achieved by conducting a technology review, analysing resource levels in each of the COIs, and presenting the outputs of Locational Guidance work identifying preferred areas for potential future project development. This work concludes that MRE can offer a secure supply of indigenous clean energy, that resources are sufficien
APA, Harvard, Vancouver, ISO, and other styles
8

Innovative turbine concepts for open-cycle OTEC (ocean thermal energy conversion). Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/7109796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ocean Thermal Energy Conversion: An overview. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5390257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!