Academic literature on the topic 'Ocean thermal power plants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ocean thermal power plants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ocean thermal power plants"
Hendrawan, Andi, Aji K. Hendrawan, Sri Pramomo, and Lusiani Lusiani. "Thermohydraulic Analysis of Ocean Thermal Energy Conversion." Saintara : Jurnal Ilmiah Ilmu-Ilmu Maritim 7, no. 2 (September 30, 2023): 52–56. http://dx.doi.org/10.52475/saintara.v7i2.233.
Full textSurinati, Dewi, and Muhammad Ramadhani Marfatah. "PENGARUH FAKTOR HIDRODINAMIKA TERHADAP SEBARAN LIMBAH AIR PANAS DI LAUT." OSEANA 44, no. 1 (April 30, 2019): 26–37. http://dx.doi.org/10.14203/oseana.2019.vol.44no.1.29.
Full textWiegel, Robert L., John T. Wells, and Michele A. Murdoch. "COOLING WATER RECIRCULATION IN THE OCEAN." Coastal Engineering Proceedings 1, no. 20 (January 29, 1986): 200. http://dx.doi.org/10.9753/icce.v20.200.
Full textGłuch, Jerzy. "Fault detection in measuring systems of power plants." Polish Maritime Research 15, no. 4 (January 1, 2008): 45–51. http://dx.doi.org/10.2478/v10012-007-0096-8.
Full textGiordani, Helia Danielle, Matheus Lages, Miguel Medina, and Jade Tan-Holmes. "Affects of the Cold Water Pipe Depth in Ocean Thermal Energy Converter Plants with respect to Power Generation Efficiency." PAM Review Energy Science & Technology 2 (August 31, 2015): 50–66. http://dx.doi.org/10.5130/pamr.v2i0.1395.
Full textBarberis, Stefano, Andrea Giugno, Giacomo Sorzana, Miguel F. P. Lopes, and Alberto Traverso. "Techno-economic analysis of multipurpose OTEC power plants." E3S Web of Conferences 113 (2019): 03021. http://dx.doi.org/10.1051/e3sconf/201911303021.
Full textBin Nadeem, Talha, Asad A. Naqvi, and Ahsan Ahmed. "Suitable Site Selection for Ocean Thermal Energy Conversion (OTEC) systems – A case study for Pakistan." TECCIENCIA 33, no. 17 (October 10, 2022): 35–48. http://dx.doi.org/10.18180/tecciencia.2022.33.4.
Full textYasunaga, Takeshi, Kevin Fontaine, and Yasuyuki Ikegami. "Performance Evaluation Concept for Ocean Thermal Energy Conversion toward Standardization and Intelligent Design." Energies 14, no. 8 (April 20, 2021): 2336. http://dx.doi.org/10.3390/en14082336.
Full textCurto, Domenico, Vincenzo Franzitta, and Andrea Guercio. "Sea Wave Energy. A Review of the Current Technologies and Perspectives." Energies 14, no. 20 (October 13, 2021): 6604. http://dx.doi.org/10.3390/en14206604.
Full textShekarbaghani, Ashrafoalsadat. "Determine the best location for Ocean Thermal Energy Conversion (OTEC) in Iranian Seas." Modern Applied Science 10, no. 5 (February 28, 2016): 32. http://dx.doi.org/10.5539/mas.v10n5p32.
Full textDissertations / Theses on the topic "Ocean thermal power plants"
Rizea, Steven Emanoel. "Optimization of Ocean Thermal Energy Conversion Power Plants." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5462.
Full textID: 031001365; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Adviser: Marcel Ilie.; Title from PDF title page (viewed May 8, 2013).; Thesis (M.S.M.E.)--University of Central Florida, 2012.; Includes bibliographical references (p. 77-78).
M.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Mechanical Systems
Rodríguez, Buño Mariana. "Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79495.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 126-130).
The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can provide renewable energy by making use of the temperature difference between the surface ocean and deep ocean water in a Rankine cycle. An OTEC plant pumps huge volumes of water from the surface and nearly 1 km depth, and releases it at an intermediate depth. The effects of this enormous flux are crucial to understand since disruption of the ambient temperature stratification can affect the efficiency of the plant itself and of adjacent plants. This thesis aims to study the external fluid mechanics of offshore OTEC power plants, to assess their environmental impact and to help analyze whether OTEC plants can provide a sustainable source of energy. Although there has been interest in OTEC for several decades, so far primarily physical and analytical models have been developed. In this study numerical models are developed to model OTEC operating plants: integral models for the near and intermediate field and a large-scale ocean general circulation model. Two strategies in modeling OTEC plant discharge are used to analyze plume dynamics: the "Brute Force" approach, in which a circulation model, MITgcm, computes the near, intermediate and far field mixing; and the "Distributed Sources and Sinks" approach, in which the near and intermediate field are represented in the circulation model by sources and sinks of mass computed by integral models. This study concludes that the Brute Force modeling strategy is highly computationally demanding and sometimes inaccurate. Such simulations are very sensitive to model resolution and may require the use of unrealistic model parameters. The Distributed Sources and Sinks approach was found to be capable of modeling the plume dynamics accurately. This method can be applied to the study of adjacent OTEC power plant interaction, redistribution of nutrients, and propagation of contaminants.
by Mariana Rodríguez Buño.
S.M.
Cottam, P. J. "Innovation in solar thermal chimney power plants." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10045417/.
Full textRahmqvist, Elin. "On stochastic unit commitment for thermal power plants." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285519.
Full textKlimatförändringarna är ett faktum, en kris som hotar varje land, ekonomi och människa.För att förebygga denna kris måste utsläppen av växthusgaser minska dramatiskt. 72 % av de globala utsläppen av växthusgaser år 2016 kom från energiproduktion där värme och elektricitet stod för 42 % av dessa utsläpp. Trots detta växte kolkraften med 28% år 2018 för att kunna möta den ökande efterfrågan på elektricitet. Det är därför av yttersta vikt att dessa resurser används på ett så e↵ektivt sätt som möjligt. En bra och exakt korttidsplanering av kraftsystem kan minska utsläppen och kostnaderna.Målet med denna studie är att implementera stokastisk last i korttidsplaneringen för ett mindre elkraftsystem med 11 enheter. Detta kräver en robust metod som begränsar beräkningstiden för att säkerställa kontinuerlig och säker drift av elkraftsystemet. Analysen måste utvärdera tillförlitligheten, ekonomiska e↵ekterna och beräkningstiden för att lösa det stokastiska korttidsplaneringsproblemet.Ett testsystem har skapats i MATLAB för att utvärdera den stokastiska kontra deterministiska korttidsplaneringsproblemet. Scenarier för det stokastiska korttidsplaneringen har genererats genom att använda en stationär Markov-kedja för att generera felen i lastprognosen och sedan använda Fast Forward Selection metoden för att minska antalet scenarier för att minimera beräkningsinsatsen. Stokastisk korttidsplanering har sedan utvärderats med värdet av den stokastiska lösningen för ekonomisk analys. Sannolikheten för bortkoppling av last samt icke levererad energi har beräknats för att utvärdera tillförlitligheten.En stokastisk metod ger en mer robust lösning men kan vara dyrare vad gäller kostnader. Fem scenarier var det optimala valet för den stokastiska korttidsplaneringsformuleringen. Ö kande av antal scenarier förbättrade inte tillförlitligheten och resulterade i en dyrare lösning. Slutsatsen i detta arbete kan kännas motsägelsefullt då den deterministiska metoden visar på lägre kostnader medans den stokastiska är mer robust. Detta belyser en av utmaningarna i elkraftsystem. Ett mer robust system är vanligtvis dyrare och därför måste aktörerna i systemet bestämma vad som är mest önskvärt i det specifika systemet. Ett mer tillförlitligt men dyrare system eller ett mindre pålitligt och billigaresystem.
Assémat, Céline. "Management of thermal power plants through use values." Thesis, KTH, Elektriska energisystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175811.
Full textRennie, Eleanor Jane. "Thermal performance of power station cooling towers." Thesis, University of Nottingham, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335762.
Full textEl, Khaja Ragheb Mohamad Fawaz. "Solar-thermal hybridization of Advanced Zero Emissions Power Plants." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74434.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 43-44).
Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but suffer from high costs of power production and temporal variations. On the other hand, Carbon Capture and Sequestration allows the continued use of fossil fuels without the CO2 emissions but it comes at an energetic penalty. The Advanced Zero Emissions Plant (AZEP) minimizes this energy loss by making use of Ion Transport Membrane (ITM)-based oxy-combustion to reduce the cost of carbon dioxide separation. This work seeks to assess if there are any thermodynamic gains from hybridizing solar-thermal energy with AZEP. The particular focus is hybridizing of the bottoming cycle with supplemental solar heating. A simple model of parabolic solar trough was used to hybridize a model of the AZEP cycle in ASPEN Plus*. Two cycle configurations are studied: the first uses solar parabolic troughs to indirectly vaporize high pressure steam through Therminol and the second uses parabolic troughs to directly preheat the high pressure water stream prior to vaporization. Simulations of the solar vaporizer hybrid by varying the total area of collectors (holding fuel input constant) show an increase of net electric output from 439MW for the non-hybridized AZEP to 533MW with an input solar share of 38.8%. The incremental solar efficiency is found to be around 16% for solar shares of input ranging from 5% to 38.8%. Moreover, simulations of variable solar insolation for collector area of 550,000 m2 , show that incremental solar efficiency increased with solar insolation reaching a plateau around 17%. Simulations of the direct solar preheater, show a net electric output of 501.3 MW for a solar share of 35%, (an incremental solar efficiency of 13.73%). The power generation and hence incremental efficiency is lower than in hybridization with steam vaporization with the same input solar share. Synergy analysis for the steam vaporization hybrid indicates no thermodynamic gains from hybridization.
by Ragheb Mohamad Fawaz El Khaja.
S.B.
Allen, Kenneth Guy. "Rock bed thermal storage for concentrating solar power plants." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86521.
Full textENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, and require thermal storage to supply power on demand. At present thermal storage – usually molten salt – although functional, is expensive, and a cheaper solution is desired. It is proposed that sensible heat storage in a packed bed of rock, with air as heat transfer medium, is suitable at temperatures of 500 – 600 °C. To determine if this concept is technically feasible and economically competitive with existing storage, rock properties, packed bed pressure drop and thermal characteristics must be understood. This work addresses these topics. No previously published data is available on thermal cycling resistance of South African rock, and there is limited data from other countries in the proposed temperature range for long-term thermal cycling, so samples were thermally cycled. There is rock which is suitable for thermal storage applications at temperatures of 500 – 600 °C. New maps of South Africa showing where potentially suitable rock is available were produced. Dolerite, found extensively in the Karoo, is particularly suitable. Friction factors were measured for beds of different particles to determine the importance of roughness, shape, and packing arrangement. Five sets of rock were also tested, giving a combined dataset broader than published in any previous study. Limitations of existing correlations are shown. The friction factor is highly dependent on particle shape and, in the case of asymmetric particles, packing method. The friction factor varied by up to 70 % for crushed rock depending on the direction in which it was poured into the test section, probably caused by the orientation of the asymmetric rock relative to the air flow direction. This has not been reported before for rock beds. New isothermal correlations using the volume equivalent particle diameter are given: they are within 15 % of the measurements. This work will allow a techno-economic evaluation of crushed rock beds using more accurate predictions of pumping power than could previously be made. Thermal tests below 80 °C show that bed heat transfer is insensitive to particle shape or type. A heat transfer correlation for air in terms of the volume equivalent diameter was formulated and combined with the E-NTU method. The predicted bed outlet temperatures are within 5 °C of the measurements for tests at 530 °C, showing that the influence of thermal conduction and radiation can be reasonably negligible for a single charge/discharge cycle at mass fluxes around 0.2 kg/m2s. A novel method for finding the optimum particle size and bed length is given: The Biot number is fixed, and the net income (income less bed cost) from a steam cycle supplied by heat from the bed is calculated. A simplified calculation using the method shows that the optimum particle size is approximately 20 mm for bed lengths of 6 – 7 m. Depending on the containment design and cost, the capital cost could be an order of magnitude lower than a nitrate salt system.
AFRIKAANSE OPSOMMING: Gekonsentreerde son-energie kragstasies is n belowende manier om elektrisiteit op te wek, maar hulle is afhanklik van die son as n bron van energie. Om drywing op aanvraag te voorsien moet hulle energie stoor. Tans is termiese stoor – gewoonlik gesmelte sout – hoewel funksioneel, duur, en n goedkoper oplossing word gesoek. Daar word voorgestel dat stoor van voelbare warmte-energie in n gepakte rotsbed met lug as warmteoordrag medium geskik is by temperature van 500 – 600 °C. Om te bepaal of dié konsep tegnies gangbaar en ekonomies mededingend met bestaande stoorstelsels is, moet rotseienskappe, gepakte bed drukval en hitteoordrag verstaan word. Hierdie werk spreek hierdie aspekte aan. Geen voorheen gepubliseerde data is beskikbaar oor die termiese siklus weerstand van Suid-Afrikaanse rots nie, en daar is beperkte data van ander lande in die voorgestelde temperatuurbereik, dus is monsters onderwerp aan termiese siklusse. Daar bestaan rots wat geskik is vir termiese stoor toepassings by temperature van 500 – 600 °C. Nuwe kaarte van Suid-Afrika is opgestel om te wys waar potensieel geskikte rots beskikbaar is. Doleriet, wat wyd in die Karoo voor kom, blyk om veral geskik te wees. Wrywingsfaktore is gemeet vir beddens van verskillende partikels om die belangrikheid van grofheid, vorm en pak-rangskikking te bepaal. Vyf rotsstelle is ook getoets, wat n saamgestelde datastel gee wyer as in enige gepubliseerde studie. Beperkings van bestaande korrelasies word aangetoon. Die wrywingsfaktor is hoogs sensitief vir partikelvorm en, in die geval van asimmetriese partikels, pakkings metode. Die wrywingsfaktor het met tot 70 % gevarieer vir gebreekte rots, afhanklik van die rigting waarin dit in die toetsseksie neergelê is. Dit is waarskynlik veroorsaak deur die oriëntasie van die asimmetriese rots relatief tot die lugvloei rigting, en is nie voorheen vir rotsbeddens gerapporteer nie. Nuwe isotermiese korrelasies wat gebruik maak van die volume-ekwivalente partikel deursnee word gegee: hulle voorspel binne 15 % van die gemete waardes. Hierdie werk sal n tegno-ekonomiese studie van rotsbeddens toelaat wat meer akkurate voorspellings van pompdrywing gebruik as voorheen moontlik was. Termiese toetse onder 80 °C wys dat die warmteoordrag nie baie sensitief is vir partikelvorm en -tipe nie. n Warmte-oordragskorrelasie vir lug in terme van die volume-ekwivalente deursnee is ontwikkel en met die E-NTU-metode gekombineer. Die voorspelde lug uitlaat temperatuur is binne 5 °C van die meting vir toetse by 530 °C. Dit wys dat termiese geleiding en straling redelikerwys buite rekening gelaat kan word vir n enkele laai/ontlaai siklus by massa vloeitempos van omtrent 0.2 kg/m2s. n Oorspronklike metode vir die bepaling van die optimum partikelgrootte en bedlengte word gegee: Die Biot-getal is vas, en die netto inkomste (die inkomste minus die bed omkoste) van n stoomsiklus voorsien met warmte van die bed word bereken. n Vereenvoudigde berekening wat die metode gebruik wys dat die optimum grootte en lengte ongeveer 20 mm en 6-7 m is. Afhangende van die behoueringsontwerp en koste, kan die kapitale koste n orde kleiner wees as dié van n gesmelte nitraatsout stelsel
Allen, Kenneth Guy. "Performance characteristics of packed bed thermal energy storage for solar thermal power plants." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4329.
Full textENGLISH ABSTRACT: Solar energy is by far the greatest energy resource available to generate power. One of the difficulties of using solar energy is that it is not available 24 hours per day - some form of storage is required if electricity generation at night or during cloudy periods is necessary. If a combined cycle power plant is used to obtain higher efficiencies, and reduce the cost of electricity, storage will allow the secondary cycle to operate independently of the primary cycle. This study focuses on the use of packed beds of rock or slag, with air as a heat transfer medium, to store thermal energy in a solar thermal power plant at temperatures sufficiently high for a Rankine steam cycle. Experimental tests were done in a packed bed test section to determine the validity of existing equations and models for predicting the pressure drop and fluid temperatures during charging and discharging. Three different sets of rocks were tested, and the average size, specific heat capacity and density of each set were measured. Rock and slag samples were also thermally cycled between average temperatures of 30 ºC and 510 ºC in an oven. The classical pressure drop equation significantly under-predicts the pressure drop at particle Reynolds numbers lower than 3500. It appears that the pressure drop through a packed bed is proportional to the 1.8th power of the air flow speed at particle Reynolds numbers above about 500. The Effectiveness-NTU model combined with a variety of heat transfer correlations is able to predict the air temperature trend over the bed within 15 % of the measured temperature drop over the packed bed. Dolerite and granite rocks were also thermally cycled 125 times in an oven without breaking apart, and may be suitable for use as thermal storage media at temperatures of approximately 500 ºC. The required volume of a packed bed of 0.1 m particles to store the thermal energy from the exhaust of a 100 MWe gas turbine operating for 8 hours is predicted to be 24 × 103 m3, which should be sufficient to run a 25-30 MWe steam cycle for over 10 hours. This storage volume is of a similar magnitude to existing molten salt thermal storage.
AFRIKAANSE OPSOMMING: Sonenergie is die grootste energiebron wat gebruik kan word vir krag opwekking. ‘n Probleem met die gebruik van sonenergie is dat die son nie 24 uur per dag skyn nie. Dit is dus nodig om die energie te stoor indien dit nodig sal wees om elektrisiteit te genereer wanneer die son nie skyn nie. ‘n Gekombineerde kringloop kan gebruik word om ‘n hoër benuttingsgraad te bereik en elektrisiteit goedkoper te maak. Dit sal dan moontlik wees om die termiese energie uit die primêre kringloop te stoor, wat die sekondêre kringloop onafhanklik van die primêre kringloop sal maak. Dié gevalle studie ondersoek die gebruik van ‘n slakof- klipbed met lug as hitteoordragmedium, om te bepaal of dit moontlik is om hitte te stoor teen ‘n temperatuur wat hoog genoeg is om ‘n Rankine stoom kringloop te bedryf. Eksperimentele toetse is in ‘n toets-bed gedoen en die drukverandering oor die bed en die lug temperatuur is gemeet en vergelyk met voorspelde waardes van vergelykings en modelle in die literatuur. Drie soorte klippe was getoets. Die gemiddelde grootte, spesifieke hitte-kapasiteit en digtheid van elke soort klip is gemeet. Klip en slak monsters is ook siklies tussen temperature van 30 ºC en 510 ºC verkoel en verhit. Die klassieke drukverlies vergelyking gee laer waardes as wat gemeet is vir Reynolds nommers minder as 3500. Dit blyk dat die drukverlies deur ‘n klipbed afhanklik is van die lug vloeispoed tot die mag 1.8 as die Reynolds nommer groter as omtrent 500 is. Die ‘Effectiveness-NTU’ model gekombineerd met ‘n verskeidenheid van hitteoordragskoeffisiënte voorspel temperature binne 15 % van die gemete temperatuur verskil oor die bed. Doloriet en graniet klippe het 125 sikliese toetse ondergaan sonder om te breek, en is miskien gepas vir gebruik in ‘n klipbed by temperature van sowat 500 ºC Die voorspelde volume van ‘n klipbed wat uit 0.1 m klippe bestaan wat die termiese energie vir 8 ure uit die uitlaat van ‘n 100 MWe gasturbiene kan stoor, is 24 × 103 m3. Dit behoort genoeg te wees om ‘n 25 – 30 MWe stoom kringloop vir ten minste 10 ure te bedryf. Die volume is min of meer gelyk aan dié van gesmelte sout store wat alreeds gebou is.
Darwish, Mazen. "Modular Hybridization of Solar Thermal Power Plants For Developing Nations." Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104456.
Full textBooks on the topic "Ocean thermal power plants"
Kalvaitis, A. N. Large scale OTEC pipe program: Development, experimental results, and trends. Rockville, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, 1985.
Find full textAnatolʹevich, Akulichev Viktor, and Ilʹichev V. I, eds. Volnovye ėnergeticheskie stant͡s︡ii v okeane. Moskva: "Nauka", 1989.
Find full textP, Myers Edward, and United States. National Marine Fisheries Service., eds. The potential impact of ocean thermal energy conversion (OTEC) on fisheries. [Seattle, Wash.]: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 1986.
Find full textIlʹin, A. K., and E. N. Evstafeeva. Preobrazovanie i ispolʹzovanie teplovoĭ ėnergii okeana. Vladivostok: DVO AN SSSR, 1988.
Find full textBank, Asian Development, ed. Wave energy conversion and ocean thermal energy conversion potential in developing member countries. Mandaluyong City, Metro Manila, Philippines: Asian Development Bank, 2014.
Find full textKrishna, Ivan. A SOPAC desktop study of ocean-based renewable energy technologies. S.l.]: SOPAC, 2009.
Find full text1936-, Wu Chih, ed. Renewable energy from the ocean: A guide to OTEC. New York: Oxford University Press, 1994.
Find full textBharathan, D. Staging Rankine cycles using ammonia for OTEC power production. Golden, CO: National Renewable Energy Laboratory, 2011.
Find full textBook chapters on the topic "Ocean thermal power plants"
Iibuchi, Toshio, Seiji Kobayashi, Sigenori Nanjou, Kanako Satou, Takeya Hara, and Michiyasu Kiyono. "A Subject of the Chlorine Management at a Thermal Power Plant on the Northwest Pacific Ocean in Japan." In Marine Productivity: Perturbations and Resilience of Socio-ecosystems, 139–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13878-7_15.
Full textBecker, M., and L. L. Vant-Hull. "Thermal Receivers." In Solar Power Plants, 163–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_5.
Full textLiu, Xingrang, and Ramesh Bansal. "Internet-Supported Coal-Fired Power Plant Boiler Combustion Optimization Platform." In Thermal Power Plants, 275–84. Boca Raton : Taylor & Francis, CRC Press, 2016.: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371467-15.
Full textKesselring, P., and C. J. Winter. "Solar Thermal Power Plants." In Solar Thermal Central Receiver Systems, 3–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82910-9_1.
Full textStieglitz, Robert, and Werner Platzer. "Solar Thermal Power Plants." In Solar Thermal Energy Systems, 1103–260. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-43173-9_11.
Full textGrasse, W., H. P. Hertlein, C. J. Winter, and G. W. Braun. "Thermal Solar Power Plants Experience." In Solar Power Plants, 215–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_7.
Full textZohuri, Bahman, and Nima Fathi. "Nuclear Power Plants." In Thermal-Hydraulic Analysis of Nuclear Reactors, 489–523. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17434-1_19.
Full textZohuri, Bahman. "Nuclear Power Plants." In Thermal-Hydraulic Analysis of Nuclear Reactors, 649–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53829-7_20.
Full textGeyer, M. A. "Thermal Storage for Solar Power Plants." In Solar Power Plants, 199–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_6.
Full textVega, Luis. "Ocean Thermal Energy Conversion." In Power Stations Using Locally Available Energy Sources, 447–80. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7510-5_695.
Full textConference papers on the topic "Ocean thermal power plants"
Anderson, James H. "Ocean Thermal Energy Conversion (OTEC): Choosing a Working Fluid." In ASME 2009 Power Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/power2009-81211.
Full textBeck, Earl J. "The Ocean Thermal Gradient Hydraulic Power Plant and Its Scope." In ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2003. http://dx.doi.org/10.1115/omae2003-37285.
Full textBeck, Earl J. "The Prospects for Ocean Thermal Energy Conversion: The Ocean Thermal Gradient Hydraulic Power Plant." In International Joint Power Generation Conference collocated with TurboExpo 2003. ASMEDC, 2003. http://dx.doi.org/10.1115/ijpgc2003-40079.
Full textSales, Joel Sena, Alexandre Texeira Alho, Roberto Valente de Souza, and Antonio Carlos Fernandes. "Preliminary Feasibility Study of an Ocean Thermal Energy Converter (OTEC) Platform for Offshore Brazil." In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32776-ms.
Full textUpshaw, Charles R., and Michael E. Webber. "Integrated Thermal-Fluids System Modeling of an Ocean Thermal Energy Conversion Power Plant for Analysis and Optimization." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54595.
Full textWang, Jiang-Jiang, You-Yin Jing, and Jun-Hong Zhao. "Multi Criteria Evaluation Model of Renewable Energy Power Plants Based on ELECTRE Method." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90104.
Full textSrinivasan, Nagan, Meena Sridhar, and Madhusuden Agrawal. "Study on the Cost Effective Ocean Thermal Energy Convertion Power Plant." In Offshore Technology Conference. Offshore Technology Conference, 2010. http://dx.doi.org/10.4043/20340-ms.
Full textLee, Ho-Saeng, Seung-Won Lee, Hyeon-Ju Kim, and Young-Kwon Jung. "Performance Characteristics of 20kW Ocean Thermal Energy Conversion Pilot Plant." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49768.
Full textNajafi, Alireza, Shahab Rezaee, and Farschad Torabi. "Sensitivity analysis of a closed cycle ocean thermal energy conversion power plant." In 2012 Iranian Conference on Renewable Energy and Distributed Generation (ICREDG). IEEE, 2012. http://dx.doi.org/10.1109/icredg.2012.6190461.
Full textNajafi, Alireza, Shahab Rezaee, and Farschad Torabi. "Multi-objective optimization of ocean thermal energy conversion power plant via genetic algorithm." In Energy Conference (EPEC). IEEE, 2011. http://dx.doi.org/10.1109/epec.2011.6070237.
Full textReports on the topic "Ocean thermal power plants"
Linker, K. Heat engine development for solar thermal dish-electric power plants. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/7228892.
Full textDeterman, J. C., and C. E. Hendrix. Survey of thermal-hydraulic models of commercial nuclear power plants. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/6983550.
Full textDrost, M. K., Z. I. Antoniak, D. R. Brown, and S. Somasundaram. Thermal energy storage for integrated gasification combined-cycle power plants. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6624383.
Full textDeterman, J. C., and C. E. Hendrix. Survey of thermal-hydraulic models of commercial nuclear power plants. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10128992.
Full textLeidenfrost, W., P. Liley, A. McDonald, I. Mudawwar, and J. Pearson. Performance assessment of OTEC power systems and thermal power plants. Final report. Volume I. Office of Scientific and Technical Information (OSTI), May 1985. http://dx.doi.org/10.2172/5464301.
Full textKuver, Walt. Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/1129448.
Full textGawlik, Keith. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1090094.
Full textKnighton, Lane, Amey Shigrekar, Daniel Wendt, and Brian Murphy. Markets and Economics for Thermal Power Extraction from Nuclear Power Plants aiding the Decarbonization of Industrial Processes. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1692372.
Full textWang, D. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/5451995.
Full textByers, R. Application of RELAP4/MOD6 to analysis of solar-thermal power plants: control system modelling. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5554016.
Full text