Academic literature on the topic 'Ocean Upwelling Convection Reanalysis Simulations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ocean Upwelling Convection Reanalysis Simulations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ocean Upwelling Convection Reanalysis Simulations"

1

Aguiar, Wilton, Mauricio M. Mata, and Rodrigo Kerr. "On deep convection events and Antarctic Bottom Water formation in ocean reanalysis products." Ocean Science 13, no. 6 (November 7, 2017): 851–72. http://dx.doi.org/10.5194/os-13-851-2017.

Full text
Abstract:
Abstract. Open ocean deep convection is a common source of error in the representation of Antarctic Bottom Water (AABW) formation in ocean general circulation models. Although those events are well described in non-assimilatory ocean simulations, the recent appearance of a massive open ocean polynya in the Estimating the Circulation and Climate of the Ocean Phase II reanalysis product (ECCO2) raises questions on which mechanisms are responsible for those spurious events and whether they are also present in other state-of-the-art assimilatory reanalysis products. To investigate this issue, we evaluate how three recently released high-resolution ocean reanalysis products form AABW in their simulations. We found that two of the products create AABW by open ocean deep convection events in the Weddell Sea that are triggered by the interaction of sea ice with the Warm Deep Water, which shows that the assimilation of sea ice is not enough to avoid the appearance of open ocean polynyas. The third reanalysis, My Ocean University Reading UR025.4, creates AABW using a rather dynamically accurate mechanism. The UR025.4 product depicts both continental shelf convection and the export of Dense Shelf Water to the open ocean. Although the accuracy of the AABW formation in this reanalysis product represents an advancement in the representation of the Southern Ocean dynamics, the differences between the real and simulated processes suggest that substantial improvements in the ocean reanalysis products are still needed to accurately represent AABW formation.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Xiaolin, and Weiqing Han. "Effects of Climate Modes on Interannual Variability of Upwelling in the Tropical Indian Ocean." Journal of Climate 33, no. 4 (February 15, 2020): 1547–73. http://dx.doi.org/10.1175/jcli-d-19-0386.1.

Full text
Abstract:
AbstractThis paper investigates interannual variability of the tropical Indian Ocean (IO) upwelling through analyzing satellite and in situ observations from 1993 to 2016 using the conventional Static Linear Regression Model (SLM) and Bayesian Dynamical Linear Model (DLM), and performing experiments using a linear ocean model. The analysis also extends back to 1979, using ocean–atmosphere reanalysis datasets. Strong interannual variability is observed over the mean upwelling zone of the Seychelles–Chagos thermocline ridge (SCTR) and in the seasonal upwelling area of the eastern tropical IO (EIO), with enhanced EIO upwelling accompanying weakened SCTR upwelling. Surface winds associated with El Niño–Southern Oscillation (ENSO) and the IO dipole (IOD) are the major drivers of upwelling variability. ENSO is more important than the IOD over the SCTR region, but they play comparable roles in the EIO. Upwelling anomalies generally intensify when positive IODs co-occur with El Niño events. For the 1979–2016 period, eastern Pacific (EP) El Niños overall have stronger impacts than central Pacific (CP) and the 2015/16 hybrid El Niño events, because EP El Niños are associated with stronger convection and surface wind anomalies over the IO; however, this relationship might change for a different interdecadal period. Rossby wave propagation has a strong impact on upwelling in the western basin, which causes errors in the SLM and DLM because neither can properly capture wave propagation. Remote forcing by equatorial winds is crucial for the EIO upwelling. While the first two baroclinic modes capture over 80%–90% of the upwelling variability, intermediate modes (3–8) are needed to fully represent IO upwelling.
APA, Harvard, Vancouver, ISO, and other styles
3

Di Lorenzo, Emanuele, Arthur J. Miller, Niklas Schneider, and James C. McWilliams. "The Warming of the California Current System: Dynamics and Ecosystem Implications." Journal of Physical Oceanography 35, no. 3 (March 1, 2005): 336–62. http://dx.doi.org/10.1175/jpo-2690.1.

Full text
Abstract:
Abstract Long-term changes in the observed temperature and salinity along the southern California coast are studied using a four-dimensional space–time analysis of the 52-yr (1949–2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy-permitting primitive equation ocean model under various forcing scenarios. An overall warming trend of 1.3°C in the ocean surface, a deepening in the depth of the mean thermocline (18 m), and increased stratification between 1950 and 1999 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, consistent with colder observed ocean temperatures. Salinity changes are decoupled from temperature and appear to be controlled locally in the coastal ocean by horizontal advection by anomalous currents. A cooling trend of –0.5°C in SST is driven in the ocean model by the 50-yr NCEP wind reanalysis, which contains a positive trend in upwelling-favorable winds along the southern California coast. A net warming trend of +1°C in SST occurs, however, when the effects of observed surface heat fluxes are included as forcing functions in the model. Within 50–100 km of the coast, the ocean model simulations show that increased stratification/deepening of the thermocline associated with the warming reduces the efficiency of coastal upwelling in advecting subsurface waters to the ocean surface, counteracting any effects of the increased strength of the upwelling winds. Such a reduction in upwelling efficiency leads in the model to a freshening of surface coastal waters. Because salinity and nutrients at the coast have similar distributions this must reflect a reduction of the nutrient supply at the coast, which is manifestly important in explaining the observed decline in zooplankton concentration. The increased winds also drive an intensification of the mean currents of the southern California Current System (SCCS). Model mesoscale eddy variance significantly increases in recent decades in response to both the stronger upwelling winds and the warmer upper-ocean temperatures, suggesting that the stability properties of the SCCS have also changed.
APA, Harvard, Vancouver, ISO, and other styles
4

Jeong, Hyein, Xylar S. Asay-Davis, Adrian K. Turner, Darin S. Comeau, Stephen F. Price, Ryan P. Abernathey, Milena Veneziani, et al. "Impacts of Ice-Shelf Melting on Water-Mass Transformation in the Southern Ocean from E3SM Simulations." Journal of Climate 33, no. 13 (July 1, 2020): 5787–807. http://dx.doi.org/10.1175/jcli-d-19-0683.1.

Full text
Abstract:
AbstractThe Southern Ocean overturning circulation is driven by winds, heat fluxes, and freshwater sources. Among these sources of freshwater, Antarctic sea ice formation and melting play the dominant role. Even though ice-shelf melt is relatively small in magnitude, it is located close to regions of convection, where it may influence dense water formation. Here, we explore the impacts of ice-shelf melting on Southern Ocean water-mass transformation (WMT) using simulations from the Energy Exascale Earth System Model (E3SM) both with and without the explicit representation of melt fluxes from beneath Antarctic ice shelves. We find that ice-shelf melting enhances transformation of Upper Circumpolar Deep Water, converting it to lower density values. While the overall differences in Southern Ocean WMT between the two simulations are moderate, freshwater fluxes produced by ice-shelf melting have a further, indirect impact on the Southern Ocean overturning circulation through their interaction with sea ice formation and melting, which also cause considerable upwelling. We further find that surface freshening and cooling by ice-shelf melting cause increased Antarctic sea ice production and stronger density stratification near the Antarctic coast. In addition, ice-shelf melting causes decreasing air temperature, which may be directly related to sea ice expansion. The increased stratification reduces vertical heat transport from the deeper ocean. Although the addition of ice-shelf melting processes leads to no significant changes in Southern Ocean WMT, the simulations and analysis conducted here point to a relationship between increased Antarctic ice-shelf melting and the increased role of sea ice in Southern Ocean overturning.
APA, Harvard, Vancouver, ISO, and other styles
5

Purich, Ariaan, Matthew H. England, Wenju Cai, Arnold Sullivan, and Paul J. Durack. "Impacts of Broad-Scale Surface Freshening of the Southern Ocean in a Coupled Climate Model." Journal of Climate 31, no. 7 (April 2018): 2613–32. http://dx.doi.org/10.1175/jcli-d-17-0092.1.

Full text
Abstract:
The Southern Ocean surface has freshened in recent decades, increasing water column stability and reducing upwelling of warmer subsurface waters. The majority of CMIP5 models underestimate or fail to capture this historical surface freshening, yet little is known about the impact of this model bias on regional ocean circulation and hydrography. Here experiments are performed using a global coupled climate model with additional freshwater applied to the Southern Ocean to assess the influence of recent surface freshening. The simulations explore the impact of persistent and long-term broad-scale freshening as a result of processes including precipitation minus evaporation changes. Thus, unlike previous studies, the freshening is applied as far north as 55°S, beyond the Antarctic ice margin. It is found that imposing a large-scale surface freshening causes a surface cooling and sea ice increase under preindustrial conditions, because of a reduction in ocean convection and weakened entrainment of warm subsurface waters into the surface ocean. This is consistent with intermodel relationships between CMIP5 models and the simulations, suggesting that models with larger surface freshening also exhibit stronger surface cooling and increased sea ice. Additional experiments are conducted with surface salinity restoration applied to capture observed regional salinity trends. Remarkably, without any mechanical wind trend forcing, these simulations accurately represent the spatial pattern of observed surface temperature and sea ice trends around Antarctica. This study highlights the importance of accurately simulating changes in Southern Ocean salinity to capture changes in ocean circulation, sea surface temperature, and sea ice.
APA, Harvard, Vancouver, ISO, and other styles
6

Jia, Yue, Shao Dong Zhang, Fan Yi, Chun Ming Huang, Kai Ming Huang, Yun Gong, and Quan Gan. "Variations of Kelvin waves around the TTL region during the stratospheric sudden warming events in the Northern Hemisphere winter." Annales Geophysicae 34, no. 3 (March 17, 2016): 331–45. http://dx.doi.org/10.5194/angeo-34-331-2016.

Full text
Abstract:
Abstract. Spatial and temporal variabilities of Kelvin waves during stratospheric sudden warming (SSW) events are investigated by the ERA-Interim reanalysis data, and the results are validated by the COSMIC temperature data. A case study on an exceptionally large SSW event in 2009, and a composite analysis comprising 18 events from 1980 to 2013 are presented. During SSW events, the average temperature increases by 20 K in the polar stratosphere, while the temperature in the tropical stratosphere decreases by about 4 K. Kelvin wave with wave numbers 1 and 2, and periods 10–20 days, clearly appear around the tropical tropopause layer (TTL) during SSWs. The Kelvin wave activity shows obvious coupling with the convection localized in the India Ocean and western Pacific (Indo-Pacific) region. Detailed analysis suggests that the enhanced meridional circulation driven by the extratropical planetary wave forcing during SSW events leads to tropical upwelling, which further produces temperature decrease in the tropical stratosphere. The tropical upwelling and cooling consequently result in enhancement of convection in the equatorial region, which excites the strong Kelvin wave activity. In addition, we investigated the Kelvin wave acceleration to the eastward zonal wind anomalies in the equatorial stratosphere during SSW events. The composite analysis shows that the proportion of Kelvin wave contribution ranges from 5 to 35 % during SSWs, much larger than in the non-SSW mid-winters (less than 5 % in the stratosphere). However, the Kelvin wave alone is insufficient to drive the equatorial eastward zonal wind anomalies during the SSW events, which suggests that the effects of other types of equatorial waves may not be neglected.
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Xiaoliang, and Guang J. Zhang. "Culprit of the Eastern Pacific Double-ITCZ Bias in the NCAR CESM1.2." Journal of Climate 32, no. 19 (August 27, 2019): 6349–64. http://dx.doi.org/10.1175/jcli-d-18-0580.1.

Full text
Abstract:
Abstract The eastern Pacific double-ITCZ bias has long been attributed to the warm bias of SST in the southeastern Pacific and associated local air–sea interaction. In this study, we conducted two simulations using the NCAR CESM1.2.1 to demonstrate that significant double-ITCZ bias can still form in the eastern Pacific through air–sea coupled feedback even when there is cold SST bias in the southeastern Pacific, indicating that other nonlocal culprits and mechanisms should be responsible for the double-ITCZ bias in the eastern Pacific. Further analyses show that the oversimulated convection in the northern ITCZ region and Central America in boreal winter may result in biases in the surface wind fields in the tropical northeastern Pacific in the atmospheric model, which favor the cooling of the ocean mixed layer through enhancement of latent heat flux and Ekman upwelling. These biases are passed into the ocean model in coupled simulations and result in a severe cold bias of SST in the northern ITCZ region. The overly cold SST bias persists in the subsequent spring, leading to the suppression of convection in the northern ITCZ region. The enhanced low-level cross-equatorial northerly wind strengthens the wind convergence south of the equator and transports abundant water vapor to the convergence zone, strengthening the southern ITCZ convection. All these processes lead to the disappearance of the northern ITCZ and the enhancement of the southern ITCZ in boreal spring, forming a seasonally alternating double-ITCZ bias. This study suggests that convection biases in the northern ITCZ region and Central America in boreal winter may be a culprit for the double-ITCZ bias in the eastern Pacific.
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, Leif N., and Craig M. Lee. "Intensification of Ocean Fronts by Down-Front Winds." Journal of Physical Oceanography 35, no. 6 (June 1, 2005): 1086–102. http://dx.doi.org/10.1175/jpo2737.1.

Full text
Abstract:
Abstract Many ocean fronts experience strong local atmospheric forcing by down-front winds, that is, winds blowing in the direction of the frontal jet. An analytic theory and nonhydrostatic numerical simulations are used to demonstrate the mechanism by which down-front winds lead to frontogenesis. When a wind blows down a front, cross-front advection of density by Ekman flow results in a destabilizing wind-driven buoyancy flux (WDBF) equal to the product of the Ekman transport with the surface lateral buoyancy gradient. Destabilization of the water column results in convection that is localized to the front and that has a buoyancy flux that is scaled by the WDBF. Mixing of buoyancy by convection, and Ekman pumping/suction resulting from the cross-front contrast in vertical vorticity of the frontal jet, drive frontogenetic ageostrophic secondary circulations (ASCs). For mixed layers with negative potential vorticity, the most frontogenetic ASCs select a preferred cross-front width and do not translate with the Ekman transport, but instead remain stationary in space. Frontal intensification occurs within several inertial periods and is faster the stronger the wind stress. Vertical circulation is characterized by subduction on the dense side of the front and upwelling along the frontal interface and scales with the Ekman pumping and convective mixing of buoyancy. Cross-front sections of density, potential vorticity, and velocity at the subpolar front of the Japan/East Sea suggest that frontogenesis by down-front winds was active during cold-air outbreaks and could result in strong vertical circulation.
APA, Harvard, Vancouver, ISO, and other styles
9

Hansen, Zachary R., Larissa E. Back, and Peigen Zhou. "Boundary Layer Quasi-Equilibrium Limits Convective Intensity Enhancement from the Diurnal Cycle in Surface Heating." Journal of the Atmospheric Sciences 77, no. 1 (December 16, 2019): 217–37. http://dx.doi.org/10.1175/jas-d-18-0346.1.

Full text
Abstract:
Abstract A combination of cloud-permitting model (CPM) simulations, satellite, and reanalysis data are used to test whether the diurnal cycle in surface temperature has a significant impact on the intensity of deep convection as measured by high-percentile updraft velocities, lightning, and CAPE. The land–ocean contrast in lightning activity shows that convective intensity varies between land and ocean independently from convective quantity. Thus, a mechanism that explains the land–ocean contrast must be able to do so even after controlling for precipitation variations. Motivated by the land–ocean contrast, we use idealized CPM simulations to test the impact of the diurnal cycle on high-percentile updrafts. In simulations, updrafts are somewhat enhanced due to large-scale precipitation enhancement by the diurnal cycle. To control for large-scale precipitation, we use statistical sampling techniques. After controlling for precipitation enhancement, the diurnal cycle does not affect convective intensities. To explain why sampled updrafts are not enhanced, we note that CAPE is also not increased, likely due to boundary layer quasi equilibrium (BLQE) occurring over our land area. Analysis of BLQE in terms of net positive and negative mass flux finds that boundary layer entrainment, and even more importantly downdrafts, account for most of the moist static energy (MSE) sink that is balancing surface fluxes. Using ERA-Interim data, we also find qualitative evidence for BLQE over land in the real world, as high percentiles of CAPE are not greater over land than over ocean.
APA, Harvard, Vancouver, ISO, and other styles
10

Lhotka, O., and A. Farda. "Links between Temperature Biases and Flow Anomalies in an Ensemble of CNRM-CM5.1 Global Climate Model Historical Simulations." Advances in Meteorology 2018 (July 19, 2018): 1–10. http://dx.doi.org/10.1155/2018/4984827.

Full text
Abstract:
The aim of this study was to evaluate temperature and sea-level pressure (SLP) fields and to analyse a related anomalous flow over midlatitudes simulated by the CNRM-CM5.1 global climate model (GCM). Simulated flow over midlatitudes of the Northern Hemisphere was assessed through flow indices, classified into 11 circulation types. Reference data were taken from the NOAA-CIRES 20th Century Reanalysis, version 2c. CNRM-CM5.1 exhibited analogous temperature biases to those reported for the mean of the CMIP5 GCMs’ ensemble. The most prominent features were an erroneous temperature dipole pattern in the Atlantic Ocean and a warm bias over regions of deep water upwelling (locally exceeding 5°C). The latter feature was associated with negative SLP biases in those regions. Too low pressure was found over midlatitudes of the Northern Hemisphere, and CNRM-CM5.1 simulated too frequent zonal flow in these latitudes. The usage of three ensemble members with different initial conditions did not improve model’s outputs because the bias is found to be considerably larger compared to the ensemble members’ spread. The study showed that temperature and SLP biases are connected in certain regions, suggesting that improvement of GCMs and development of bias correction methods should be carried out with a complex insight.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ocean Upwelling Convection Reanalysis Simulations"

1

Graffino, Giorgio. "A study of air-sea interaction processes on water mass formation and upwelling in the Mediterranean sea." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8337/.

Full text
Abstract:
Air-sea interactions are a key process in the forcing of the ocean circulation and the climate. Water Mass Formation is a phenomenon related to extreme air-sea exchanges and heavy heat losses by the water column, being capable to transfer water properties from the surface to great depth and constituting a fundamental component of the thermohaline circulation of the ocean. Wind-driven Coastal Upwelling, on the other hand, is capable to induce intense heat gain in the water column, making this phenomenon important for climate change; further, it can have a noticeable influence on many biological pelagic ecosystems mechanisms. To study some of the fundamental characteristics of Water Mass Formation and Coastal Upwelling phenomena in the Mediterranean Sea, physical reanalysis obtained from the Mediterranean Forecating System model have been used for the period ranging from 1987 to 2012. The first chapter of this dissertation gives the basic description of the Mediterranean Sea circulation, the MFS model implementation, and the air-sea interaction physics. In the second chapter, the problem of Water Mass Formation in the Mediterranean Sea is approached, also performing ad-hoc numerical simulations to study heat balance components. The third chapter considers the study of Mediterranean Coastal Upwelling in some particular areas (Sicily, Gulf of Lion, Aegean Sea) of the Mediterranean Basin, together with the introduction of a new Upwelling Index to characterize and predict upwelling features using only surface estimates of air-sea fluxes. Our conclusions are that latent heat flux is the driving air-sea heat balance component in the Water Mass Formation phenomenon, while sensible heat exchanges are fundamental in Coastal Upwelling process. It is shown that our upwelling index is capable to reproduce the vertical velocity patterns in Coastal Upwelling areas. Nondimensional Marshall numbers evaluations for the open-ocean convection process in the Gulf of Lion show that it is a fully turbulent, three-dimensional phenomenon.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography