To see the other types of publications on this topic, follow the link: Ocean Upwelling Convection Reanalysis Simulations.

Journal articles on the topic 'Ocean Upwelling Convection Reanalysis Simulations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 journal articles for your research on the topic 'Ocean Upwelling Convection Reanalysis Simulations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aguiar, Wilton, Mauricio M. Mata, and Rodrigo Kerr. "On deep convection events and Antarctic Bottom Water formation in ocean reanalysis products." Ocean Science 13, no. 6 (November 7, 2017): 851–72. http://dx.doi.org/10.5194/os-13-851-2017.

Full text
Abstract:
Abstract. Open ocean deep convection is a common source of error in the representation of Antarctic Bottom Water (AABW) formation in ocean general circulation models. Although those events are well described in non-assimilatory ocean simulations, the recent appearance of a massive open ocean polynya in the Estimating the Circulation and Climate of the Ocean Phase II reanalysis product (ECCO2) raises questions on which mechanisms are responsible for those spurious events and whether they are also present in other state-of-the-art assimilatory reanalysis products. To investigate this issue, we evaluate how three recently released high-resolution ocean reanalysis products form AABW in their simulations. We found that two of the products create AABW by open ocean deep convection events in the Weddell Sea that are triggered by the interaction of sea ice with the Warm Deep Water, which shows that the assimilation of sea ice is not enough to avoid the appearance of open ocean polynyas. The third reanalysis, My Ocean University Reading UR025.4, creates AABW using a rather dynamically accurate mechanism. The UR025.4 product depicts both continental shelf convection and the export of Dense Shelf Water to the open ocean. Although the accuracy of the AABW formation in this reanalysis product represents an advancement in the representation of the Southern Ocean dynamics, the differences between the real and simulated processes suggest that substantial improvements in the ocean reanalysis products are still needed to accurately represent AABW formation.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Xiaolin, and Weiqing Han. "Effects of Climate Modes on Interannual Variability of Upwelling in the Tropical Indian Ocean." Journal of Climate 33, no. 4 (February 15, 2020): 1547–73. http://dx.doi.org/10.1175/jcli-d-19-0386.1.

Full text
Abstract:
AbstractThis paper investigates interannual variability of the tropical Indian Ocean (IO) upwelling through analyzing satellite and in situ observations from 1993 to 2016 using the conventional Static Linear Regression Model (SLM) and Bayesian Dynamical Linear Model (DLM), and performing experiments using a linear ocean model. The analysis also extends back to 1979, using ocean–atmosphere reanalysis datasets. Strong interannual variability is observed over the mean upwelling zone of the Seychelles–Chagos thermocline ridge (SCTR) and in the seasonal upwelling area of the eastern tropical IO (EIO), with enhanced EIO upwelling accompanying weakened SCTR upwelling. Surface winds associated with El Niño–Southern Oscillation (ENSO) and the IO dipole (IOD) are the major drivers of upwelling variability. ENSO is more important than the IOD over the SCTR region, but they play comparable roles in the EIO. Upwelling anomalies generally intensify when positive IODs co-occur with El Niño events. For the 1979–2016 period, eastern Pacific (EP) El Niños overall have stronger impacts than central Pacific (CP) and the 2015/16 hybrid El Niño events, because EP El Niños are associated with stronger convection and surface wind anomalies over the IO; however, this relationship might change for a different interdecadal period. Rossby wave propagation has a strong impact on upwelling in the western basin, which causes errors in the SLM and DLM because neither can properly capture wave propagation. Remote forcing by equatorial winds is crucial for the EIO upwelling. While the first two baroclinic modes capture over 80%–90% of the upwelling variability, intermediate modes (3–8) are needed to fully represent IO upwelling.
APA, Harvard, Vancouver, ISO, and other styles
3

Di Lorenzo, Emanuele, Arthur J. Miller, Niklas Schneider, and James C. McWilliams. "The Warming of the California Current System: Dynamics and Ecosystem Implications." Journal of Physical Oceanography 35, no. 3 (March 1, 2005): 336–62. http://dx.doi.org/10.1175/jpo-2690.1.

Full text
Abstract:
Abstract Long-term changes in the observed temperature and salinity along the southern California coast are studied using a four-dimensional space–time analysis of the 52-yr (1949–2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy-permitting primitive equation ocean model under various forcing scenarios. An overall warming trend of 1.3°C in the ocean surface, a deepening in the depth of the mean thermocline (18 m), and increased stratification between 1950 and 1999 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, consistent with colder observed ocean temperatures. Salinity changes are decoupled from temperature and appear to be controlled locally in the coastal ocean by horizontal advection by anomalous currents. A cooling trend of –0.5°C in SST is driven in the ocean model by the 50-yr NCEP wind reanalysis, which contains a positive trend in upwelling-favorable winds along the southern California coast. A net warming trend of +1°C in SST occurs, however, when the effects of observed surface heat fluxes are included as forcing functions in the model. Within 50–100 km of the coast, the ocean model simulations show that increased stratification/deepening of the thermocline associated with the warming reduces the efficiency of coastal upwelling in advecting subsurface waters to the ocean surface, counteracting any effects of the increased strength of the upwelling winds. Such a reduction in upwelling efficiency leads in the model to a freshening of surface coastal waters. Because salinity and nutrients at the coast have similar distributions this must reflect a reduction of the nutrient supply at the coast, which is manifestly important in explaining the observed decline in zooplankton concentration. The increased winds also drive an intensification of the mean currents of the southern California Current System (SCCS). Model mesoscale eddy variance significantly increases in recent decades in response to both the stronger upwelling winds and the warmer upper-ocean temperatures, suggesting that the stability properties of the SCCS have also changed.
APA, Harvard, Vancouver, ISO, and other styles
4

Jeong, Hyein, Xylar S. Asay-Davis, Adrian K. Turner, Darin S. Comeau, Stephen F. Price, Ryan P. Abernathey, Milena Veneziani, et al. "Impacts of Ice-Shelf Melting on Water-Mass Transformation in the Southern Ocean from E3SM Simulations." Journal of Climate 33, no. 13 (July 1, 2020): 5787–807. http://dx.doi.org/10.1175/jcli-d-19-0683.1.

Full text
Abstract:
AbstractThe Southern Ocean overturning circulation is driven by winds, heat fluxes, and freshwater sources. Among these sources of freshwater, Antarctic sea ice formation and melting play the dominant role. Even though ice-shelf melt is relatively small in magnitude, it is located close to regions of convection, where it may influence dense water formation. Here, we explore the impacts of ice-shelf melting on Southern Ocean water-mass transformation (WMT) using simulations from the Energy Exascale Earth System Model (E3SM) both with and without the explicit representation of melt fluxes from beneath Antarctic ice shelves. We find that ice-shelf melting enhances transformation of Upper Circumpolar Deep Water, converting it to lower density values. While the overall differences in Southern Ocean WMT between the two simulations are moderate, freshwater fluxes produced by ice-shelf melting have a further, indirect impact on the Southern Ocean overturning circulation through their interaction with sea ice formation and melting, which also cause considerable upwelling. We further find that surface freshening and cooling by ice-shelf melting cause increased Antarctic sea ice production and stronger density stratification near the Antarctic coast. In addition, ice-shelf melting causes decreasing air temperature, which may be directly related to sea ice expansion. The increased stratification reduces vertical heat transport from the deeper ocean. Although the addition of ice-shelf melting processes leads to no significant changes in Southern Ocean WMT, the simulations and analysis conducted here point to a relationship between increased Antarctic ice-shelf melting and the increased role of sea ice in Southern Ocean overturning.
APA, Harvard, Vancouver, ISO, and other styles
5

Purich, Ariaan, Matthew H. England, Wenju Cai, Arnold Sullivan, and Paul J. Durack. "Impacts of Broad-Scale Surface Freshening of the Southern Ocean in a Coupled Climate Model." Journal of Climate 31, no. 7 (April 2018): 2613–32. http://dx.doi.org/10.1175/jcli-d-17-0092.1.

Full text
Abstract:
The Southern Ocean surface has freshened in recent decades, increasing water column stability and reducing upwelling of warmer subsurface waters. The majority of CMIP5 models underestimate or fail to capture this historical surface freshening, yet little is known about the impact of this model bias on regional ocean circulation and hydrography. Here experiments are performed using a global coupled climate model with additional freshwater applied to the Southern Ocean to assess the influence of recent surface freshening. The simulations explore the impact of persistent and long-term broad-scale freshening as a result of processes including precipitation minus evaporation changes. Thus, unlike previous studies, the freshening is applied as far north as 55°S, beyond the Antarctic ice margin. It is found that imposing a large-scale surface freshening causes a surface cooling and sea ice increase under preindustrial conditions, because of a reduction in ocean convection and weakened entrainment of warm subsurface waters into the surface ocean. This is consistent with intermodel relationships between CMIP5 models and the simulations, suggesting that models with larger surface freshening also exhibit stronger surface cooling and increased sea ice. Additional experiments are conducted with surface salinity restoration applied to capture observed regional salinity trends. Remarkably, without any mechanical wind trend forcing, these simulations accurately represent the spatial pattern of observed surface temperature and sea ice trends around Antarctica. This study highlights the importance of accurately simulating changes in Southern Ocean salinity to capture changes in ocean circulation, sea surface temperature, and sea ice.
APA, Harvard, Vancouver, ISO, and other styles
6

Jia, Yue, Shao Dong Zhang, Fan Yi, Chun Ming Huang, Kai Ming Huang, Yun Gong, and Quan Gan. "Variations of Kelvin waves around the TTL region during the stratospheric sudden warming events in the Northern Hemisphere winter." Annales Geophysicae 34, no. 3 (March 17, 2016): 331–45. http://dx.doi.org/10.5194/angeo-34-331-2016.

Full text
Abstract:
Abstract. Spatial and temporal variabilities of Kelvin waves during stratospheric sudden warming (SSW) events are investigated by the ERA-Interim reanalysis data, and the results are validated by the COSMIC temperature data. A case study on an exceptionally large SSW event in 2009, and a composite analysis comprising 18 events from 1980 to 2013 are presented. During SSW events, the average temperature increases by 20 K in the polar stratosphere, while the temperature in the tropical stratosphere decreases by about 4 K. Kelvin wave with wave numbers 1 and 2, and periods 10–20 days, clearly appear around the tropical tropopause layer (TTL) during SSWs. The Kelvin wave activity shows obvious coupling with the convection localized in the India Ocean and western Pacific (Indo-Pacific) region. Detailed analysis suggests that the enhanced meridional circulation driven by the extratropical planetary wave forcing during SSW events leads to tropical upwelling, which further produces temperature decrease in the tropical stratosphere. The tropical upwelling and cooling consequently result in enhancement of convection in the equatorial region, which excites the strong Kelvin wave activity. In addition, we investigated the Kelvin wave acceleration to the eastward zonal wind anomalies in the equatorial stratosphere during SSW events. The composite analysis shows that the proportion of Kelvin wave contribution ranges from 5 to 35 % during SSWs, much larger than in the non-SSW mid-winters (less than 5 % in the stratosphere). However, the Kelvin wave alone is insufficient to drive the equatorial eastward zonal wind anomalies during the SSW events, which suggests that the effects of other types of equatorial waves may not be neglected.
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Xiaoliang, and Guang J. Zhang. "Culprit of the Eastern Pacific Double-ITCZ Bias in the NCAR CESM1.2." Journal of Climate 32, no. 19 (August 27, 2019): 6349–64. http://dx.doi.org/10.1175/jcli-d-18-0580.1.

Full text
Abstract:
Abstract The eastern Pacific double-ITCZ bias has long been attributed to the warm bias of SST in the southeastern Pacific and associated local air–sea interaction. In this study, we conducted two simulations using the NCAR CESM1.2.1 to demonstrate that significant double-ITCZ bias can still form in the eastern Pacific through air–sea coupled feedback even when there is cold SST bias in the southeastern Pacific, indicating that other nonlocal culprits and mechanisms should be responsible for the double-ITCZ bias in the eastern Pacific. Further analyses show that the oversimulated convection in the northern ITCZ region and Central America in boreal winter may result in biases in the surface wind fields in the tropical northeastern Pacific in the atmospheric model, which favor the cooling of the ocean mixed layer through enhancement of latent heat flux and Ekman upwelling. These biases are passed into the ocean model in coupled simulations and result in a severe cold bias of SST in the northern ITCZ region. The overly cold SST bias persists in the subsequent spring, leading to the suppression of convection in the northern ITCZ region. The enhanced low-level cross-equatorial northerly wind strengthens the wind convergence south of the equator and transports abundant water vapor to the convergence zone, strengthening the southern ITCZ convection. All these processes lead to the disappearance of the northern ITCZ and the enhancement of the southern ITCZ in boreal spring, forming a seasonally alternating double-ITCZ bias. This study suggests that convection biases in the northern ITCZ region and Central America in boreal winter may be a culprit for the double-ITCZ bias in the eastern Pacific.
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, Leif N., and Craig M. Lee. "Intensification of Ocean Fronts by Down-Front Winds." Journal of Physical Oceanography 35, no. 6 (June 1, 2005): 1086–102. http://dx.doi.org/10.1175/jpo2737.1.

Full text
Abstract:
Abstract Many ocean fronts experience strong local atmospheric forcing by down-front winds, that is, winds blowing in the direction of the frontal jet. An analytic theory and nonhydrostatic numerical simulations are used to demonstrate the mechanism by which down-front winds lead to frontogenesis. When a wind blows down a front, cross-front advection of density by Ekman flow results in a destabilizing wind-driven buoyancy flux (WDBF) equal to the product of the Ekman transport with the surface lateral buoyancy gradient. Destabilization of the water column results in convection that is localized to the front and that has a buoyancy flux that is scaled by the WDBF. Mixing of buoyancy by convection, and Ekman pumping/suction resulting from the cross-front contrast in vertical vorticity of the frontal jet, drive frontogenetic ageostrophic secondary circulations (ASCs). For mixed layers with negative potential vorticity, the most frontogenetic ASCs select a preferred cross-front width and do not translate with the Ekman transport, but instead remain stationary in space. Frontal intensification occurs within several inertial periods and is faster the stronger the wind stress. Vertical circulation is characterized by subduction on the dense side of the front and upwelling along the frontal interface and scales with the Ekman pumping and convective mixing of buoyancy. Cross-front sections of density, potential vorticity, and velocity at the subpolar front of the Japan/East Sea suggest that frontogenesis by down-front winds was active during cold-air outbreaks and could result in strong vertical circulation.
APA, Harvard, Vancouver, ISO, and other styles
9

Hansen, Zachary R., Larissa E. Back, and Peigen Zhou. "Boundary Layer Quasi-Equilibrium Limits Convective Intensity Enhancement from the Diurnal Cycle in Surface Heating." Journal of the Atmospheric Sciences 77, no. 1 (December 16, 2019): 217–37. http://dx.doi.org/10.1175/jas-d-18-0346.1.

Full text
Abstract:
Abstract A combination of cloud-permitting model (CPM) simulations, satellite, and reanalysis data are used to test whether the diurnal cycle in surface temperature has a significant impact on the intensity of deep convection as measured by high-percentile updraft velocities, lightning, and CAPE. The land–ocean contrast in lightning activity shows that convective intensity varies between land and ocean independently from convective quantity. Thus, a mechanism that explains the land–ocean contrast must be able to do so even after controlling for precipitation variations. Motivated by the land–ocean contrast, we use idealized CPM simulations to test the impact of the diurnal cycle on high-percentile updrafts. In simulations, updrafts are somewhat enhanced due to large-scale precipitation enhancement by the diurnal cycle. To control for large-scale precipitation, we use statistical sampling techniques. After controlling for precipitation enhancement, the diurnal cycle does not affect convective intensities. To explain why sampled updrafts are not enhanced, we note that CAPE is also not increased, likely due to boundary layer quasi equilibrium (BLQE) occurring over our land area. Analysis of BLQE in terms of net positive and negative mass flux finds that boundary layer entrainment, and even more importantly downdrafts, account for most of the moist static energy (MSE) sink that is balancing surface fluxes. Using ERA-Interim data, we also find qualitative evidence for BLQE over land in the real world, as high percentiles of CAPE are not greater over land than over ocean.
APA, Harvard, Vancouver, ISO, and other styles
10

Lhotka, O., and A. Farda. "Links between Temperature Biases and Flow Anomalies in an Ensemble of CNRM-CM5.1 Global Climate Model Historical Simulations." Advances in Meteorology 2018 (July 19, 2018): 1–10. http://dx.doi.org/10.1155/2018/4984827.

Full text
Abstract:
The aim of this study was to evaluate temperature and sea-level pressure (SLP) fields and to analyse a related anomalous flow over midlatitudes simulated by the CNRM-CM5.1 global climate model (GCM). Simulated flow over midlatitudes of the Northern Hemisphere was assessed through flow indices, classified into 11 circulation types. Reference data were taken from the NOAA-CIRES 20th Century Reanalysis, version 2c. CNRM-CM5.1 exhibited analogous temperature biases to those reported for the mean of the CMIP5 GCMs’ ensemble. The most prominent features were an erroneous temperature dipole pattern in the Atlantic Ocean and a warm bias over regions of deep water upwelling (locally exceeding 5°C). The latter feature was associated with negative SLP biases in those regions. Too low pressure was found over midlatitudes of the Northern Hemisphere, and CNRM-CM5.1 simulated too frequent zonal flow in these latitudes. The usage of three ensemble members with different initial conditions did not improve model’s outputs because the bias is found to be considerably larger compared to the ensemble members’ spread. The study showed that temperature and SLP biases are connected in certain regions, suggesting that improvement of GCMs and development of bias correction methods should be carried out with a complex insight.
APA, Harvard, Vancouver, ISO, and other styles
11

Jing, Xiaoqin, Lulin Xue, Yan Yin, Jing Yang, Daniel F. Steinhoff, Andrew Monaghan, David Yates, et al. "Convection-Permitting Regional Climate Simulations in the Arabian Gulf Region Using WRF Driven by Bias-Corrected GCM Data." Journal of Climate 33, no. 18 (September 15, 2020): 7787–815. http://dx.doi.org/10.1175/jcli-d-20-0155.1.

Full text
Abstract:
AbstractThe regional climate of the Arabian Gulf region is modeled using a set of simulations based on the Weather Research and Forecasting (WRF) Model, including a 30-yr benchmark simulation driven by reanalysis data, and two bias-corrected Community Earth System Model (CESM)-driven (BCD) WRF simulations for retrospective and future periods that both include 10-yr convection-permitting nested simulations. The modeled precipitation is cross-validated using Tropical Rainfall Measuring Mission data, rain gauge data, and the baseline dataset from the benchmark simulation. The changes in near-surface temperature, precipitation, and ambient conditions are investigated using the BCD WRF simulations. The results show that the BCD WRF simulation well captures the precipitation distribution, the precipitation variability, and the thermodynamic properties. In a warmer climate under the RCP8.5 scenario around the year 2070, the near-surface temperature warms by ~3°C. Precipitation increases over the Arabian Gulf, and decreases over most of the continental area, particularly over the Zagros Mountains. The wet index decreases while the maximum dry spell increases in most areas of the model domain. The future changes in precipitation are determined by both the thermodynamics and dynamics. The thermodynamic impact, which is controlled by the warming and moistening, results in more precipitation over the ocean but not over the land. The dynamic impact, which is controlled by changes in the large-scale circulation, results in decrease in precipitation over mountains. The simulations presented in this study provide a unique dataset to study the regional climate in the Arabian Gulf region for both retrospective and future climates.
APA, Harvard, Vancouver, ISO, and other styles
12

Schneider, Edwin K., and Zhengxin Zhu. "Sensitivity of the Simulated Annual Cycle of Sea Surface Temperature in the Equatorial Pacific to Sunlight Penetration." Journal of Climate 11, no. 8 (August 1, 1998): 1932–50. http://dx.doi.org/10.1175/1520-0442-11.8.1932.

Full text
Abstract:
Abstract The annual cycle of sea surface temperature (SST) in the equatorial Pacific is compared for two simulations with a coupled atmosphere–ocean general circulation model. The simulations differ only in the optical properties of the ocean: sunlight penetrates below the topmost layer of the ocean model in one case but is completely absorbed in the top layer in the other. The simulation without the sunlight penetration produces an unrealistic annual cycle of SST with a strong semiannual component in the equatorial Pacific, whereas the simulation with sunlight penetration is more realistic. The change in the character of the annual cycle results from an increase in the effective heat capacity of the ocean associated with an increase in the depth of the mixed layer directly forced by the sunlight penetration. This produces a smaller amplitude of the annual cycle of SST at latitudes close to but off the equator. The zone of intense tropical convection then remains closer to the equator, leading to a reduced semiannual cycle of zonal wind stress at the equator. The reduction in the unrealistic semiannual wind stress forcing leads to a more realistic annual cycle in SST. The simulation of the annual mean SST is also improved by the inclusion of the sunlight penetration, with a better simulation of the warm pool in the western equatorial Pacific and associated improvements in the atmospheric circulation. This improvement is also attributed to the increase in the mixed layer depth, which changes the ocean heat flux in the western equatorial Pacific by reducing the sensitivity of SST to upwelling.
APA, Harvard, Vancouver, ISO, and other styles
13

Zamora, Ryan A., Robert L. Korty, and Matthew Huber. "Thermal Stratification in Simulations of Warm Climates: A Climatology Using Saturation Potential Vorticity." Journal of Climate 29, no. 14 (June 28, 2016): 5083–102. http://dx.doi.org/10.1175/jcli-d-15-0785.1.

Full text
Abstract:
Abstract The spatial and temporal distribution of stable and convectively neutral air masses is examined in climate simulations with carbon dioxide levels spanning from modern-day values to very high levels that produce surface temperatures relevant to the hottest climate of the past 65 million years. To investigate how stability with respect to slantwise and upright moist convection changes across a wide range of climate states, the condition of moist convective neutrality in climate experiments is assessed using metrics based upon the saturation of potential vorticity, which is zero when temperature profiles are moist adiabatic profiles along vortex lines. The modern climate experiment reproduces previously reported properties from reanalysis data, in which convectively neutral air masses are common in the tropics and locally at higher latitudes, especially over midlatitude continents in summer and ocean storm tracks in winter. The frequency and coverage of air masses with higher stabilities declines in all seasons at higher latitudes with warming; the hottest case features convectively neutral air masses in the Arctic a majority of the time in January and nearly universally in July. The contribution from slantwise convective motions (as distinct from upright convection) is generally small outside of midlatitude storm tracks, and it declines in the warmer climate experiments, especially during summer. These findings support the conjecture that moist adiabatic lapse rates become more widespread in warmer climates, providing a physical basis for using this assumption in estimating paleoaltimetry during warm intervals such as the early Eocene.
APA, Harvard, Vancouver, ISO, and other styles
14

Bennartz, Ralf, and Marc Schroeder. "Convective Activity over Africa and the Tropical Atlantic Inferred from 20 Years of Geostationary Meteosat Infrared Observations." Journal of Climate 25, no. 1 (January 1, 2012): 156–69. http://dx.doi.org/10.1175/2011jcli3984.1.

Full text
Abstract:
Abstract A 20-yr (1986–2005) time series of Meteosat Visible and Infrared Imager (MVIRI) geostationary infrared observations was used to study deep convection over Africa and the tropical Atlantic. The 20-yr time period is covered by six consecutive satellites (Meteosat-2–7). To correct for possible systematic differences between instruments on the different satellite platforms, a time series of Meteosat infrared observations over cloud-free ocean surfaces was compared to reanalysis-based radiative transfer results. Based on the comparison of simulations with observations, a homogenization was performed for the MVIRI infrared channel. The homogenized 20-yr dataset was then subjected to a tracking analysis for deep convection over Africa and the tropical Atlantic for the boreal summer months of July–September. The mean state of convection as well as anomalies for high– and low–Sahel rainfall years were studied. Comparisons with the Global Precipitation Climatology Center’s (GPCC) rainfall estimates were performed for the Sahel region and interannual variability was evaluated comparing convection for the five driest and five wettest Sahel years. Results support earlier findings that precipitation in the Sahel region is strongly linked to the latitudinal position of the African Easterly Jet with deep convection being triggered more strongly if the jet is displaced northward. A relationship between the jet position and long-lived convective systems over the tropical Atlantic was found as well.
APA, Harvard, Vancouver, ISO, and other styles
15

Kim, Who M., Stephen Yeager, Ping Chang, and Gokhan Danabasoglu. "Atmospheric Conditions Associated with Labrador Sea Deep Convection: New Insights from a Case Study of the 2006/07 and 2007/08 Winters." Journal of Climate 29, no. 14 (July 5, 2016): 5281–97. http://dx.doi.org/10.1175/jcli-d-15-0527.1.

Full text
Abstract:
Abstract Deep convection in the Labrador Sea (LS) resumed in the winter of 2007/08 under a moderately positive North Atlantic Oscillation (NAO) state. This is in sharp contrast with the previous winter with weak convection, despite a similar positive NAO state. This disparity is explored here by analyzing reanalysis data and forced-ocean simulations. It is found that the difference in deep convection is primarily due to differences in large-scale atmospheric conditions that are not accounted for by the conventional NAO definition. Specifically, the 2007/08 winter was characterized by an atmospheric circulation anomaly centered in the western North Atlantic, rather than the eastern North Atlantic that the conventional NAO emphasizes. This anomalous circulation was also accompanied by anomalously cold conditions over northern North America. The controlling influence of these atmospheric conditions on LS deep convection in the 2008 winter is confirmed by sensitivity experiments where surface forcing and/or initial conditions are modified. An extended analysis for the 1949–2009 period shows that about half of the winters with strong heat losses in the LS are associated with such a west-centered circulation anomaly and cold conditions over northern North America. These are found to be accompanied by La Niña–like conditions in the tropical Pacific, suggesting that the atmospheric response to La Niña may have a strong influence on LS deep convection.
APA, Harvard, Vancouver, ISO, and other styles
16

Nigam, Sumant, and Alfredo Ruiz-Barradas. "Seasonal Hydroclimate Variability over North America in Global and Regional Reanalyses and AMIP Simulations: Varied Representation." Journal of Climate 19, no. 5 (March 1, 2006): 815–37. http://dx.doi.org/10.1175/jcli3635.1.

Full text
Abstract:
Abstract The monotony of seasonal variability is often compensated by the complexity of its spatial structure—the case in North American hydroclimate. The structure of hydroclimate variability is analyzed to provide insights into the functioning of the climate system and climate models. The consistency of hydroclimate representation in two global [40-yr ECMWF Re-Analysis (ERA-40) and NCEP] and one regional [North American Regional Reanalysis (NARR)] reanalysis is examined first, from analysis of precipitation, evaporation, surface air temperature (SAT), and moisture flux distributions. The intercomparisons benchmark the recently released NARR data and provide context for evaluation of the simulation potential of two state-of-the-art atmospheric models [NCAR's Community Atmospheric Model (CAM3.0) and NASA's Seasonal-to-Interannual Prediction Project (NSIPP) atmospheric model]. Intercomparisons paint a gloomy picture: great divergence in global reanalysis representations of precipitation, with the eastern United States being drier in ERA-40 and wetter in NCEP in the annual mean by up to a third in each case; model averages are like ERA-40. The annual means, in fact, mask even larger but offsetting seasonal departures. Analysis of moisture transport shows winter fluxes to be more consistently represented. Summer flux convergence over the Gulf Coast and Great Plains, however, differs considerably between global and regional reanalyses. Flux distributions help in understanding the choice of rainy season, especially the winter one in the Pacific Northwest; stationary fluxes are key. Land–ocean competition for convection is too intense in the models—so much so that the oceanic ITCZ in July is southward of its winter position in the both simulations! The overresponsiveness of land is also manifest in SAT; the winter-to-summer change over the Great Plains is 5–9 K larger than in observations, with implications for modeling of climate sensitivity. The nature of atmospheric water balance over the Great Plains is probed, despite unbalanced moisture budgets in reanalyses and model simulations. The imbalance is smaller in NARR but still unacceptably large, resulting from excessive evaporation in spring and summer. Adjusting evaporation during precipitation assimilation could lead to a more balanced budget. Global and regional reanalysis will remain of limited use for hydroclimate studies until they comply with the operative water and energy balance constraints.
APA, Harvard, Vancouver, ISO, and other styles
17

Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde. "Impact of Indian Ocean Sea Surface Temperature on Developing El Niño*." Journal of Climate 18, no. 2 (January 15, 2005): 302–19. http://dx.doi.org/10.1175/jcli-3268.1.

Full text
Abstract:
Abstract Prior to the 1976–77 climate shift (1950–76), sea surface temperature (SST) anomalies in the tropical Indian Ocean consisted of a basinwide warming during boreal fall of the developing phase of most El Niños, whereas after the shift (1977–99) they had an east–west asymmetry—a consequence of El Niño being associated with the Indian Ocean Dipole/Zonal mode. In this study, the possible impact of these contrasting SST patterns on the ongoing El Niño is investigated, using atmospheric reanalysis products and solutions to both an atmospheric general circulation model (AGCM) and a simple atmospheric model (LBM), with the latter used to identify basic processes. Specifically, analyses of reanalysis products during the El Niño onset indicate that after the climate shift a low-level anticyclone over the South China Sea was shifted into the Bay of Bengal and that equatorial westerly anomalies in the Pacific Ocean were considerably stronger. The present study focuses on determining influence of Indian Ocean SST on these changes. A suite of AGCM experiments, each consisting of a 10-member ensemble, is carried out to assess the relative importance of remote (Pacific) versus local (Indian Ocean) SST anomalies in determining precipitation anomalies over the equatorial Indian Ocean. Solutions indicate that both local and remote SST anomalies are necessary for realistic simulations, with convection in the tropical west Pacific and the subsequent development of the South China Sea anticyclone being particularly sensitive to Indian Ocean SST anomalies. Prior to the climate shift, the basinwide Indian Ocean SST anomalies generate an atmospheric Kelvin wave associated with easterly flow over the equatorial west-central Pacific, thereby weakening the westerly anomalies associated with the developing El Niño. In contrast, after the shift, the east–west contrast in Indian Ocean SST anomalies does not generate a significant Kelvin wave response, and there is little effect on the El Niño–induced westerlies. The Linear Baroclinic Model (LBM) solutions confirm the AGCM’s results.
APA, Harvard, Vancouver, ISO, and other styles
18

Chen, Jiao, Aiguo Dai, Yaocun Zhang, and Kristen L. Rasmussen. "Changes in Convective Available Potential Energy and Convective Inhibition under Global Warming." Journal of Climate 33, no. 6 (March 15, 2020): 2025–50. http://dx.doi.org/10.1175/jcli-d-19-0461.1.

Full text
Abstract:
AbstractAtmospheric convective available potential energy (CAPE) is expected to increase under greenhouse gas–induced global warming, but a recent regional study also suggests enhanced convective inhibition (CIN) over land although its cause is not well understood. In this study, a global climate model is first evaluated by comparing its CAPE and CIN with reanalysis data, and then their future changes and the underlying causes are examined. The climate model reasonably captures the present-day CAPE and CIN patterns seen in the reanalysis, and projects increased CAPE almost everywhere and stronger CIN over most land under global warming. Over land, the cases or times with medium to strong CAPE or CIN would increase while cases with weak CAPE or CIN would decrease, leading to an overall strengthening in their mean values. These projected changes are confirmed by convection-permitting 4-km model simulations over the United States. The CAPE increase results mainly from increased low-level specific humidity, which leads to more latent heating and buoyancy for a lifted parcel above the level of free convection (LFC) and also a higher level of neutral buoyancy. The enhanced CIN over most land results mainly from reduced low-level relative humidity (RH), which leads to a higher lifting condensation level and a higher LFC and thus more negative buoyancy. Over tropical oceans, the near-surface RH increases slightly, leading to slight weakening of CIN. Over the subtropical eastern Pacific and Atlantic Ocean, the impact of reduced low-level atmospheric lapse rates overshadows the effect of increased specific humidity, leading to decreased CAPE.
APA, Harvard, Vancouver, ISO, and other styles
19

Fischer, Albert S., Pascal Terray, Eric Guilyardi, Silvio Gualdi, and Pascale Delecluse. "Two Independent Triggers for the Indian Ocean Dipole/Zonal Mode in a Coupled GCM." Journal of Climate 18, no. 17 (September 1, 2005): 3428–49. http://dx.doi.org/10.1175/jcli3478.1.

Full text
Abstract:
Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.
APA, Harvard, Vancouver, ISO, and other styles
20

Mahajan, Salil, Katherine J. Evans, John E. Truesdale, James J. Hack, and Jean-François Lamarque. "Interannual Tropospheric Aerosol Variability in the Late Twentieth Century and Its Impact on Tropical Atlantic and West African Climate by Direct and Semidirect Effects." Journal of Climate 25, no. 23 (December 1, 2012): 8031–56. http://dx.doi.org/10.1175/jcli-d-12-00029.1.

Full text
Abstract:
Abstract A new high-resolution global tropospheric aerosol dataset with monthly resolution is generated using version 4 of the Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the period 1961–2000 to identify tropospheric aerosol-induced interannual climate variations. The surface emissions dataset is constructed from phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal-resolution surface emissions dataset to include reanalysis of tropospheric chemical composition [40-yr Reanalysis of Tropospheric Chemical Composition (RETRO)] wildfire monthly emissions data. A four-member ensemble run is conducted using the spectral configuration of CAM4, forced with the new tropospheric aerosol dataset and prescribed with observed sea surface temperature, sea ice, and greenhouse gases. CAM4 only simulates the direct and semidirect effects of aerosols on the climate. The simulations reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the interannual time scales. Regression analyses over tropical Atlantic and Africa suggest that increasing dust aerosols can cool the North African landmass and shift convection southward from West Africa into the Gulf of Guinea in the spring season. Further, it is found that carbonaceous aerosols emanating from the southwestern African savannas can significantly cool the region and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic Ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present-day aerosols can cool the tropical North Atlantic and shift the intertropical convergence zone southward and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.
APA, Harvard, Vancouver, ISO, and other styles
21

Zhou, Lei, and Raghu Murtugudde. "Oceanic Impacts on MJOs Detouring near the Maritime Continent." Journal of Climate 33, no. 6 (March 15, 2020): 2371–88. http://dx.doi.org/10.1175/jcli-d-19-0505.1.

Full text
Abstract:
AbstractMadden–Julian oscillations (MJOs) are the dominant mode of intraseasonal variability (ISV) in the atmosphere acting as a bridge between weather and climate. During boreal winter, many MJO events are detoured southward while propagating across the Maritime Continent. Although MJO simulations have been greatly improved in recent years, the mechanism and simulation of MJO detouring near the Maritime Continent are still a great scientific challenge. Several mechanisms have been proposed based on atmospheric dynamics and thermodynamics. In this study, the oceanic role in MJO detouring is diagnosed using observations and reanalysis products. It is found that warm sea surface temperature (SST) anomalies occur over the southeastern Indian Ocean that induce a cyclone in the lower troposphere. Due to the westerly background winds, westerly winds are strengthened (weakened) to the north (south) of warm SST anomalies. As a result, the latent heat flux (LHF) is enhanced, and convection is reinforced to the north of warm SST anomalies. In contrast, the LHF is reduced, and SSTs warm to the south of pre-existing warm SST anomalies. Hence, the warm SST anomalies and convection system shift the MJOs southward before they reach the Maritime Continent. The identification of the oceanic influence on the MJO detouring deepens our understanding of the mechanism of their detour and elicits the role of the ocean. It is expected to brighten the prospects for better simulation and forecast of MJOs over the Maritime Continent. The oceanic ISV in the southeastern Indian Ocean is subject to many forcings, such as intraseasonal atmospheric forcing, the Indonesian Throughflow, local oceanic instability, and coastal Kelvin waves along Sumatra. Determining the mechanism of ISV in the southeastern Indian Ocean requires further dedicated studies.
APA, Harvard, Vancouver, ISO, and other styles
22

Ciesielski, Paul E., Richard H. Johnson, Patrick T. Haertel, and Junhong Wang. "Corrected TOGA COARE Sounding Humidity Data: Impact on Diagnosed Properties of Convection and Climate over the Warm Pool." Journal of Climate 16, no. 14 (July 15, 2003): 2370–84. http://dx.doi.org/10.1175/2790.1.

Full text
Abstract:
Abstract This study reports on the humidity corrections in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE) upper-air sounding dataset and their impact on diagnosed properties of convection and climate over the warm pool. During COARE, sounding data were collected from 29 sites with Vaisala-manufactured systems and 13 sites with VIZ-manufactured systems. A recent publication has documented the characteristics of the humidity errors at the Vaisala sites and a procedure to correct them. This study extends that work by describing the nature of the VIZ humidity errors and their correction scheme. The corrections, which are largest in lower-tropospheric levels, generally increase the moisture in the Vaisala sondes and decrease it in the VIZ sondes. Use of the corrected humidity data gives a much different perspective on the characteristics of convection during COARE. For example, application of a simple cloud model shows that the peak in convective mass flux shifts from about 8°N with the uncorrected data to just south of the equator with corrected data, which agrees better with the diagnosed vertical motion and observed rainfall. Also, with uncorrected data the difference in mean convective available potential energy (CAPE) between Vaisala and VIZ sites is over 700 J kg−1; with the correction, both CAPEs are around ∼1300 J kg−1, which is consistent with a generally uniform warm pool SST field. These results suggest that the intensity and location of convection would differ significantly in model simulations with humidity-corrected data, and that the difficulties which the reanalysis products had in reproducing the observed rainfall during COARE may be due to the sonde humidity biases. The humidity-corrected data appear to have a beneficial impact on budget-derived estimates of rainfall and radiative heating rate, such that revised estimates show better agreement with those from independent sources.
APA, Harvard, Vancouver, ISO, and other styles
23

Gonzalez, Alex O., and Wayne H. Schubert. "Violation of Ekman Balance in the Eastern Pacific ITCZ Boundary Layer." Journal of the Atmospheric Sciences 76, no. 9 (September 1, 2019): 2919–40. http://dx.doi.org/10.1175/jas-d-18-0291.1.

Full text
Abstract:
Abstract The intertropical convergence zone (ITCZ) is one of the most striking features of Earth’s climate system, often forming a narrow band of convection over many oceanic regions, especially in eastern ocean basins. It is not well understood why the ITCZ is so thin; however, a recent study highlighted that classical Ekman balance is not obeyed near the equator and nonlinear horizontal wind advection can localize ITCZ boundary layer vertical motion so that it becomes very narrow and intense. In this study, we use a similar model but with more realistic forcings from the Year of Tropical Convection (YOTC) reanalysis, focusing on the eastern Pacific Ocean ITCZ. The model is a zonally symmetric, slab (subcloud) boundary layer numerical model on the sphere, which can be considered the simplest “dry” model of the ITCZ. Due to the slab model’s simplicity, simulations are conducted at a range of resolutions, from 1° to 1 km. The slab model dynamical fields are in general agreement with the YOTC dynamical fields and precipitation estimates from the Tropical Rainfall Measuring Mission for one summer and two spring ITCZ cases. We find that Ekman balance is indeed violated within 10°–15° of the equator and nonlinear horizontal wind advection is crucial to understanding the preferential location, width, and intensity of the eastern Pacific ITCZ. Additionally, it appears that these boundary layer processes involved in ITCZ intensification and narrowing are dependent on model resolution such that present-day general circulation models likely cannot sufficiently resolve them.
APA, Harvard, Vancouver, ISO, and other styles
24

Brönnimann, Stefan, Abdul Malik, Alexander Stickler, Martin Wegmann, Christoph C. Raible, Stefan Muthers, Julien Anet, Eugene Rozanov, and Werner Schmutz. "Multidecadal variations of the effects of the Quasi-Biennial Oscillation on the climate system." Atmospheric Chemistry and Physics 16, no. 24 (December 15, 2016): 15529–43. http://dx.doi.org/10.5194/acp-16-15529-2016.

Full text
Abstract:
Abstract. Effects of the Quasi-Biennial Oscillation (QBO) on tropospheric climate are not always strong or they appear only intermittently. Studying them requires long time series of both the QBO and climate variables, which has restricted previous studies to the past 30–50 years. Here we use the benefits of an existing QBO reconstruction back to 1908. We first investigate additional, newly digitized historical observations of stratospheric winds to test the reconstruction. Then we use the QBO time series to analyse atmospheric data sets (reconstructions and reanalyses) as well as the results of coupled ocean–atmosphere–chemistry climate model simulations that were forced with the reconstructed QBO. We investigate effects related to (1) tropical–extratropical interaction in the stratosphere, wave–mean flow interaction and subsequent downward propagation, and (2) interaction between deep tropical convection and stratospheric flow. We generally find weak connections, though some are statistically significant over the 100-year period and consistent with model results. Apparent multidecadal variations in the connection between the QBO and the investigated climate responses are consistent with a small effect in the presence of large variability, with one exception: the imprint on the northern polar vortex, which is seen in recent reanalysis data, is not found in the period 1908–1957. Conversely, an imprint in Berlin surface air temperature is only found in 1908–1957 but not in the recent period. Likewise, in the model simulations both links tend to appear alternatingly, suggesting a more systematic modulation due to a shift in the circulation, for example. Over the Pacific warm pool, we find increased convection during easterly QBO, mainly in boreal winter in observation-based data as well as in the model simulations, with large variability. No QBO effects were found in the Indian monsoon strength or Atlantic hurricane frequency.
APA, Harvard, Vancouver, ISO, and other styles
25

Mohrmann, Johannes, Robert Wood, Tianle Yuan, Hua Song, Ryan Eastman, and Lazaros Oreopoulos. "Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications." Atmospheric Chemistry and Physics 21, no. 12 (June 28, 2021): 9629–42. http://dx.doi.org/10.5194/acp-21-9629-2021.

Full text
Abstract:
Abstract. Marine low-cloud mesoscale morphology in the southeastern Pacific Ocean is analyzed using a large dataset of classifications spanning 3 years generated by machine learning methods. Meteorological variables and cloud properties are composited by the mesoscale cloud type of the classification, showing distinct meteorological regimes of marine low-cloud organization from the tropics to the midlatitudes. The presentation of mesoscale cellular convection, with respect to geographic distribution, boundary layer structure, and large-scale environmental conditions, agrees with prior knowledge. Two tropical and subtropical cumuliform boundary layer regimes, suppressed cumulus and clustered cumulus, are studied in detail. The patterns in precipitation, circulation, column water vapor, and cloudiness are consistent with the representation of marine shallow mesoscale convective self-aggregation by large eddy simulations of the boundary layer. Although they occur under similar large-scale conditions, the suppressed and clustered low-cloud types are found to be well separated by variables associated with low-level mesoscale circulation, with surface wind divergence being the clearest discriminator between them, regardless of whether reanalysis or satellite observations are used. Clustered regimes are associated with surface convergence, while suppressed regimes are associated with surface divergence.
APA, Harvard, Vancouver, ISO, and other styles
26

Chae, Jung Hyo, and Steven C. Sherwood. "Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region." Journal of the Atmospheric Sciences 67, no. 1 (January 1, 2010): 248–61. http://dx.doi.org/10.1175/2009jas3099.1.

Full text
Abstract:
Abstract The connection between environmental stability and the height of tropical deep convective clouds is analyzed using stereo cloud height data from the Multiangle Imaging Spectroradiometer (MISR), focusing on the seasonal cycle of clouds over the western Pacific Ocean. Three peaks in cloud-top height representing low, mid-topped, and deep convective clouds are found as in previous studies. The optically thickest cloud heights are roughly 2 km higher on the summer side of the equator, where CAPE is higher, than on the winter side. Overall cloud height, however, is about the same on both sides of the equator, but ∼600 m higher in December–February (DJF) than in June–August (JJA). Because of variations in stratospheric upwelling, temperatures near the tropopause exhibit a significant seasonal cycle, mainly above 13 km. Using an ensemble of simulations by the Weather Research and Forecasting (WRF) cloud-resolving model and a simple overshooting parcel calculation, the authors show that the cloud height variation can be explained by that of near-tropopause stability changes, including influence from heights above 14 km, even though the cloud height peaks only near 12 km. This suggests that mixing above cloud top—not typically accounted for in simple models of convection—is important in setting the height of the laminar (anvil) high clouds that result. The MISR data indicate a seasonal variation in peak cloud-top temperature of ∼5 K, despite the recent proposal that cloud-top heights should track a fixed isotherm. That proposal must therefore be applied with caution to any climate-change scenario that may involve significant changes in stratospheric upwelling.
APA, Harvard, Vancouver, ISO, and other styles
27

Hanf, Franziska S., and H. Annamalai. "Systematic Errors in South Asian Monsoon Precipitation: Process-Based Diagnostics and Sensitivity to Entrainment in NCAR Models." Journal of Climate 33, no. 7 (April 1, 2020): 2817–40. http://dx.doi.org/10.1175/jcli-d-18-0495.1.

Full text
Abstract:
AbstractIn simulations of the boreal summer Asian monsoon, generations of climate models show a persistent climatological wet bias over the tropical western Indian Ocean and a dry bias over South Asia. Here, focusing on the monsoon developing stages (May–June), process-based diagnostics are first applied to a suite of NCAR models and reanalysis products. Two primary factors are identified for the initiation and maintenance of the wet bias over the northwestern Indian Ocean (NWIO; 5°–15°N, 52°–67°E): (i) excessive tropospheric moisture and (ii) restrained horizontal advection of the 1000–800-hPa levels cold–dry air couplet that originates offshore of Somalia. Second, guided by the diagnostics, we hypothesized that insufficient dilution of convective updrafts is one possible candidate for model bias and performed a series of enhanced entrainment sensitivity experiments with NCAR CAM4. Over the NWIO, the results suggest that globally increasing the maximum entrainment rate εmax leads to a drier free troposphere, arrests the vertical extension of clouds, and weakens moisture–convection and cloud–radiation feedbacks; each factor contributes to a reduced wet bias. Moreover, a higher εmax leads to a reduced dry bias over South Asia through changes in the local circulation features. In CAM4, improved precipitation climatology due to increased εmax suggests that insufficient dilution is one factor, but not the only one, that contributes to systematic errors. Rather, realistic representation of boundary layer processes in climate models arising out of local ocean–atmosphere interaction processes off Somalia’s coast deserves attention in reducing the NWIO wet bias.
APA, Harvard, Vancouver, ISO, and other styles
28

Capps, Scott B., and Charles S. Zender. "Observed and CAM3 GCM Sea Surface Wind Speed Distributions: Characterization, Comparison, and Bias Reduction." Journal of Climate 21, no. 24 (December 15, 2008): 6569–85. http://dx.doi.org/10.1175/2008jcli2374.1.

Full text
Abstract:
Abstract Climatological surface wind speed probability density functions (PDFs) estimated from observations are characterized and used to evaluate, for the first time, contemporaneous wind PDFs predicted by a GCM. The observations include NASA’s global Quick Scatterometer (QuikSCAT) dataset, the NCEP/Department of Energy Global Reanalysis 2 (NCEP-2) 6-hourly reanalysis, and the Tropical Atmosphere Ocean (TAO)/Triangle Trans-Ocean Buoy Network (TRITON) moored buoy data, all from 2000 to 2005. Wind speed mean, 90th percentile, standard deviation, and Weibull shape parameter climatologies are constructed from these data. New features that emerge from the analysis include the identification of a stationary pattern to the wind speed variance in the equatorial Pacific. Interestingly, a distinct wind speed shape anomaly migrates with the ITCZ across this stationary background. The GCM despite its coarser spatial and temporal resolution predicts wind speed PDFs in general agreement with observations. Relative to QuikSCAT, the NCAR Community Atmosphere Model, version 3 (CAM3) GCM has a globally averaged positive mean wind speed bias of about 0.2 m s−1 originating primarily within the trades and Southern Hemisphere storm track. Global standard deviation biases are largest in the winter hemisphere storm tracks. The largest shape biases occur along the equatorial peripheries of the Northern Hemisphere and southern Indian Ocean anticyclones. Year-round negative shape and mean wind speed biases persist along the ITCZ. The GCM’s overactive tropical convection and slight subtropical anticyclone displacement contribute to positive mean speed, standard deviation, and shape trade biases. Surface heat and energy fluxes depend nonlinearly on wind speed magnitude, are sensitive to the tails of the wind distribution, and hence vary significantly on spatiotemporal scales not resolved by GCMs. Limited computing resources force the use of coarse-resolution GCMs, which do not resolve finer-scale wind speed fluctuations. Rather, surface fluxes are determined from the mean wind speed computed by averaging spatially and temporally over subgrid-scale features. Some surface flux routines account for gustiness during low mean winds resulting from thermally driven convection. The authors hypothesize that GCMs systematically underestimate surface momentum flux nonlinearities and that this biases surface wind predictions most in regions of strong winds with high variability. To test this, climate simulations that account for surface fluxes due to subgrid-scale GCM winds are performed. This significantly improves climatological surface wind speed statistics, particularly in the Southern Hemisphere storm track, consistent with the hypothesis. These wind speed improvements can be attributed to a reduction in GCM sea level pressure biases throughout the globe.
APA, Harvard, Vancouver, ISO, and other styles
29

Gent, Peter R., Gokhan Danabasoglu, Leo J. Donner, Marika M. Holland, Elizabeth C. Hunke, Steve R. Jayne, David M. Lawrence, et al. "The Community Climate System Model Version 4." Journal of Climate 24, no. 19 (October 2011): 4973–91. http://dx.doi.org/10.1175/2011jcli4083.1.

Full text
Abstract:
The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Niño–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulation. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than CCSM3, and for several reasons the Arctic sea ice concentration is improved in CCSM4. An ensemble of twentieth-century simulations produces a good match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4°C. This is consistent with the fact that CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of shortwave and longwave cloud forcings.
APA, Harvard, Vancouver, ISO, and other styles
30

Trott, Corinne B., Bulusu Subrahmanyam, Heather L. Roman-Stork, V. S. N. Murty, and C. Gnanaseelan. "Variability of Intraseasonal Oscillations and Synoptic Signals in Sea Surface Salinity in the Bay of Bengal." Journal of Climate 32, no. 20 (September 11, 2019): 6703–28. http://dx.doi.org/10.1175/jcli-d-19-0178.1.

Full text
Abstract:
Abstract Intraseasonal oscillations (ISOs) significantly impact southwest monsoon precipitation and Bay of Bengal (BoB) variability. The response of ISOs in sea surface salinity (SSS) to those in the atmosphere is investigated in the BoB from 2005 to 2017. The three intraseasonal processes examined in this study are the 30–90-day and 10–20-day ISOs and 3–7-day synoptic weather signals. A variety of salinity data from NASA’s Soil Moisture Active Passive (SMAP) and the European Space Agency’s (ESA’s) Soil Moisture and Ocean Salinity (SMOS) satellite missions and from reanalysis using the Hybrid Coordinate Ocean Model (HYCOM) and operational analysis of Climate Forecast System version 2 (CFSv2) were utilized for the study. It is found that the 30–90-day ISO salinity signal propagates northward following the northward propagation of convection and precipitation ISOs. The 10–20-day ISO in SSS and precipitation deviate largely in the northern BoB wherein the river runoff largely impacts the SSS. The weather systems strongly impact the 3–7-day signal in SSS prior to and after the southwest monsoon. Overall, we find that satellite salinity products captured better the SSS signal of ISO due to inherent inclusion of river runoff and mixed layer processes. CFSv2, in particular, underestimates the SSS signal due to the misrepresentation of river runoff in the model. This study highlights the need to include realistic riverine freshwater influx for better model simulations, as accurate salinity simulation is mandatory for the representation of air–sea coupling in models.
APA, Harvard, Vancouver, ISO, and other styles
31

Fiehn, Alina, Birgit Quack, Irene Stemmler, Franziska Ziska, and Kirstin Krüger. "Importance of seasonally resolved oceanic emissions for bromoform delivery from the tropical Indian Ocean and west Pacific to the stratosphere." Atmospheric Chemistry and Physics 18, no. 16 (August 21, 2018): 11973–90. http://dx.doi.org/10.5194/acp-18-11973-2018.

Full text
Abstract:
Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Jiabao, Hyemi Kim, Daehyun Kim, Stephanie A. Henderson, Cristiana Stan, and Eric D. Maloney. "MJO Teleconnections over the PNA Region in Climate Models. Part I: Performance- and Process-Based Skill Metrics." Journal of Climate 33, no. 3 (February 1, 2020): 1051–67. http://dx.doi.org/10.1175/jcli-d-19-0253.1.

Full text
Abstract:
AbstractWe propose a set of MJO teleconnection diagnostics that enables an objective evaluation of model simulations, a fair model-to-model comparison, and a consistent tracking of model improvement. Various skill metrics are derived from teleconnection diagnostics including five performance-based metrics that characterize the pattern, amplitude, east–west position, persistence, and consistency of MJO teleconnections and additional two process-oriented metrics that are designed to characterize the location and intensity of the anomalous Rossby wave source (RWS). The proposed teleconnection skill metrics are used to compare the characteristics of boreal winter MJO teleconnections (500-hPa geopotential height anomaly) over the Pacific–North America (PNA) region in 29 global climate models (GCMs). The results show that current GCMs generally produce MJO teleconnections that are stronger, more persistent, and extend too far to the east when compared to those observed in reanalysis. In general, models simulate more realistic teleconnection patterns when the MJO is in phases 2–3 or phases 7–8, which are characterized by a dipole convection pattern over the Indian Ocean and western to central Pacific. The higher model skill for phases 2, 7, and 8 may be due to these phases producing more consistent teleconnection patterns between individual MJO events than other phases, although the consistency is lower in most models than observed. Models that simulate realistic RWS patterns better reproduce MJO teleconnection patterns.
APA, Harvard, Vancouver, ISO, and other styles
33

Weaver, Scott J., Wanqiu Wang, Mingyue Chen, and Arun Kumar. "Representation of MJO Variability in the NCEP Climate Forecast System." Journal of Climate 24, no. 17 (September 2011): 4676–94. http://dx.doi.org/10.1175/2011jcli4188.1.

Full text
Abstract:
The Madden–Julian oscillation (MJO) is arguably the most important intraseasonal mode of climate variability, given its significant modulation of global climate variations and attendant societal impacts. Advancing the current understanding and simulation of the MJO using state-of-the-art climate data and modeling systems is thus a necessary goal for improving MJO prediction capability. MJO variability is assessed in NOAA/NCEP reanalyses and two versions of the Climate Forecast System (CFS), CFS version 1 (CFSv1) and its update version 2 (CFSv2). The analysis leans on a variety of diagnostic procedures and includes MJO sensitivity to varying El Niño–Southern Oscillation (ENSO) phases. It is found that significant improvements have been realized in the representation of MJO variations in the new NCEP Climate Forecast System reanalysis (CFSR) as evidenced by outgoing longwave radiation (OLR) power spectral analysis and more coherent propagation characteristics of precipitation and 850-hPa zonal winds over the Eastern Hemisphere in CFSR-only depictions. Conversely, while modest improvements are realized in the CFSv2 as compared to CFSv1, in general the simulation of the MJO continues to be a challenge. Both versions produce strong eastward propagating variance of convection and wind fields in the intraseasonal frequency band. However, the simulated MJO propagates slower than the observed with difficulties traversing the Maritime Continent into the western Pacific, as noted in many previous modeling studies. The CFS shows robust intraseasonal simulations over the west Pacific during El Niño years with diminished simulation capability over the Indian Ocean during La Niña years. This is likely a manifestation of the preference for La Niña MJO activity to occur over the Indian Ocean and the simulation challenges over that domain.
APA, Harvard, Vancouver, ISO, and other styles
34

Krol, Maarten, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, et al. "Age of air as a diagnostic for transport timescales in global models." Geoscientific Model Development 11, no. 8 (August 3, 2018): 3109–30. http://dx.doi.org/10.5194/gmd-11-3109-2018.

Full text
Abstract:
Abstract. This paper presents the first results of an age-of-air (AoA) inter-comparison of six global transport models. Following a protocol, three global circulation models and three chemistry transport models simulated five tracers with boundary conditions that grow linearly in time. This allows for an evaluation of the AoA and transport times associated with inter-hemispheric transport, vertical mixing in the troposphere, transport to and in the stratosphere, and transport of air masses between land and ocean. Since AoA is not a directly measurable quantity in the atmosphere, simulations of 222Rn and SF6 were also performed. We focus this first analysis on averages over the period 2000–2010, taken from longer simulations covering the period 1988–2014. We find that two models, NIES and TOMCAT, show substantially slower vertical mixing in the troposphere compared to other models (LMDZ, TM5, EMAC, and ACTM). However, while the TOMCAT model, as used here, has slow transport between the hemispheres and between the atmosphere over land and ocean, the NIES model shows efficient horizontal mixing and a smaller latitudinal gradient in SF6 compared to the other models and observations. We find consistent differences between models concerning vertical mixing of the troposphere, expressed as AoA differences and modelled 222Rn gradients between 950 and 500 hPa. All models agree, however, on an interesting asymmetry in inter-hemispheric mixing, with faster transport from the Northern Hemisphere surface to the Southern Hemisphere than vice versa. This is attributed to a rectifier effect caused by a stronger seasonal cycle in boundary layer venting over Northern Hemispheric land masses, and possibly to a related asymmetric position of the intertropical convergence zone. The calculated AoA in the mid–upper stratosphere varies considerably among the models (4–7 years). Finally, we find that the inter-model differences are generally larger than differences in AoA that result from using the same model with a different resolution or convective parameterisation. Taken together, the AoA model inter-comparison provides a useful addition to traditional approaches to evaluate transport timescales. Results highlight that inter-model differences associated with resolved transport (advection, reanalysis data, nudging) and parameterised transport (convection, boundary layer mixing) are still large and require further analysis. For this purpose, all model output and analysis software are available.
APA, Harvard, Vancouver, ISO, and other styles
35

Qi, Li, and Yuqing Wang. "The Effect of Mesoscale Mountain over the East Indochina Peninsula on Downstream Summer Rainfall over East Asia." Journal of Climate 25, no. 13 (July 1, 2012): 4495–510. http://dx.doi.org/10.1175/jcli-d-11-00574.1.

Full text
Abstract:
Abstract The mesoscale mountain over the east Indochina Peninsula, named Annam Cordillera, plays a key role in shaping the South China Sea (SCS) summer climate in both the atmosphere and the ocean. However, its effect is not limited to the SCS. Ensemble simulations using a high-resolution regional atmospheric model with or without the mountain reveals that the Annam Cordillera has a significant impact on regional climate as far as 3000 km over south and east China, and western Northwest Pacific (WNP). By blocking/lifting the warm and moist air from the Bay of Bengal, the Annam Cordillera forces upward motion and precipitation on the windward side and subsidence on the leeward side, and a low-level southwesterly jet to the southeast tip of the Indochina Peninsula over the SCS. The latter gives rise to coastal upwelling and cold sea surface temperature (SST) filaments in the western SCS, reducing surface sensible and latent heat fluxes and thus suppressing convection over the SCS. Heating associated with the orographic rainfall forces a low-level anomalous easterly over the SCS and an anomalous cyclone and anticyclone in the midlower troposphere to the south and north, respectively. The anomalous circulation modifies the low-level moisture transport, reducing rainfall over the SCS and to the east of Taiwan Island over the WNP, while increasing rainfall as much as 15%–30% in a southwest–northeast-oriented belt extending from south China to the East China Sea. The cold SST filaments in the western SCS enhance the orographically induced circulation; however, its effect accounts for less than 50% of the direct effect of the orographic lifting/blocking.
APA, Harvard, Vancouver, ISO, and other styles
36

Zheng, Y., D. E. Waliser, W. F. Stern, and C. Jones. "The Role of Coupled Sea Surface Temperatures in the Simulation of the Tropical Intraseasonal Oscillation." Journal of Climate 17, no. 21 (November 1, 2004): 4109–34. http://dx.doi.org/10.1175/jcli3202.1.

Full text
Abstract:
Abstract This study compares the tropical intraseasonal oscillation (TISO) variability in the Geophysical Fluid Dynamics Laboratory (GFDL) coupled general circulation model (CGCM) and the stand-alone atmospheric general circulation model (AGCM). For the AGCM simulation, the sea surface temperatures (SSTs) were specified using those from the CGCM simulation. This was done so that any differences in the TISO that emerged from the two simulations could be attributed to the coupling process and not to a difference in the mean background state. The comparison focused on analysis of the rainfall, 200-mb velocity potential, and 850-mb zonal wind data from the two simulations, for both summer and winter periods, and included comparisons to analogous diagnostics using NCEP–NCAR reanalysis and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) rainfall data. The results of the analysis showed three principal differences in the TISO variability between the coupled and uncoupled simulations. The first was that the CGCM showed an improvement in the spatial variability associated with the TISO mode, particularly for boreal summer. Specifically, the AGCM exhibited almost no TISO variability in the Indian Ocean during boreal summer—a common shortcoming among AGCMs. The CGCM, on the other hand, did show a considerable enhancement in TISO variability in this region for this season. The second was that the wavenumber–frequency spectra of the AGCM exhibited an unrealistic peak in variability at low wavenumbers (1–3, depending on the variable) and about 3 cycles yr−1 (cpy). This unrealistic peak of variability was absent in the CGCM, which otherwise tended to show good agreement with the observations. The third difference was that the AGCM showed a less realistic phase lag between the TISO-related convection and SST anomalies. In particular, the CGCM exhibited a near-quadrature relation between precipitation and SST anomalies, which is consistent with observations, while the phase lag was reduced in the AGCM by about 1.5 pentads (∼1 week). The implications of the above results, including those for the notions of “perfect SST” and “two tier” experiments, are discussed, as are the caveats associated with the study's modeling framework and analysis.
APA, Harvard, Vancouver, ISO, and other styles
37

Dajuma, Alima, Kehinde O. Ogunjobi, Heike Vogel, Peter Knippertz, Siélé Silué, Evelyne Touré N'Datchoh, Véronique Yoboué, and Bernhard Vogel. "Downward cloud venting of the central African biomass burning plume during the West Africa summer monsoon." Atmospheric Chemistry and Physics 20, no. 9 (May 7, 2020): 5373–90. http://dx.doi.org/10.5194/acp-20-5373-2020.

Full text
Abstract:
Abstract. Between June and September large amounts of biomass burning aerosol are released into the atmosphere from agricultural fires in central and southern Africa. Recent studies have suggested that this plume is carried westward over the Atlantic Ocean at altitudes between 2 and 4 km and then northward with the monsoon flow at low levels to increase the atmospheric aerosol load over coastal cities in southern West Africa (SWA), thereby exacerbating air pollution problems. However, the processes by which these fire emissions are transported into the planetary boundary layer (PBL) are still unclear. One potential factor is the large-scale subsidence related to the southern branch of the monsoon Hadley cell over the tropical Atlantic. Here we use convection-permitting model simulations with COSMO-ART to investigate for the first time the contribution of downward mixing induced by clouds, a process we refer to as downward cloud venting in contrast to the more common process of upward transport from a polluted PBL. Based on a monthly climatology, model simulations compare satisfactory with wind fields from reanalysis data, cloud observations, and satellite-retrieved carbon monoxide (CO) mixing ratio. For a case study on 2 July 2016, modelled clouds and rainfall show overall good agreement with Spinning Enhanced Visible and InfraRed Imager (SEVIRI) cloud products and Global Precipitation Measurement Integrated Multi-satellitE Retrievals (GPM-IMERG) rainfall estimates. However, there is a tendency for the model to produce too much clouds and rainfall over the Gulf of Guinea. Using the CO dispersion as an indicator for the biomass burning plume, we identify individual mixing events south of the coast of Côte d'Ivoire due to midlevel convective clouds injecting parts of the biomass burning plume into the PBL. Idealized tracer experiments suggest that around 15 % of the CO mass from the 2–4 km layer is mixed below 1 km within 2 d over the Gulf of Guinea and that the magnitude of the cloud venting is modulated by the underlying sea surface temperatures. There is even stronger vertical mixing when the biomass burning plume reaches land due to daytime heating and a deeper PBL. In that case, the long-range-transported biomass burning plume is mixed with local anthropogenic emissions. Future work should provide more robust statistics on the downward cloud venting effect over the Gulf of Guinea and include aspects of aerosol deposition.
APA, Harvard, Vancouver, ISO, and other styles
38

Aguirre, Catalina, Maisa Rojas, René D. Garreaud, and David A. Rahn. "Role of synoptic activity on projected changes in upwelling-favourable winds at the ocean’s eastern boundaries." npj Climate and Atmospheric Science 2, no. 1 (November 29, 2019). http://dx.doi.org/10.1038/s41612-019-0101-9.

Full text
Abstract:
AbstractThe climate of the ocean’s eastern boundaries is strongly influenced by subtropical anticyclones, which drive a surface wind stress that promotes coastal upwelling of nutrient-rich subsurface water that supports high primary productivity and an abundance of food resources. Understanding the projected response of upwelling-favourable winds to climate change has broad implications for coastal biogeochemistry, ecology, and fisheries. Here we use a reanalysis, an ensemble of global climate simulations, and an objective algorithm to track anticyclones to investigate the projected changes in upwelling-favourable wind events at the California, Canary, Humboldt, and Benguela coastal upwelling systems. Except for the north Pacific, we find consistent poleward shifts of mean and upper percentile daily winds over the ocean basins. We propose that extratropical, synoptic-scale migratory anticyclones that force intense coastal upwelling events—which become more frequent at higher latitudes and less frequent at lower latitudes in the future—play an important role in the projected changes in upwelling-favourable wind events in these coastal upwelling systems. These changes complement large-scale processes such as the poleward shift of the subtropical ridge (STR) and stationary subtropical highs. Hence, both extratropical and tropical processes need to be considered to fully explain projected changes at the coastal upwelling systems under anthropogenic climate change.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography