Academic literature on the topic 'Ocean wave energy converter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ocean wave energy converter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ocean wave energy converter"
Foerd Ames, P. "4672222 Ocean wave energy converter." Deep Sea Research Part B. Oceanographic Literature Review 34, no. 11 (January 1987): 1016. http://dx.doi.org/10.1016/0198-0254(87)91156-3.
Full textSatriawan, Muhammad, L. Liliasari, Wawan Setiawan, and Ade Gafar Abdullah. "Unlimited Energy Source: A Review of Ocean Wave Energy Utilization and Its Impact on the Environment." Indonesian Journal of Science and Technology 6, no. 1 (January 19, 2021): 1–16. http://dx.doi.org/10.17509/ijost.v6i1.31473.
Full textZheng, Zhongqiang, Zhipeng Yao, Zongyu Chang, Tao Yao, and Bo Liu. "A point absorber wave energy converter with nonlinear hardening spring power-take-off systems in regular waves." Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 234, no. 4 (May 2, 2020): 820–29. http://dx.doi.org/10.1177/1475090220913687.
Full textSatriawan, Muhammad, and Rosmiati Rosmiati. "Simple Floating Ocean Wave Energy Converter: Developing Teaching Media to Communicating Alternative Energy." JPPS (Jurnal Penelitian Pendidikan Sains) 12, no. 1 (November 27, 2022): 1–13. http://dx.doi.org/10.26740/jpps.v12n1.p1-13.
Full textAderinto, Tunde, and Hua Li. "Conceptual Design and Simulation of a Self-Adjustable Heaving Point Absorber Based Wave Energy Converter." Energies 13, no. 8 (April 17, 2020): 1997. http://dx.doi.org/10.3390/en13081997.
Full textChitale, Kedar, Casey Fagley, Ali Mohtat, and Stefan Siegel. "Numerical Evaluation of Climate Scatter Performance of a Cycloidal Wave Energy Converter." International Marine Energy Journal 5, no. 3 (December 19, 2022): 315–26. http://dx.doi.org/10.36688/imej.5.315-326.
Full textMohtat, Ali, Casey Fagley, Kedar C. Chitale, and Stefan G. Siegel. "Efficiency analysis of the cycloidal wave energy convertor under real-time dynamic control using a 3D radiation model." International Marine Energy Journal 5, no. 1 (June 14, 2022): 45–56. http://dx.doi.org/10.36688/imej.5.45-56.
Full textCurto, Domenico, Vincenzo Franzitta, and Andrea Guercio. "Sea Wave Energy. A Review of the Current Technologies and Perspectives." Energies 14, no. 20 (October 13, 2021): 6604. http://dx.doi.org/10.3390/en14206604.
Full textDarwish, Ahmed, and George A. Aggidis. "A Review on Power Electronic Topologies and Control for Wave Energy Converters." Energies 15, no. 23 (December 3, 2022): 9174. http://dx.doi.org/10.3390/en15239174.
Full textNicola, Pozzi, Bracco Giovanni, Passione Biagio, Sirigu Sergej Antonello, Vissio Giacomo, Mattiazzo Giuliana, and Sannino Gianmaria. "Wave Tank Testing of a Pendulum Wave Energy Converter 1:12 Scale Model." International Journal of Applied Mechanics 09, no. 02 (March 2017): 1750024. http://dx.doi.org/10.1142/s1758825117500247.
Full textDissertations / Theses on the topic "Ocean wave energy converter"
Waters, Rafael. "Energy from Ocean Waves : Full Scale Experimental Verification of a Wave Energy Converter." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9404.
Full textRahm, Magnus. "Ocean Wave Energy : Underwater Substation System for Wave Energy Converters." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-112915.
Full textDu, Plessis Jacques. "A hydraulic wave energy converter." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/19950.
Full textENGLISH ABSTRACT: As a renewable energy source, wave energy has the potential to contribute to the increasing global demand for power. In South Africa specifically, the country’s energy needs may easily be satisfied by the abundance of wave energy at the South-West coast of the country. Commercially developing and utilizing wave energy devices is not without its challenges, however. The ability of these devices to survive extreme weather conditions and the need to achieve cost-efficacy while achieving high capacity factors are but some of the concerns. Constant changes in wave heights, lengths and directions as well as high energy levels and large forces during storm conditions often lead to difficulties in keeping the complexity of the device down, avoiding over-dimensioning and reaching high capacity factors. The point absorber device developed as part of this research is based on an innovation addressing the abovementioned issues. An approach is followed whereby standard "offthe- shelf" components of a proven hydraulics technology are used. The size of the device is furthermore adaptable to different wave climates, and the need for a control system is not necessary if the design parameters are chosen correctly. These characteristics enable low complexity of the device, excellent survivability and an exceptionally high capacity factor. This may lead to low capital as well as low operationand maintenance costs. In this paper the working principle of this concept is presented to illustrate how it utilises the available wave energy in oceans. The results obtained from theoretical tests correlate well with the experimental results, and it is proven that the device has the ability to achieve high capacity factors. As the device makes use of existing, "off-the-shelf" components, cost-efficient energy conversion is therefore made feasible through this research.
AFRIKAANSE OPSOMMING: As ’n hernubare/ herwinbare energiebron bied golfenergie die potensiaal om by te dra tot die bevrediging van die stygende globale energie-navraag. In spesifiek Suid-Afrika kan die oorvloed van beskikbare golfenergie aan die Suid-Weskus van die land gebruik word om aan die land se energiebehoeftes te voldoen. Betroubaarheid en oorlewing in erge weerstoestande, koste-effektiwiteit en die behaal van hoë kapasiteitsfaktore is beduidende struikelblokke wat oorkom moet word in die poging om ’n golfenergie-omsetter wat kommersieël vervaardig kan word, te ontwikkel. Daarby dra voortdurende veranderings in golfhoogtes, -lengtes en -rigtings sowel as hoë energievlakke en groot kragte tydens storms by to die feit dat dit moeilik is om die kompleksiteit van die stelsel laag te hou. Dit terwyl daar voorkom moet word dat die toestel oorontwerp en verhoed word dat hoë kapsiteitsfaktore bereik word. Die puntabsorbeerder-toestel wat in hierdie navorsing ontwikkel is, bestaan uit ’n ontwerp wat spesifiek ontwikkel is om die bogenoemde probleme aanspreek. ’n Unieke benadering is gevolg waardeur standaard, maklik-bekombare komponente gebruik is en die komponent-groottes ook aangepas kan word volgens golfgroottes. Indien die ontwerpsdimensies akkuraat gekies word, is die moontlikheid verder goed dat ’n beheerstelsel nie geïmplementeer hoef te word nie. Hierdie eienskappe verseker lae stelselkompleksiteit, uitstekende oorlewingsvermoë en ’n uitstaande kapasiteitsfaktor. Lae kapitaal- sowel as onderhoudskostes is dus moontlik. Die doel van hierdie dokument is om die werking van die konsep voor te stel en teoreties sowel as prakties te evalueer. Die resultate van teoretiese toetse stem goed ooreen met eksperimentele resultate, en dit is duidelik dat die toestel hoë kapasiteitsfaktore kan behaal. Aangesien die toestel verder gebruik maak van bestaande komponente wat alledaags beskikbaar is, word die koste-effektiewe omsetting van golfenergie dus moontlik gemaak deur hierdie navorsing.
Greenwood, Charles. "The impact of large scale wave energy converter farms on the regional wave climate." Thesis, University of the Highlands and Islands, 2016. https://pure.uhi.ac.uk/portal/en/studentthesis/the-impact-of-large-scale-wave-energy-converter-farms-on-the-regional-wave-climate(e734db00-2108-48f9-b162-a1fc85ef61d6).html.
Full textEriksson, Carolina. "Model Predictive Control of CorPower Ocean Wave Energy Converter." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196859.
Full textVågkraft har de senaste åren visat stor potential som en ny, förnyelsebar energikälla. Det har skett många framsteg inom området med att ta fram ett robust vågkraftsverk som kan utmana andra energikällor i pris och elektrisk effekt. Teoretiska studier har visat att optimal styrning kan öka den elektriska effekten för idialiserade vågkraftsverk. Denna rapport är skriven i sammarbete med vågkraftföretaget CorPower Ocean, och undersöker hur ekonomisk Model Predictive Control (MPC) kan användas för att styra dämpningen i ett lätt vågkraftverk vars storlek är relativt liten våglängden. Målet är att optimera dämpningen, vridmomentet, i generatorerna så att medeleffekten maximeras samtidigt som toppeffekten minimeras, detta för att skapa ett stabilare system med mindre flutuationer mellan medel- och toppeffekt. För att nå detta mål krävs en icke konvex kostfunktion. På grund av stora olinjäriteter och diskontinuteter i systemets dynamik utvecklas två regulatorer; ett system av linjära MPC, samt en olijär MPC. Relevanta krafter som påverkar systemet identifieras och modelleras från ett kraftperspektiv. Modellerna diskretiseras, och regulatorerna implementeras och simuleras i en detaljerad Simulink modell av systemet, utvecklad av CorPower Ocean. Både regelbundna och oregelbunda vågset med varierande energiinnehåll har simuleras. Regulatorerna ökar inte vågkraftverkets prestanda jämfört med en enkel, väl inställd regulator utveklad av CorPower Ocean. Slutligen föreslås förbättringar för att minska modelfell i modellerna.
Magagna, Davide. "Oscillating water column wave pump : a wave energy converter for water delivery." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/349009/.
Full textKanagaraj, Gireesha. "Modelling of the Novi Ocean Wave Energy Converter using WEC-Sim." Thesis, Uppsala universitet, Institutionen för elektroteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445865.
Full textSarmah, Biki. "Optimisation of Electromechanical Drivetrain for Wave Energy Converter at CorPower Ocean AB." Thesis, KTH, Fordonsdynamik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234838.
Full textEngström, Jens. "Hydrodynamic Modelling for a Point Absorbing Wave Energy Converter." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160319.
Full textNie, Zanxiang Jack. "Emulation and power conditioning of outputs from a direct drive linear wave energy converter." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609008.
Full textBooks on the topic "Ocean wave energy converter"
Cruz, Joao, ed. Ocean Wave Energy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74895-3.
Full textSamad, Abdus, S. A. Sannasiraj, V. Sundar, and Paresh Halder, eds. Ocean Wave Energy Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78716-5.
Full textPecher, Arthur, and Jens Peter Kofoed, eds. Handbook of Ocean Wave Energy. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39889-1.
Full text1940-, Evans D. V., Falcão, A. F. de O. 1937-, and International Union of Theoretical and Applied Mechanics., eds. Hydrodynamics of ocean wave-energy utilization. Berlin: Springer-Verlag, 1986.
Find full textMishra, Sunil Kumar, Dusmanta Kumar Mohanta, Bhargav Appasani, and Ersan Kabalcı. OWC-Based Ocean Wave Energy Plants. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9849-4.
Full textEvans, David V., and António F. O. de Falcão, eds. Hydrodynamics of Ocean Wave-Energy Utilization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82666-5.
Full textTony, Lewis. Wave energy: Evaluation for C.E.C. London: Published by Graham & Trotman for the Commission of the European Communities, 1985.
Find full textBank, Asian Development, ed. Wave energy conversion and ocean thermal energy conversion potential in developing member countries. Mandaluyong City, Metro Manila, Philippines: Asian Development Bank, 2014.
Find full textKane, Mike. Summary of PIER-funded wave energy research. [Sacramento, Calif.]: California Energy Commission, 2008.
Find full textKane, Mike. Summary of PIER-funded wave energy research. [Sacramento, Calif.]: California Energy Commission, 2008.
Find full textBook chapters on the topic "Ocean wave energy converter"
Sheng, Wanan. "Wave Energy Converters." In Encyclopedia of Ocean Engineering, 1–9. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6963-5_187-1.
Full textSheng, Wanan. "Wave Energy Converters." In Encyclopedia of Ocean Engineering, 2121–28. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6946-8_187.
Full textSundar, V., and S. A. Sannasiraj. "Wave Energy Convertors." In Ocean Wave Energy Systems, 19–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_2.
Full textBellamy, N. W. "The Circular Sea Clam Wave Energy Converter." In Hydrodynamics of Ocean Wave-Energy Utilization, 69–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82666-5_5.
Full textNielsen, Kim. "On the Experimental Investigation of a Wave Power Converter." In Hydrodynamics of Ocean Wave-Energy Utilization, 93–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82666-5_7.
Full textSuchithra, R., and Abdus Samad. "Control of Wave Energy Converters." In Ocean Wave Energy Systems, 471–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_16.
Full textVijayasankar, Vishnu, Tapas K. Das, Paresh Halder, and Abdus Samad. "Power Take-Off Devices for Wave Energy Converters." In Ocean Wave Energy Systems, 355–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_11.
Full textVenugopal, Vengatesan, Zhi Yung Tay, and Tirumaleswara Reddy Nemalidinne. "Numerical Modelling Techniques for Wave Energy Converters in Arrays." In Ocean Wave Energy Systems, 281–322. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_9.
Full textBlanco, Marcos, Jorge Torres, Miguel Santos-Herrán, Luis García-Tabarés, Gustavo Navarro, Jorge Nájera, Dionisio Ramírez, and Marcos Lafoz. "Recent Advances in Direct-Drive Power Take-Off (DDPTO) Systems for Wave Energy Converters Based on Switched Reluctance Machines (SRM)." In Ocean Wave Energy Systems, 487–532. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_17.
Full textDas, Tapas K., and Abdus Samad. "Wells Turbine as a Power Take-Off Mechanism for Wave Energy Converters." In Ocean Wave Energy Systems, 365–96. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_12.
Full textConference papers on the topic "Ocean wave energy converter"
Liang, Changwei, Junxiao Ai, and Lei Zuo. "Design, Fabrication, Simulation and Testing of a Novel Ocean Wave Energy Converter." In ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9444.
Full textMurakami, Hidenori, Oscar Rios, and Ardavan Amini. "A Mathematical Model With Preliminary Experiments of a Gyroscopic Ocean Wave Energy Converter." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51163.
Full textPeng, Wei, and Junwei Ma. "Experimental Investigation on Hydrodynamic Effectiveness of a Wave Energy Converter Using Floating Breakwater." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-19029.
Full textKatsidoniotaki, Eirini, Edward Ransley, Scott Brown, Johannes Palm, Jens Engström, and Malin Göteman. "Loads on a Point-Absorber Wave Energy Converter in Regular and Focused Extreme Wave Events." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18639.
Full textSiegel, Stefan G., Tiger Jeans, and Thomas McLaughlin. "Intermediate Ocean Wave Termination Using a Cycloidal Wave Energy Converter." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20030.
Full textHovland, Justin, Robert Paasch, and Merrick Haller. "Characterizing Dangerous Waves for Ocean Wave Energy Converter Survivability." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20421.
Full textRingwood, John, Francesco Ferri, Nathan Tom, Kelley Ruehl, Nicols Faedo, Giorgio Bacelli, Yi-Hsiang Yu, and Ryan G. Coe. "The Wave Energy Converter Control Competition: Overview." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95216.
Full textShabara, Mohamed A., Shangyan Zou, and Ossama Abdelkhalik. "Numerical Investigation of a Variable-Shape Buoy Wave Energy Converter." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-63594.
Full textViola, Alessia, and Marco Trapanese. "An Innovative Wave Energy Converter in the Mediterranean Sea." In 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO). IEEE, 2018. http://dx.doi.org/10.1109/oceanskobe.2018.8559218.
Full textFolley, Matt, and Trevor Whittaker. "Preliminary Cross-Validation of Wave Energy Converter Array Interactions." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10837.
Full textReports on the topic "Ocean wave energy converter"
Dallman, Ann Renee, and Vincent Sinclair Neary. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1160290.
Full textAnn R. Dallman and Vincent S. Neary. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1325402.
Full textHaxel, Joe H., and Sarah K. Henkel. Measuring changes in ambient noise levels from the installation and operation of a surge wave energy converter in the coastal ocean. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1400245.
Full textStefan G Siegel, Ph D. Cycloidal Wave Energy Converter. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1061484.
Full textBull, Diana L., Chris Smith, Dale Scott Jenne, Paul Jacob, Andrea Copping, Steve Willits, Arnold Fontaine, et al. Reference Model 6 (RM6): Oscillating Wave Energy Converter. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159445.
Full textCheung, Jeffrey T., and Earl F. Childress III. Ocean Wave Energy Harvesting Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada476763.
Full textKopf, Steven. WET-NZ Multi-Mode Wave Energy Converter Advancement Project. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1097595.
Full textYu, Y. H., D. S. Jenne, R. Thresher, A. Copping, S. Geerlofs, and L. A. Hanna. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1169778.
Full textWeber, Jochem W., and Daniel Laird. Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1418966.
Full textRuehl, Kelley, Giorgio Bacelli, and Budi Gunawan. Experimental Testing of a Floating Oscillating Surge Wave Energy Converter. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1761877.
Full text