Academic literature on the topic 'Ocean wave energy harvesting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ocean wave energy harvesting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ocean wave energy harvesting"
Scruggs, J., and P. Jacob. "ENGINEERING: Harvesting Ocean Wave Energy." Science 323, no. 5918 (February 27, 2009): 1176–78. http://dx.doi.org/10.1126/science.1168245.
Full textvon Jouanne, Annette. "Harvesting the Waves." Mechanical Engineering 128, no. 12 (December 1, 2006): 24–27. http://dx.doi.org/10.1115/1.2006-dec-1.
Full textWu, Zhijia, Carlos Levi, and Segen F. Estefen. "Wave energy harvesting using nonlinear stiffness system." Applied Ocean Research 74 (May 2018): 102–16. http://dx.doi.org/10.1016/j.apor.2018.02.009.
Full textLiu, Bingqi, Huanggao Yi, Carlos Levi, Segen F. Estefen, Zhijia Wu, and Menglan Duan. "Improved bistable mechanism for wave energy harvesting." Ocean Engineering 232 (July 2021): 109139. http://dx.doi.org/10.1016/j.oceaneng.2021.109139.
Full textNabavi, Seyedeh Fatemeh, Anooshiravan Farshidianfar, Aref Afsharfard, and Hamed Haddad Khodaparast. "An ocean wave-based piezoelectric energy harvesting system using breaking wave force." International Journal of Mechanical Sciences 151 (February 2019): 498–507. http://dx.doi.org/10.1016/j.ijmecsci.2018.12.008.
Full textNabavi, Seyedeh Fatemeh, Anooshiravan Farshidianfar, and Aref Afsharfard. "Novel piezoelectric-based ocean wave energy harvesting from offshore buoys." Applied Ocean Research 76 (July 2018): 174–83. http://dx.doi.org/10.1016/j.apor.2018.05.005.
Full textWu, Nan, Quan Wang, and XiangDong Xie. "Ocean wave energy harvesting with a piezoelectric coupled buoy structure." Applied Ocean Research 50 (March 2015): 110–18. http://dx.doi.org/10.1016/j.apor.2015.01.004.
Full textLiu, Na, Yimin Tan, Weiqiang Mo, Huanqing Han, and Lin Li. "Optimization Design for Ocean Wave Energy Convertor." E3S Web of Conferences 185 (2020): 01073. http://dx.doi.org/10.1051/e3sconf/202018501073.
Full textHuang, Bin, Pengzhong Wang, Lu Wang, Shuai Yang, and Dazhuan Wu. "Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview." Nanotechnology Reviews 9, no. 1 (August 24, 2020): 716–35. http://dx.doi.org/10.1515/ntrev-2020-0055.
Full textZhou, Xiang, Ossama Abdelkhalik, and Wayne Weaver. "Power Take-Off and Energy Storage System Static Modeling and Sizing for Direct Drive Wave Energy Converter to Support Ocean Sensing Applications." Journal of Marine Science and Engineering 8, no. 7 (July 13, 2020): 513. http://dx.doi.org/10.3390/jmse8070513.
Full textDissertations / Theses on the topic "Ocean wave energy harvesting"
Giuliani, Chiara. "Alteration of ocean waves by periodic submerged structures for renewable energy extraction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textMartin, Dillon Minkoff. "Hydrodynamic Design Optimization and Wave Tank Testing of Self-Reacting Two-Body Wave Energy Converter." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/80298.
Full textMaster of Science
Xiong, Qiuchi. "Control of Vibration Systems with Mechanical Motion Rectifier and their Applications to Vehicle Suspension and Ocean Energy Harvester." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98004.
Full textMaster of Science
Vibration happens in our daily life in almost all cases. It is a regular or irregular back and forth motion of particles. For example, when we start a vehicle, the engine will do circular motion to drive the wheel, which causes vibration and we feel wave pulses on our body when we sit in the car. However, this kind of vibration is undesirable, since it makes us uncomfortable. The car manufacture designs cushion seats to absorb vibration. This is a way to use hardware to control vibration. However, this is not enough. When vehicle goes through bumps, we do have suspension to absorb vibration transferred from road to our body. The car still experiences a big shock that makes us feel dizzy. On the opposite direction, in some cases when vibration becomes the motion source for energy harvesting, we would like to enhance it. Hardware can be helpful, since by tuning some parameters of an energy harvesting device, it can match with the vibration source to maximize vibration. However, it is still not enough due to low adaptability of a fixed parameter system. To overcome the limitation of hardware, researches begin to think about the way to control vibration, which is the method to change system behavior by using real-time adjustable hardware. By introducing vibration control, the theory behind that started to be investigated. This thesis investigates the vibration control theory application in both cases: vibration reduction and vibration enhancement, which are mentioned above due to opposite application preferences. There are two major applications of vibration control: vehicle suspension control and ocean wave energy converter (WEC) control. The thesis starts from the control development for both fields with general modeling criteria, then followed by control development with specific hardware design-mechanical motion rectifier (MMR) gearbox-applied on both systems. The MMR gearbox is the researcher designed hardware that targets on vibration adjustment with hardware capability, which is similar as the cushion seats mentioned at the beginning of the abstract. However, the MMR cannot have capability to furtherly optimize system vibration, which introduces the necessity of control development based on the existing hardware. In the suspension control application, the control strategy introduced successfully improve the vehicle ride comfort by 29.2%, which means the vehicle body acceleration has been reduced furtherly to let passenger feel less vibration. In the WEC application, the power absorbed from wave has been improved by 57% by applying suitable control strategy. The performance of improvement on vibration control has proved the effect on further vibration optimization beyond hardware limitation.
Li, Xiaofan. "Design, Analysis and Testing of a Self-reactive Wave Energy Point Absorber with Mechanical Power Take-off." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/100800.
Full textDoctor of Philosophy
Ocean wave as a renewable energy source possesses great potential for solving the world energy crisis and benefit human beings. The total theoretical potential wave power on the ocean-facing coastlines of the world is around 30,000 TWh, although impossible to be all transferred into electricity, the amount of the power can be absorbed still can cover a large portion of the world's total energy consumption. However, multiple reasons have stopped the ocean wave energy from being widely adopted, and among those reasons, the most important one is immature of the Power Take-off (PTO) technology. In this dissertation, a novel two body wave energy converter with a PTO using the unique mechanism of Mechanical Motion Rectifier (MMR) is investigated through design, analysis, and testing. To improve the energy harvesting efficiency and the reliability of the PTO, the dissertation induced a mechanical PTO that uses MMR mechanism which can transfer the reciprocated bi-directional movement of the ocean wave into unidirectional rotation of the generator. This mechanism brings in a unique phenomenon of engagement and disengagement and a piecewise nonlinear dynamic property into the PTO. Through a comprehensive study, the MMR PTO is further characterized and a refined dynamic model that can accurately predict the dynamic response of the PTO is established. The major factors that can influence the performance of the MMR PTO are explored and discussed both analytically and experimentally. Moreover, as it has been theoretically hypothesis that using a two-body structure for designing the point absorbers can help it to achieve a frequency tuning effect for it to better match with the excitation frequency of the ocean wave, it lacks experimental verification. In this dissertation, a scaled two-body point absorber prototype is developed and put into a wave tank to compare with the single body structure. The test results show that through the use of two-body structure and by designing the mass ratio between the two bodies properly, the point absorber can successfully match the excitation frequency of the wave. The highest power capture width ratio (CWR) achieved during the test is 58.7%, which exceeds the results of similar prototypes, proving the advantage of the proposed design.
Rahm, Magnus. "Ocean Wave Energy : Underwater Substation System for Wave Energy Converters." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-112915.
Full textLeclercq, Mathilde. "Harvesting energy from the sea." Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91881.
Full textGreenwood, Charles. "The impact of large scale wave energy converter farms on the regional wave climate." Thesis, University of the Highlands and Islands, 2016. https://pure.uhi.ac.uk/portal/en/studentthesis/the-impact-of-large-scale-wave-energy-converter-farms-on-the-regional-wave-climate(e734db00-2108-48f9-b162-a1fc85ef61d6).html.
Full textEriksson, Carolina. "Model Predictive Control of CorPower Ocean Wave Energy Converter." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196859.
Full textVågkraft har de senaste åren visat stor potential som en ny, förnyelsebar energikälla. Det har skett många framsteg inom området med att ta fram ett robust vågkraftsverk som kan utmana andra energikällor i pris och elektrisk effekt. Teoretiska studier har visat att optimal styrning kan öka den elektriska effekten för idialiserade vågkraftsverk. Denna rapport är skriven i sammarbete med vågkraftföretaget CorPower Ocean, och undersöker hur ekonomisk Model Predictive Control (MPC) kan användas för att styra dämpningen i ett lätt vågkraftverk vars storlek är relativt liten våglängden. Målet är att optimera dämpningen, vridmomentet, i generatorerna så att medeleffekten maximeras samtidigt som toppeffekten minimeras, detta för att skapa ett stabilare system med mindre flutuationer mellan medel- och toppeffekt. För att nå detta mål krävs en icke konvex kostfunktion. På grund av stora olinjäriteter och diskontinuteter i systemets dynamik utvecklas två regulatorer; ett system av linjära MPC, samt en olijär MPC. Relevanta krafter som påverkar systemet identifieras och modelleras från ett kraftperspektiv. Modellerna diskretiseras, och regulatorerna implementeras och simuleras i en detaljerad Simulink modell av systemet, utvecklad av CorPower Ocean. Både regelbundna och oregelbunda vågset med varierande energiinnehåll har simuleras. Regulatorerna ökar inte vågkraftverkets prestanda jämfört med en enkel, väl inställd regulator utveklad av CorPower Ocean. Slutligen föreslås förbättringar för att minska modelfell i modellerna.
Wang, Guangyao. "An Investigation of Phase Change Material (PCM)-Based Ocean Thermal Energy Harvesting." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/100989.
Full textDoctor of Philosophy
Horton, Bryan. "Rotational motion of pendula systems for wave energy extraction." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=25873.
Full textBooks on the topic "Ocean wave energy harvesting"
Cruz, Joao, ed. Ocean Wave Energy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74895-3.
Full textSamad, Abdus, S. A. Sannasiraj, V. Sundar, and Paresh Halder, eds. Ocean Wave Energy Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78716-5.
Full textPecher, Arthur, and Jens Peter Kofoed, eds. Handbook of Ocean Wave Energy. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39889-1.
Full textKhaligh, Alireza. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: CRC Press, 2010.
Find full textC, Onar Omer, ed. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: Taylor & Francis, 2010.
Find full textKhaligh, Alireza. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: Taylor & Francis, 2010.
Find full textMishra, Sunil Kumar, Dusmanta Kumar Mohanta, Bhargav Appasani, and Ersan Kabalcı. OWC-Based Ocean Wave Energy Plants. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9849-4.
Full textEvans, David V., and António F. O. de Falcão, eds. Hydrodynamics of Ocean Wave-Energy Utilization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82666-5.
Full text1940-, Evans D. V., Falcão, A. F. de O. 1937-, and International Union of Theoretical and Applied Mechanics., eds. Hydrodynamics of ocean wave-energy utilization. Berlin: Springer-Verlag, 1986.
Find full textTony, Lewis. Wave energy: Evaluation for C.E.C. London: Published by Graham & Trotman for the Commission of the European Communities, 1985.
Find full textBook chapters on the topic "Ocean wave energy harvesting"
Sundar, V. "Ocean Wave Energy." In Ocean Wave Mechanics, 201–14. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119241652.ch8.
Full textHagerman, George, and Ted Heller. "Wave Energy Technology Assessment." In Ocean Resources, 183–89. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2131-3_15.
Full textSheng, Wanan. "Wave Energy Converters." In Encyclopedia of Ocean Engineering, 1–9. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6963-5_187-1.
Full textSundar, V., and S. A. Sannasiraj. "Wave Energy Potential." In Ocean Wave Energy Systems, 1–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_1.
Full textSundar, V., and S. A. Sannasiraj. "Wave Energy Convertors." In Ocean Wave Energy Systems, 19–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_2.
Full textLi, Mingfang. "Wave Energy Utilization Buoy." In Encyclopedia of Ocean Engineering, 1–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-6963-5_71-1.
Full textKofoed, Jens Peter. "The Wave Energy Sector." In Handbook of Ocean Wave Energy, 17–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39889-1_2.
Full textFolley, Matt. "The Wave Energy Resource." In Handbook of Ocean Wave Energy, 43–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39889-1_3.
Full textBernitsas, Michael M. "Harvesting Energy by Flow Included Motions." In Springer Handbook of Ocean Engineering, 1163–244. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16649-0_47.
Full textDas, Tapas K., R. Suchithra, and Abdus Samad. "Experimental Testing of Air Turbines for Wave Energy Conversion." In Ocean Wave Energy Systems, 397–418. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78716-5_13.
Full textConference papers on the topic "Ocean wave energy harvesting"
Bastien, S. P., R. B. Sepe, A. R. Grilli, S. T. Grilli, and M. L. Spaulding. "Ocean wave energy harvesting buoy for sensors." In 2009 IEEE Energy Conversion Congress and Exposition. ECCE 2009. IEEE, 2009. http://dx.doi.org/10.1109/ecce.2009.5316189.
Full textSateriale, Maura, Yalda Sadaat, and Reza Ghorbani. "Adjustable wave chamber for better ocean wave energy harvesting." In OCEANS 2015 - Genova. IEEE, 2015. http://dx.doi.org/10.1109/oceans-genova.2015.7271637.
Full textHarne, R. L., M. E. Schoemaker, and K. W. Wang. "Multistable chain for ocean wave vibration energy harvesting." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Wei-Hsin Liao. SPIE, 2014. http://dx.doi.org/10.1117/12.2044267.
Full textMutsuda, Hidemi, Ryuta Watanabe, Masato Hirata, Yasuaki Doi, and Yoshikazu Tanaka. "Elastic Floating Unit With Piezoelectric Device for Harvesting Ocean Wave Energy." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83318.
Full textGemme, Douglas A., Steven P. Bastien, Raymond B. Sepe, John Montgomery, Stephan T. Grilli, and Annette Grilli. "Experimental testing and model validation for ocean wave energy harvesting buoys." In 2013 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2013. http://dx.doi.org/10.1109/ecce.2013.6646720.
Full textAi, Junxiao, Hwan Lee, Changwei Liang, and Lei Zuo. "Ocean Wave Energy Harvester With a Novel Power Takeoff Mechanism." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34332.
Full textGuo, Qiyu, Ming Sun, Huicong Liu, Xin Ma, Zhaohui Chen, Tao Chen, and Lining Sun. "Design and experiment of an electromagnetic ocean wave energy harvesting device." In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2018. http://dx.doi.org/10.1109/aim.2018.8452264.
Full textVasquez, Rafael E., Julio C. Correa, and Carl D. Crane. "Kinematics and Dynamics of a Planar Tensegrity Mechanism for Ocean Wave Energy Harvesting." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70320.
Full textYin, Xiuxing, Xiaofan Li, Vicky Boontanom, and Lei Zuo. "Mechanical Motion Rectifier Based Efficient Power Takeoff for Ocean Wave Energy Harvesting." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5198.
Full textJurado, Ulises Tronco, Suan Hui Pu, and Neil M. White. "A contact-separation mode triboelectric nanogenerator for ocean wave impact energy harvesting." In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234198.
Full textReports on the topic "Ocean wave energy harvesting"
Cheung, Jeffrey T., and Earl F. Childress III. Ocean Wave Energy Harvesting Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada476763.
Full textBerg, Jonathan Charles. Extreme Ocean Wave Conditions for Northern California Wave Energy Conversion Device. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1113856.
Full textHagerman, G., and G. Scott. Mapping and Assessment of the United States Ocean Wave Energy Resource. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1219363.
Full textJacobson, Paul T., George Hagerman, and George Scott. Mapping and Assessment of the United States Ocean Wave Energy Resource. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1060943.
Full textDallman, Ann Renee, and Vincent Sinclair Neary. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1160290.
Full textAnn R. Dallman and Vincent S. Neary. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1325402.
Full textHaxel, Joe H., and Sarah K. Henkel. Measuring changes in ambient noise levels from the installation and operation of a surge wave energy converter in the coastal ocean. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1400245.
Full textWu, Ru-Shan, and Xiao-Bi Xie. Study of Ocean Bottom Interactions with Acoustic Waves by a New Elastic Wave Propagation Algorithm and an Energy Flow Analysis Technique. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628511.
Full textWu, Ru-Shan, and Xiao-Bi Xie. Study of Ocean Bottom Interactions with Acoustic Waves by a New Elastic Wave Propagation Algorithm and an Energy Flow Analysis Technique. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630870.
Full text