Dissertations / Theses on the topic 'OCR'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'OCR.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
McDonald, Mercedes Terre. "OCR: A STATISTICAL MODEL OF MULTI-ENGINE OCR SYSTEMS." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4459.
Full textM.S.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical and Computer Engineering
Peluch, Tibor. "OCR cíleně znehodnocených textů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-218134.
Full textBelgiovine, Mauro. "Advanced industrial OCR using Autoencoders." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13807/.
Full textNoghe, Petr. "Vyhodnocení testových formulářů pomocí OCR." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219986.
Full textSahiti, Ylli. "OCR algoritmers noggrannhet och snabbhet vid identifieringen av text på olika typer av bakgrund : En jämförelse mellan OCR - algoritmerna Tesseract och Google ML-Kit." Thesis, Jönköping University, JTH, Avdelningen för datateknik och informatik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-53789.
Full textDordevic, Larisa, and Ahlén Hanna Richter. "Motivation till och Upplevelsen av Hinderbanelopp : Obstacle Course Race (OCR)." Thesis, Högskolan i Halmstad, Akademin för hälsa och välfärd, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33625.
Full textLund, Mikael. "Hur ser framtiden ut för OCR?" Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20561.
Full textMy examination subject is about OCR (Optical Character Recognition). The idea of OCRtechnology is to convert scanned images of machine-printed or handwritten text (numerals, letters and symbols) into a computer-processable format.The purpose of my examination subject is to explore the future of OCR and why to use it today. It’s interesting to see if OCR survives when more and more material is digital.The implementations to the examination subject have been made from books, Internet, e-mail and I have discovered how a company in the graphic industry are using OCR, namely Aftonbladet.I have also tested an OCR-program, ABBYYs FineReader 8, and done some testing with some testthemes, for example mathematics test and different tests on articles from a few magazines.My conclusions are that OCR has a future but the technology needs some improvements, forexample interpreting handwritten texts. OCR can exist, even when more and more material is digital, if its integrated with existing technologies, for example with a spam-filter to interpret the text within in the picture. The current OCR-technology works fine with machine-printed material, and when the document quality is good. However it needs to be on handwritten text to be used forarchiving needs.
Serafini, Sara. "Machine Learning applied to OCR tasks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textNilsson, Elin. "Test av OCR-verktyg för Linux." Thesis, Linnaeus University, School of Computer Science, Physics and Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-5906.
Full textDenna rapport handlar om att ta fram ett OCR-verktyg för digitalisering av pappersdokument. Krav på detta verktyg är att bland annat det ska vara kompatibelt med Linux, det ska kunna ta kommandon via kommandoprompt och dessutom ska det kunna hantera skandinaviska tecken.
Tolv OCR-verktyg granskades, sedan valdes tre verktyg ut; Ocrad, Tesseract och OCR Shop XTR. För att testa dessa scannades två dokument in och digitaliserades i varje verktyg.
Resultatet av testerna är att Tesseract är de verktyget som är mest precist och Ocrad är det verktyget som är snabbast. OCR Shop XTR visar på sämst resultat både i tidtagning och i antal korrekta ord.
This report is about finding OCR software for digitizing paper documents. Requirements were to include those which were compatible with Linux, being able to run commands via the command line and also being able to handle the Scandinavian characters.
Twelve OCR softwares were reviewed, and three softwares were chosen; Ocrad, Tesseract and OCR Shop XTR. To test these, two document were scanned and digitized in each tool.
The results of the tests are that Tesseract is the tool which is the most precise and Ocrad is the tool which is the fastest. OCR Shop XTR shows the worst results both in timing and number of correct words.
Buchal, Petr. "Využití neanotovaných dat pro trénování OCR." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445580.
Full textGrönlund, Jakob, and Angelina Johansson. "Defect Detection and OCR on Steel." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157508.
Full textNogén, David, and Jennifer Jonsson. "Matbudgetapplikation." Thesis, KTH, Data- och elektroteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123690.
Full textMultiple new services such as “Mina utgifter” and “Smartbudget” show that there is an increased interest among consumers to plan their economy. Groceries represent a large part of the average households budget and is thereby an important thing that can make a large difference in every households economy.This thesis will examine the possibilities to compare food prices with help of an Android application and by taking pictures of the text on receipts. The text will then be processed and sorted to get the necessary data which later can be saved into a database. Premade algorithms and OCR-engines have been evaluated and implemented directly into the Android application by using so called C-Libraries. This makes it possible without major efforts to further develop the application for IOS or Windows Phone.This project and the Android application show the possibilities to use premade libraries and the phones camera to extract and save the necessary information that is relevant for consumers.
Poli, Flavio. "Robust string text detection for industrial OCR." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/12885/.
Full textCorsi, Giacomo. "Fast Neural Network Technique for Industrial OCR." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15258/.
Full textStrohmaier, Christian M. "Methoden der lexikalischen Nachkorrektur OCR-erfasster Dokumente." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-36743.
Full textFridolfsson, Olle. "Machine Learning : for Barcode Detection and OCR." Thesis, Linköpings universitet, Datorseende, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119425.
Full textKapusta, Ján. "OCR modul pro rozpoznání písmen a číslic." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218623.
Full textSchaedel, Karin, and Tommy Söderberg. "Automatisk överföring av analog data från pappersenkäter till digital databas på Karolinska Universitetssjukhuset Huddinge." Thesis, KTH, Medicinteknik och hälsosystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277627.
Full textAt Karolinska University Hospital Huddinge, many knee replacement surveys have been piled high for two years. The answers from these must be converted to digital format so that they can be stored in the REDCap database to be able to perform quality control and prospective follow-up for several years. To save working hours, a program that could read the questionnaires automatically was requested. In this project, a program was created in MATLAB with the goal of being able to read questionnaire markings and at least 70% of the social security numbers. These social security numbers were to be written on an Excel sheet and other answer data on a separate Excel sheet due to confidentiality laws. The result was that the program could not handle reading of social security numbers and other handwritten text but managed to read marked multiple-choice questions to 90% certainty in the surveys for which the program was designed. The program can currently be used for easier reading along with proofreading from staff. However, it is recommended to continue to develop the program before using it.
Spedicati, Marco. "Automatic generation of annotated datasets for industrial OCR." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17385/.
Full textLamberti, Lorenzo. "A deep learning solution for industrial OCR applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19777/.
Full textLarsson, Andreas, and Tony Segerås. "Automated invoice handling with machine learning and OCR." Thesis, KTH, Data- och elektroteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188202.
Full textFöretag behandlar oftast fakturor manuellt och en automatisering skulle kunna minska fysiskt arbete. Målet med examensarbetet var att undersöka vilken av OCR-läsarna, Tesseract och OCRopus som fungerar bäst på att tolka en inskannad faktura. Även undersöka om det är möjligt med maskininlärning att automatiskt behandla fakturor utifrån tidigare sparad data. Genom att tolka text med hjälp av OCR-läsarna visade resultaten att den producerade texten blev språkligt korrekt, men att strukturen i fakturan inte behölls vilket gjorde det svårt att tolka vilka fält som hör ihop. Naïve Bayes valdes som algoritm till maskininlärningen och resultatet blev en prototyp som korrekt kunde klassificera återkommande fakturarader, efter att en mängd träningsdata var behandlad. Slutsatsen är att ingen av OCR-läsarna kunde tolka fakturor så att resultatet kunde användas vidare, och att maskininlärning med Naïve Bayes fungerar på fakturor om tillräckligt med tidigare behandlad data finns. Utfallet av examensarbetet är att maskininlärning och OCR kan användas för att automatisera fysiskt arbete.
Higham, Richard G. "A biophysical analysis of the Ocr protein gel." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2569.
Full textNederhof, Mark-Jan. "OCR of hand-written transcriptions of hieroglyphic text." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-201704.
Full textCapra, Daniele. "Applicazione di sistemi ocr in contatori di consumo domestico." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8788/.
Full textHolt, Adam 1971. "Scan your life : integrating OCR into your personal haystack!" Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8562.
Full textIncludes bibliographical references (p. 93-105).
I built a self-serve OCR station where anybody can scan in documents at high-speed - a public yet private ATM that accepts document deposits of a wider assortment than just checks. Depending on whether you scan a business card, an article or your entire filing cabinet, CPU-intensive recognition continues after you leave the station, and you are emailed options for secure web pickup. Users of MIT's Haystack personal repositories can even do "1-click" merging of offline literary artifacts into their online lives. The paperless pipe dream may never happen, but cheap digital optics and a mundane 40-year old technology (OCR) are converging to change the game. The mindless convenience of my $6000 kiosk suggests OCR will become a regulated munition* in the coming intellectual property and privacy wars. As OCR proliferates into cheap PDA's, neither publisher nor individual may ever again rely on humanity's oldest form of copy protection: paper. (*) The Digital Millennium Copyright Act (1998) bans technology that circumvents copyright locks.
by Adam Holt.
M.Eng.and S.B.
Candeias, Mariline Teixeira. "Estudo da Variação de Kₒ com OCR em Areias." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8537.
Full textO presente documento tem como objetivo o estudo da variação do coeficiente de impulso em repouso com o grau de sobreconsolidação, num solo arenoso. Este parâmetro é quantificado através da realização de ensaios triaxiais de consolidação Kₒ, em provetes reconstituídos de areia Toyoura. Para a realização dos ensaios utilizou-se equipamento laboratorial controlado computacionalmente através do GDSLAB, disponível no laboratório de Mecânica dos Solos do Departamento de Engenharia Civil da Nova (Universidade Nova de Lisboa). Foram verificadas as condições de validade, do módulo de operação do ensaio Kₒ, nomeadamente, a condição de deformação radial nula e o excesso de pressão intersticial nulo. Dos ensaios laboratoriais de validação, também se estudou a taxa de carregamento que se adequa ao solo normalmente consolidado e sobreconsolidado. Finalmente, procedeu-se ao ensaio final de consolidação Kₒ em que se realizou três ciclos de carga-descarga, por forma a tornar mais evidente a influência de OCR no valor de Kₒ. Deste ensaio, conclui-se que para todos os ciclos de carga-descarga realizados o valor máximo de Kₒ é sensivelmente 1,5. Os resultados experimentais são comparados com os resultados das fórmulas empíricas sugeridas por outros autores. Da qual se concluiu que a fórmula de Mayne e Kulhawy (1982) é a que se melhor aproxima dos resultados do presente estudo para um valor de OCR inferior ou igual a 5. Para valores de OCR superiores a 5, os valores de Kₒ seguem trajetórias lineares diferentes, para as quais foram propostas fórmulas empíricas.
Stephanou, Augoustinos S. "Biophysical study of the DNA charge mimicry displayed by the T7 Ocr protein." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4348.
Full textLarsson, Anders. "Framtagning av prototyp för att läsa och dokumentera kundspecifikationer." Thesis, Högskolan Dalarna, Informationsteknologi, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:du-2117.
Full textAlbertini, Federica. "Development and evaluation of an OCR system for industrial applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textBenjamin, Didier. "Régularisation appliquée au traitement d'images : sélection d'architectures connexionnistes en OCR." Paris 13, 1997. http://www.theses.fr/1997PA132033.
Full textEdvartsen, Hannes. "OCR of dot peen markings : with deep learning and image analysis." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71013.
Full textCracknell, Christopher Robert William. "A software toolkit for handprinted form readers." Thesis, University of Essex, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285796.
Full textVega-Cortes, Liselle. "Evaluation of Analysis Methods used for the Assessment of I-walls Stability." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/31047.
Full textMaster of Science
Onak, Onder Nazim. "Comparison Of Ocr Algorithms Using Fourier And Wavelet Based Feature Extraction." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612928/index.pdf.
Full textAtanasici, C. "Characterisation of OCR, the product of gene 0.3 from bacteriophage T7." Thesis, University of Edinburgh, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.641120.
Full textAtanasiu, Constandache. "Characterization of Ocr, the product of gene 0.3 from bacteriophage T7." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/11642.
Full textKanwar, Nisha. "Mapping charge to function relationships of the DNA mimic protein Ocr." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9374.
Full textErlandsson, Zacharias. "Suitability of OCR Engines in Information Extraction Systems : a Comparative Evaluation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255021.
Full textTidigare forskning har gjorts som jämför prestandan av OCR-motorer (optical character recognition) uteslutande för dess teckenläsande egenskaper. Jämförelser för OCR-motorer som verktyg för system för informationsextraktion har däremot inte gjorts tidigare. Det här examensarbetet jämför de två populära OCR-motorerna Tesseract OCR och Google Cloud Vision för användning i ett system som används för automatisk extraktion av data från ett finansiellt PDFdokument. Arbetet belyser även observationer angående vilka de viktigaste egenskaperna hos en OCR-motor är för användning i ett system för informationsextraktion. Resultaten visade en statistisk signifikant ökning i exakthet för implementationen med Tesseract jämfört med Google Cloud Vision, trots tidigare forskning som visar att Google Cloud Vision kan utföra teckenläsning mer exakt. Detta ackrediteras till det faktum att Tesseract producerar mer konsekvent utdata när det kommer till struktur, och att vissa felaktiga teckeninläsningar kan korrigeras av extraktionssystemet. Extraktionssystemet använder sig av ovan nämnd OCR-rättande metodik samt ett ad-hoc typsystem baserat på dokumentets innehåll för att öka exaktheten för det holistiska systemet. Dessa metoder kan även isoleras till enskilda extraktionslägen. Resultat för varje extraktionsläge presenteras genom genomsnittlig exakthet över testsviten som bestod av 115 dokument.
Nguyen, Thi Tuyet Hai. "Facilitating access to historical documents by improving digitisation results." Thesis, La Rochelle, 2020. http://www.theses.fr/2020LAROS004.
Full textBorn-analog documents contain enormous knowledge which is valuable to our society. For the purpose of preservation and easy accessibility, several digitisation projects have converted these documents into digital texts by using optical character recognition (OCR) software. Some existing problems of current OCR techniques prevent users and further processes from accessing, searching, or retrieving information on these digitised collections, and so limit the benefits of these above projects. A notable limitation is the fact that OCRed books are often split into pages with paragraphs, lines, and words. Certain meaningful structures such as chapters, sections, etc., are not available. Thus, it is not convenient for users to navigate or search information inside books. Another constraint is that the accuracy of modern OCR engines on historical documents substantially decreases. Erroneous OCR output considerably impacts on the performance of search engines and natural language processing systems. This thesis facilitates access to historical digitised documents by addressing such problems. In order to facilitate access to historical documents, several approaches are proposed within this thesis, aiming to reconstruct the logical book structures and to improve the quality of digitised text. The first contribution is to rebuild the logical book structures. An ensemble method is introduced to extract tables of contents of digitised books. Experimental results show that our approach outperforms the state-of-the-art for both evaluation metrics. The major contribution of this thesis is to provide methodologies to reduce OCR errors. Common and different features between OCR errors and human misspellings are clarified for better designing post-OCR processing. Normally, a post-processing system detects and corrects remaining errors. However, it is reasonable to treat them separately in some applications which allow to filter out, flag, or selectively reprocess such data. In this thesis, we examine different post-OCR approaches, ones based on error model and language model, and others that involve neural network models. Results reveal that the performance of our proposals is comparable to several strong baselines on English datasets of the first two rounds of the competition on post-OCR text correction organised in the International Conference on Document Analysis and Recognition in 2017 and 2019
Albertazzi, Riccardo. "A study on the application of generative adversarial networks to industrial OCR." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textChen, Qing. "Evaluation of OCR algorithms for images with different spatial resolutions and noises." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26601.
Full textRUBIO, VILLALBA IGNACIO. "Analysis of the OCR System Application in Intermodal Terminals : Malmö Intermodal Terminal." Thesis, KTH, Transportplanering, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278856.
Full textLundqvist, Melvin, and Agnes Forsberg. "A comparison of OCR methods on natural images in different image domains." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280286.
Full textOptical character recognition (OCR) är en samlingsterm för metoder som konverterar tryckt eller handskriven text till maskinkod. När den digitala världen växer så växer även antalet digitala bilder med text, och även behovet för OCR metoder som kan hantera mer än vanliga textdokument. Det finns idag OCR motorer som kan konvertera bilder av rena dokument till maskinkod med över 99% korrekthet. OCR för fotografier får mer och mer uppmärksamhet, men eftersom fotografier har mycket större mångfaldhet än rena textdokument leder detta också till problem. För att hantera detta krävs klarhet inom vilka områden som dagens OCR-metoder har problem. Denna uppsats ämnar svara på denna fråga genom att undersöka och testa tre populära, enkelt tillgängliga OCR metoder på ett dataset som endast innehåller fotografier av naturliga miljöer med text. Resultaten visade att en av metoderna, GOCR, inte kan hantera fotografier. GOCRs testresultat var långt från det korrekta. För de andra metoderna, ABBYY FineReader och Tesseract, var resultaten bättre men visade att det fortfarande finns mycket arbete att göra inom området, särskilt när det kommer till bilder med speciella typsnitt. När det däremot kommer till bilder som är mindre komplicerade blev vi förvånade över hur bra resultatet var för några av metoderna.
Mishra, Vishal Vijayshankar. "Sequence-to-Sequence Learning using Deep Learning for Optical Character Recognition (OCR)." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513273051760905.
Full textFeijó, José Victor Feijó de Araujo. "Análise e Classificação de imagens para aplicação de OCR em cupons fiscais." Florianópolis, SC, 2017. https://repositorio.ufsc.br/xmlui/handle/123456789/182212.
Full textSubmitted by José Victor Feijo de Araujo null (victor.feijo@ufsc.br) on 2017-12-12T00:28:08Z No. of bitstreams: 1 TCC_JOSE_VICTOR_FEIJÓ.pdf: 18256303 bytes, checksum: 6f566a4daec3603fa7cc31bf1d8da5c8 (MD5)
Approved for entry into archive by Renato Cislaghi (renato.cislaghi@ufsc.br) on 2017-12-13T21:10:36Z (GMT) No. of bitstreams: 1 TCC_JOSE_VICTOR_FEIJÓ.pdf: 18256303 bytes, checksum: 6f566a4daec3603fa7cc31bf1d8da5c8 (MD5)
Made available in DSpace on 2017-12-13T21:10:36Z (GMT). No. of bitstreams: 1 TCC_JOSE_VICTOR_FEIJÓ.pdf: 18256303 bytes, checksum: 6f566a4daec3603fa7cc31bf1d8da5c8 (MD5)
A proposta sugerida por este trabalho foi de analisar o impacto de um modelo de classificação, seguido de técnicas de PDI e OCR para extração de texto em cupons fiscais, classificando-os em subgrupos. Técnicas selecionadas de PDI foram aplicadas para cada grupo com suas devidas características, por fim extraindo texto dessas imagens através de um algoritmo de OCR. Foi realizado um estudo sobre os algoritmos clássicos de classificação na área de aprendizado de máquinas, com foco nos algoritmos de “clusterização” e sua correlação com a classificação de imagens em um modelo de aprendizado não supervisionado. Também foi feita uma análise sobre as características das imagens de cupons fiscais e das possíveis técnicas de PDI que podem ser aplicadas. Em relação ao OCR, também foi realizado um estudo para verificar possíveis soluções na extração de texto e entender seu comportamento, possibilitando desta maneira implementar a arquitetura proposta. Sendo assim, foram desenvolvidos métodos para classificar as imagens em clusters utilizando algoritmos de “clusterização”. Também foram propostas três técnicas de PDI, a primeira aplicando uma série de realces, a segunda uma binarização adaptativa e a terceira técnica utilizando a compressão de dados JPEG. Essas imagens foram enviadas para o serviço de OCR do Google Vision, onde foi possível extrair o texto das imagens em formato de blocos. Os resultados do modelo desenvolvido foram avaliados comparando a taxa de acerto do OCR com os valores de texto reais presentes nos cupons fiscais, onde foi possível analisar a precisão de cada técnica proposta e da arquitetura como um todo. Foram obtidos resultados positivos utilizando o modelo desenvolvido, melhorando a extração do valor total da compra em aproximadamente 6%. Além disso, os resultados da compressão JPEG melhoraram também a extração de outros dados do cupom fiscal, como por exemplo o CNPJ e a data da compra.
Maurer, Yves. "Improving the quality of the text, a pilot project to assess and correct the OCR in a multilingual environment." Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden, 2017. https://slub.qucosa.de/id/qucosa%3A16445.
Full textSkoglund, Jesper, and Lukas Vikström. "Automating the process of dividing a map image into sections : Using Tesseract OCR and pixel traversing." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148319.
Full textRaza, Ghulam. "Algorithms for the recognition of poor quality documents." Thesis, Nottingham Trent University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241828.
Full textRodrigues, Antonio Jose Nunes Navarro. "A robust off-line hand written character recognition system using dynamic features." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295503.
Full textSenior, Andrew William. "Off-line cursive handwriting recognition using recurrent neural networks." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338024.
Full text