Academic literature on the topic 'Octadecyl methacrylate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Octadecyl methacrylate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Octadecyl methacrylate"

1

Duan, Jiufang, and Jianxin Jiang. "Structure and Properties of Hydrophobic Aggregation Hydrogel with Chemical Sensitive Switch." International Journal of Polymer Science 2017 (2017): 1–5. http://dx.doi.org/10.1155/2017/9123248.

Full text
Abstract:
Hydrogels with chemical sensitive switch have control release properties in special environments. A series of polyacrylamide-octadecyl methacrylate hydrogels crosslinked by N,N′-bis (acryloyl) cystamine were synthesized as potential chemical sensitive system. When this hydrogel encounters dithiothreitol it can change its quality. The properties of the hydrogels were characterized by infrared spectroscopy, contact angle, and scanning electron microscopy. The water absorption of the hydrogel has the maximum value of 475%, when the content of octadecyl methacrylate is 5 wt%. The amount of weight loss was changed from 34.6% to 17.2%, as the content of octadecyl methacrylate increased from 3 wt% to 9.4 wt%. At the same time, the stress of the hydrogel decreased from 67.01% to 47.61%; the strength of the hydrogel reaches to the maximum 0.367 Mpa at 7 wt% octadecyl methacrylate. The increasing content of octadecyl methacrylate from 3 wt% to 9.4 wt% can enhance the hydrophobicity of the hydrogel; the contact angle of water to hydrogel changed from 14.10° to 19.62°. This hydrogel has the porous structure which permits loading of oils into the gel matrix. The functionalities of the hydrogel make it have more widely potential applications in chemical sensitive response materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Monaghan, O. R., P. H. H. Bomans, N. A. J. M. Sommerdijk, and S. J. Holder. "Controlling the melting transition of semi-crystalline self-assembled block copolymer aggregates: controlling release rates of ibuprofen." Polymer Chemistry 8, no. 35 (2017): 5303–16. http://dx.doi.org/10.1039/c7py01170a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jukić, Ante, Marko Rogošić, Elvira Vidović, and Zvonimir Janović. "Terpolymerization kinetics of methyl methacrylate or styrene/dodecyl methacrylate/octadecyl methacrylate systems." Polymer International 56, no. 1 (2006): 112–20. http://dx.doi.org/10.1002/pi.2125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goswami, Prodip K., Monsum Kashyap, Pranjal P. Das, Prakash J. Saikia, and Jyotirekha G. Handique. "Poly(Glycidyl Methacrylate-co-Octadecyl Methacrylate) particles by dispersion radical copolymerization." Journal of Dispersion Science and Technology 41, no. 12 (July 2, 2019): 1768–76. http://dx.doi.org/10.1080/01932691.2019.1635026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsujimoto, Hiroki, and Masakazu Yoshikawa. "Polymeric pseudo-liquid membranes from poly(octadecyl methacrylate)." Journal of Membrane Science 445 (October 2013): 8–14. http://dx.doi.org/10.1016/j.memsci.2013.05.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahmed, Mohammad R., Abdul Halim A.-K. Mohammed, and Maysoon A.hamad. "Synthesis, Characterization and Performance Evaluation of Poly Octadecyl Methacrylate and Poly Octadecyl Methacrylate-CoMethylmethacrylate as an Additive for Lubricating Oil." IOSR Journal of Applied Chemistry 10, no. 04 (April 2017): 50–58. http://dx.doi.org/10.9790/5736-1004015058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jian, Yu, Yong He, Jie Wang, Bingbing Xu, Wantai Yang, and Jun Nie. "Rapid photopolymerization of octadecyl methacrylate in the solid state." New J. Chem. 37, no. 2 (2013): 444–50. http://dx.doi.org/10.1039/c2nj40557a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meng, Jie-yun, Xiao-fen Tang, Zhi-li Zhang, Xing-xiang Zhang, and Hai-feng Shi. "Fabrication and properties of poly(polyethylene glycol octadecyl ether methacrylate)." Thermochimica Acta 574 (December 2013): 116–20. http://dx.doi.org/10.1016/j.tca.2013.10.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aguiar, Valeska Soares, and Carla Beatriz Grespan Bottoli. "Repeatability of Octadecyl Methacrylate-Based Monolithic Columns for Capillary Electrochromatography." Instrumentation Science & Technology 43, no. 2 (January 20, 2015): 139–55. http://dx.doi.org/10.1080/10739149.2014.954126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mumby, Stephen J., J. D. Swalen, and J. F. Rabolt. "Orientation of poly(octadecyl methacrylate) and poly(octadecyl acrylate) in Langmuir-Blodgett monolayers investigated by polarized infrared spectroscopy." Macromolecules 19, no. 4 (July 1986): 1054–59. http://dx.doi.org/10.1021/ma00158a020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Octadecyl methacrylate"

1

Aguiar, Valeska Soares 1987. "Desenvolvimento e caracterização de fases estacionárias monolíticas à base de octadecilmetacrilato para uso em eletrocromatografia capilar." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249640.

Full text
Abstract:
Orientador: Carla Beatriz Grespan Bottoli
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-19T12:28:05Z (GMT). No. of bitstreams: 1 Aguiar_ValeskaSoares_M.pdf: 8050447 bytes, checksum: b6132fb136ec04b91b3bdb6e10fbeaf4 (MD5) Previous issue date: 2011
Resumo: A Eletrocromatografia Capilar (CEC) é uma técnica de separação que combina a seletividade cromatográfica da Cromatografia Líquida de Alta Eficiência (HPLC) com a alta eficiência da Eletroforese Capilar (CE). A coluna capilar usada na separação é preenchida com uma fase estacionária, que pode ser do tipo particulada ou monolítica. Neste trabalho, monolitos poliméricos orgânicos foram preparados por polimerização in situ a partir dos monômeros octadecilmetacrilato (precursor e seletor hidrofóbico), etilenodimetacrilato (agente de entrecruzamento) e ácido 2-acriloilamido-2- metilpropanossulfóxido (monômero ionizável), além de diferentes tipos de solventes porogênicos, como álcool isoamílico, amílico, cicloexanol e 1,4- butanodiol, na presença e na ausência de água. Na primeira etapa do trabalho, variaram-se a natureza e a proporção entre os solventes porogênicos e, na segunda, o mesmo ocorreu com a proporção entre o conjunto de monômeros e de solventes porogênicos. As fases estacionárias foram caracterizadas por técnicas físicas como a microscopia eletrônica de varredura e a porosimetria; e as colunas moldadas com o material monolítico foram avaliadas pela técnica de CEC. As colunas apresentaram eficiência na faixa de 3000 a 50000 pratos m. A análise das isotermas de adsorção e dessorção de nitrogênio e das curvas de distribuição de poros permitiu afirmar que o material monolítico sintetizado é essencialmente micro e mesoporoso. Os macroporos para fluxo de fase móvel foram nitidamente observados em imagens de microscopia eletrônica de varredura. Assim, as fases monolíticas apresentaram três tipos de poros: micro, meso e macroporos. Na segunda parte do trabalho, avaliou-se a repetibilidade de preparo das fases monolíticas e notou-se grande falta de repetibilidade em termos de eficiência de separação. As fases monolíticas apresentaram alto caráter apolar e seletividade metilênica adequada para separação de analitos apolares e aromáticos, como alquilbenzenos, alquilparabenos e hidrocarbonetos policíclicos aromáticos
Abstract: Capillary Electrochromatography (CEC) is a separation technique that matches the chromatographic selectivity of High Performance Liquid Chromatography (HPLC) with the high efficiency of Capillary Electrophoresis (CE). The capillary column used in the separation is filled with a stationary phase, which can be particulate or monolithic. In this work, organic polymeric monoliths were prepared through in situ polymerization from the monomers octadecyl methacrylate (precursor and hydrophobic selector), ethylene dimethacrylate (cross-linking agent) and 2-acryloylamido-2-methylpropanesulfonic acid (ionizable component), using different types of porogenic solvents, such as isoamyl alcohol, amyl alcohol, cyclohexanol and 1,4-butanediol, in the presence or absence of water. In the first step, the nature and proportion between the porogenic solvents were varied and, in the second, the same occurred with the proportion between the set of monomers and porogenic solvents. The stationary phases were characterized by physical techniques such as scanning electron microscopy and porosimetry; and the columns prepared with the monolithic material were evaluated through the CEC technique. The columns presented efficiencies in the range of 3000 to 50000 plates m. Analysis of the nitrogen adsorption and desorption isotherms and the pore distribution curves enable affirming that the synthesized monolithic material is essentially micro- and mesoporous. The macropores for the flow of the mobile phase were clearly observed in images of scanning electron microscopy. So, the monolithic phases have three types of pores: micro-, meso- and macropores. In the second part of this work, the repeatability of synthesis of the monolithic phases was evaluated and a lack of repeatability related to separation efficiency was noted. The monolithic phases had high apolar character and adequate methylenic selectivity for separation of apolar and aromatic analytes, such as alkylbenzenes, alkylparabens and polycyclic aromatic hydrocarbons
Mestrado
Quimica Analitica
Mestre em Química
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Octadecyl methacrylate"

1

Wohlfarth, Ch. "High pressure fluid phase equilibrium data of poly(octadecyl methacrylate) in ethene and octadecyl methacrylate." In Polymer Solutions, 580–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32057-6_287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wohlfarth, Ch. "Second virial coefficient of poly(octadecyl methacrylate)." In Polymer Solutions, 1020. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wohlfarth, Ch. "Second virial coefficient of poly(styrene-b-octadecyl methacrylate)." In Polymer Solutions, 1139. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Advincula, Rigoberto C., Wolfgang Knoll, Lev Blinov, and Curtis W. Frank. "Langmuir and Langmuir—Blodgett—Kuhn Films of Poly(vinylidene fluoride) and Poly(vinylidene fluoride-co-trifluoroethylene) Alternated with Poly(methyl methacrylate) or Poly(octadecyl methacrylate)." In ACS Symposium Series, 192–205. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0695.ch014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography