To see the other types of publications on this topic, follow the link: Octonians.

Dissertations / Theses on the topic 'Octonians'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 dissertations / theses for your research on the topic 'Octonians.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hughes, Mia. "Octonions and supergravity." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/34938.

Full text
Abstract:
This thesis makes manifest the roles of the normed division algebras R,C,H and O in various supergravity theories. Of particular importance are the octonions O, which frequently occur in connection with maximal supersymmetry, and hence also in the context of string and M-theory. Studying the symmetries of M-theory is perhaps the most straightforward route towards understanding its nature, and the division algebras provide useful tools for such study via their deep relationship with Lie groups. After reviews of supergravity and the definitions and properties of R,C,H and O, a division-algebraic formulation of pure super Yang-Mills theories is developed. In any spacetime dimension a Yang-Mills theory with Q real supercharge components is written over the division algebra with dimension Q/2. In particular then, maximal Q = 16 super Yang-Mills theories are written over the octonions, since O is eight-dimensional. In such maximally supersymmetric theories, the failure of the supersymmetry algebra to close off-shell (using the conventional auxiliary field formalism) is shown to correspond to the non-associativity of the octonions. Making contact with the idea of 'gravity as the square of gauge theory', these division-algebraic Yang-Mills multiplets are then tensored together in each spacetime dimension to produce a pyramid of supergravity theories, with the Type II theories at the apex in ten dimensions. The supergravities at the base of the pyramid have global symmetry groups that fill out the famous Freudenthal-Rosenfeld-Tits magic square. This magic square algebra is generalised to a 'magic pyramid algebra', which describes the global symmetries of each Yang-Mills-squared theory in the pyramid. Finally, a formulation of eleven-dimensional supergravity over the octonions is presented. Toroidally compactifying this version of the theory to four or three spacetime dimensions leads to an interpretation of the dilaton vectors (which organise the coupling of the seven or eight dilatons to the other bosonic fields) as the octavian integers - the octonionic analogue of the integers.
APA, Harvard, Vancouver, ISO, and other styles
2

Thudewaththage, Kalpa Madhawa. "OCTONIONS AND ROTATIONS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2195.

Full text
Abstract:
There are four division algebras namely, real numbers, complex numbers, quaternions and octonions. They can be used to represent a number of orthogonal groups. In particular, the groups SO(3) and SO(4) of rotations of 3- and 4-dimensional spaces, respectively, can be described in terms of quaternions. We start with reviewing these cases and next turn to the groups of rotations of 7- and 8- dimensional spaces and describe them in terms of octonions. Since octonions form a non-associative division algebra, we use Moufang Identities to overcome the difficulty of some calculations and provide transformations that generate groups SO(7) and SO(8), which is an alternative description for these orthogonal groups.
APA, Harvard, Vancouver, ISO, and other styles
3

McLewin, Kelly English. "Octonions and the Exceptional Lie Algebra g_2." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/9878.

Full text
Abstract:
We first introduce the octonions as an eight dimensional vector space over a field of characteristic zero with a multiplication defined using a table. We also show that the multiplication rules for octonions can be derived from a special graph with seven vertices call the Fano Plane. Next we explain the Cayley-Dickson construction, which exhibits the octonions as the set of ordered pairs of quaternions. This approach parallels the realization of the complex numbers as ordered pairs of real numbers. The rest of the thesis is devoted to following a paper by N. Jacobson written in 1939 entitled "Cayley Numbers and Normal Simple Lie Algebras of Type G". We prove that the algebra of derivations on the octonions is a Lie algebra of type G_2. The proof proceeds by showing the set of derivations on the octonions is a Lie algebra, has dimension fourteen, and is semisimple. Next, we complexify the algebra of derivations on the octonions and show the complexification is simple. This suffices to show the complexification of the algebra of derivations is isomorphic to g_2 since g_2 is the only semisimple complex Lie algebra of dimension fourteen. Finally, we conclude the algebra of derivations on the octonions is a simple Lie algebra of type G_2.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

Barton, Christine H. "Magic squares of Lie algebras." Thesis, University of York, 2000. http://etheses.whiterose.ac.uk/10884/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nilsson, Karin. "Generation of the classical groups SO(4)and SO(8) by means of unit quaternions and unit octonions." Thesis, Uppsala universitet, Algebra, geometri och logik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-142505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thudewaththage, Kalpa Madhawa. "CLASSIFICATION OF EIGENVALUES OF OCTONIONIC HERMITIAN MATRICES." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/dissertations/1950.

Full text
Abstract:
There are four normed division algebras over real numbers, namely real numbers, complex numbers, quaternions, and octonions. Lack of commutativity and associativity make it difficult to investigate algebraic and geometric properties of octonions. Eigenvalue problem of octonionic Hermitian matrices is one of the interesting studies where we can see this difficulty of extending the basic properties from complex Hermitian matrices to octonionic Hermitian matrices. This includes the notion of orthogonality and decomposition of a Hermitian matrix using its eigenvalues and eigenvectors.Liping Huang and Wasin So derived explicit formulas for computing the roots of quaternionic quadratic equations. We extend their work to octonionic case and solve octonionic left quadratic equations. We represent left spectrum of two by two octonionic Hermitian matrix using the solutions to corresponding octonionic left quadratic equation and identify the family of matrices which admit non-real left eigenvalues. For three by three case we review previous work by Tevian Dray and Corinne Manogue of real eigenvalue problem and study characteristic equations which admit non-real roots that are correspond to non-real left eigenvalues. Finally, we discuss the right spectrum using the associator method, and provide examples using "pyoctonion" python library. Interesting applications and open problems for future studies in this literature are also included.
APA, Harvard, Vancouver, ISO, and other styles
7

Rubio, Gallarday Marco Antonio. "Unicidad de los cuaterniones y octoniones como R-álgebras de división y sus representaciones matriciales." Master's thesis, Universidad Nacional Mayor de San Marcos, 2019. https://hdl.handle.net/20.500.12672/11640.

Full text
Abstract:
Estudia la teoría de las álgebras reales de división, los resultados de Hopf, Frobenius y de las álgebras alternativas cuadráticas. Estos resultados permitieron justificar desde el punto de vista de los fundamentos de la matemática la unicidad de estas álgebras, la representación matricial de los cuaterniones y exhibir una representación matricial de los octoniones.<br>Tesis
APA, Harvard, Vancouver, ISO, and other styles
8

Baird, Sterling Gregory. "Five Degree-of-Freedom Property Interpolation of Arbitrary Grain Boundaries via Voronoi Fundamental Zone Octonion Framework." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/8984.

Full text
Abstract:
In this work we introduce the Voronoi fundamental zone octonion (VFZO) interpolation framework for grain boundary (GB) structure-property models and surrogates. The VFZO framework offers an advantage over other five degree-of-freedom (5DOF) based property interpolation methods because it is constructed as a point set in a Riemannian manifold. This means that directly computed Euclidean distances approximate the original octonion distance with significantly reduced computation runtime (∼7 CPU minutes vs. 153 CPU days for a 50000×50000 pairwise-distance matrix). This increased efficiency facilitates lower interpolation error through the use of significantly more input data. We demonstrate grain boundary energy (GBE) interpolation results for a non-smooth validation function and simulated bi-crystal datasets for Fe and Ni using four interpolation methods: barycentric interpolation, Gaussian process regression (GPR) or Kriging, inverse-distance weighting (IDW), and nearest neighbor (NN)interpolation. These are evaluated for 50000 random input GBs and 10000 random prediction GBs. The best performance was achieved with GPR, which resulted in a reduction of the root mean square error(RMSE) by 83.0% relative to RMSE of a constant, average model. Likewise, interpolation on a large, noisy, molecular statics (MS) Fe simulation dataset improves performance by 34.4 % compared to 21.2 %in prior work. Interpolation on a small, low-noise MS Ni simulation dataset is similar to interpolation results for the original octonion metric (57.6 % vs. 56.4 %). A vectorized, parallelized, MATLAB interpolation function (interp5DOF.m) and related routines are available in our VFZO repository (github.com/sgbaird-5dof/interp) which can be applied to any of the 32 crystallographic point groups1. The VFZO framework offers advantages for computing distances between GBs, estimating property values for arbitrary GBs, and modeling surrogates of computationally expensive 5DOF functions and simulations.
APA, Harvard, Vancouver, ISO, and other styles
9

Pendeza, Cristiane Aparecida. "Álgebras não associativas octoniônicas e relações extensivas do tipo "De Moivre" /." São José do Rio Preto : [s.n.], 2006. http://hdl.handle.net/11449/94308.

Full text
Abstract:
Orientador: Manoel Ferreira Borges Neto<br>Banca: Gilberto Aparecido Pratavieira<br>Banca: José Márcio Machado<br>Resumo: O presente trabalho tem por objetivo apresentar uma anþalise dos octônios, bem como da álgebra octoniônica 8-dimensional, que, apesar de não associativos, são descritos para um número de estruturas excepcionais como por exemplo os grupos de Lie excepcionais e suas respectivas álgebras, favorecendo assim o entendimento das rotações de espaços euclidianos de dimensão inferior. Por essa razão se tornam fascinantes em aplicações nas diversas áreas da Matemática e Física. Apresenta-se também uma aplicação dos octônios na analogia da relação clássica de Moivre, e presentes conexões entre funções octoniônicas transcendentais e operadores diferencias da teoria de Fueter.<br>Abstract: The objective of this work is to present an analysis of the octonions, as well as the octonionic algebras 8-dimensional. Although they aren't associative, they are described by a number of structures, such as the Lie's exceptional groups and its respective algebras, which help the understanding of rotations of Euclidian spaces of lower dimension. Because of that they are fascinating in applications in several areas of Mathematics and Physics. This work also presents application of octonions in the analog of The Classical De Moivre Relation and presents connections between octonionic transcendent functions and di erential operators of Fueter Theory.<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
10

Benzatti, Luiz Fernando Landucci. "Analiticidade e efeito gráfico da dilatação em funções octoniônicos quaseconformes do tipo F(Z)=Zn /." São José do Rio Preto : [s.n.], 2008. http://hdl.handle.net/11449/94259.

Full text
Abstract:
Orientador: Manoel Ferreira Borges Neto<br>Banca: Masayoshi Tsuchida<br>Banca: Siovani Felipussi<br>Resumo: Neste trabalho estudamos transformações quaseconformes no contexto dos octônios, que são hipercomplexos de oito dimensões. Por não preservar a magnitude dos ângulos, mapeamentos quaseconformes causam uma dilatação linear. A partir da definição métrica de quaseconformidade, utilizamos a forma binomial para mostrar que a distância jf(y) ¡ f(x)j pode ser escrita como um polinômio em r. Com isso, pudemos desenvolver não são um conjunto de fórmulas como também um método computacional simplificado para o cálculo analítico da dilatação. Posteriormente, utilizamos ferramentas gráficas para vizualizar as consequências da dilatação.<br>Abstract: In this work we study quasiconformal mappings related to octonionic algebra. Since quasicon- formal mappings do not preserve the magnitude of the angles they cause a linear dilatation. We show that it also happens to 8-dimensional hipercomplex. Based on the metric de¯nition of quasiconformal mapping we show that the distance jf(y)¡f(x)j is a polynomial of variable r. Then it¶s possible to make not only a set of formulas but also a computacional method to calculate the dilatation. We also use some graphical tools to visualize the consequences of dilatation.<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
11

Marão, José Antônio Pires Ferreira. "Hipercomplexos : um estudo da analicidade e da hiperperiodicidade de funções octoniônicas /." São José do Rio Preto : [s.n.], 2007. http://hdl.handle.net/11449/92024.

Full text
Abstract:
Orientador: Manoel Ferreira Borges Neto<br>Banca: José Márcio Machado<br>Banca: Siovani Cintra Felipussi<br>Resumo: Com o intuido de bem fundamentar bases teóricas para futuras aplicações dos octônios à Mecânica Quântica, Computação Quântica e Criptografia, um dos objetivos maiores deste trabalho é o de determinar e estudar a analiticidade e hiperperiodicidade de funções octoniônicas, de acordo com o Teorema (3.1), enunciado e demonstrado apropriadamente no texto. Além disso, determina-se para as Funções Trigonométricas Octoniônicas a sua periodicidade, enunciada e demonstrada nos Teoremas (3.2) e (3.3). Outro aspecto relevante abordado diz respeito a uma extensão octoniônica da Função Logarítmica, que pode ser importante para aplicações à Física Teórica de Várias dimensões.<br>Abstract: With the main purpose of setting up a sound theoretical basis in order to apply octonionic algebra to both Quantum Mechanics and Quantum Computation and Criptography, I have studied and determined the regularity of the exponential octonionic function, through the Theorem (3.1). Moreover the determination of the Trigonometrical Octonionic Function is also made and it is obtained its regularity, stated in Theorem (3.2) and (3.3). An octonionic extension of the Logaritimic Function is also well explored, which opens the possibility of a large number of applications in Theoretical Physics of higher dimensions.<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
12

Benzatti, Luiz Fernando Landucci [UNESP]. "Analiticidade e efeito gráfico da dilatação em funções octoniônicos quaseconformes do tipo F(Z)=Zn." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/94259.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-10-23Bitstream added on 2014-06-13T20:47:37Z : No. of bitstreams: 1 benzatti_lfl_me_sjrp.pdf: 732390 bytes, checksum: 881740f368084e6df5cf0fa8794b0073 (MD5)<br>Neste trabalho estudamos transformações quaseconformes no contexto dos octônios, que são hipercomplexos de oito dimensões. Por não preservar a magnitude dos ângulos, mapeamentos quaseconformes causam uma dilatação linear. A partir da definição métrica de quaseconformidade, utilizamos a forma binomial para mostrar que a distância jf(y) ¡ f(x)j pode ser escrita como um polinômio em r. Com isso, pudemos desenvolver não são um conjunto de fórmulas como também um método computacional simplificado para o cálculo analítico da dilatação. Posteriormente, utilizamos ferramentas gráficas para vizualizar as consequências da dilatação.<br>In this work we study quasiconformal mappings related to octonionic algebra. Since quasicon- formal mappings do not preserve the magnitude of the angles they cause a linear dilatation. We show that it also happens to 8-dimensional hipercomplex. Based on the metric de¯nition of quasiconformal mapping we show that the distance jf(y)¡f(x)j is a polynomial of variable r. Then it¶s possible to make not only a set of formulas but also a computacional method to calculate the dilatation. We also use some graphical tools to visualize the consequences of dilatation.
APA, Harvard, Vancouver, ISO, and other styles
13

Oliveira, Leandro Sales Almeida de. "Evolução das ideias sobre números imaginários." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/9340.

Full text
Abstract:
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-29T16:36:38Z No. of bitstreams: 1 arquivototal.pdf: 3935354 bytes, checksum: f5f2372b545760005e2b3da81e164bed (MD5)<br>Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-08-30T11:44:57Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 3935354 bytes, checksum: f5f2372b545760005e2b3da81e164bed (MD5)<br>Made available in DSpace on 2017-08-30T11:44:57Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3935354 bytes, checksum: f5f2372b545760005e2b3da81e164bed (MD5) Previous issue date: 2015-08-28<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES<br>In this paper it will be studied the imaginary numbers and how their evolution over time occurred. Such evolution has occurred at a slow pace until it reached at what is known today as the imaginary number i. However, the creation of the complex was not the end of the study of imaginary numbers. These studies have introduced even more comprehensive concepts creating sets as quaternions, extension of four dimensions of the complex. It will be concluded, with the extensions of eight and sixteen dimensions of the complex numbers, known as octonions and sedenions, respectively. Additionally, it will be submitted some applications of these extensions, also known as hypercomplex numbers.<br>Neste trabalho serão estudados os números imaginários e como se deu a sua evolução ao longo do tempo. Evolução esta que ocorreu de forma bem lenta, até se chegar no que é conhecido hoje como o número imaginário i. Entretanto, a criação dos complexos não foi o ponto nal do estudo dos números imaginários. Estudos seguintes introduziram conceitos ainda mais abrangentes criando conjuntos como os quatérnios, extensão de quatro dimensões dos complexos. Finaliza-se o trabalho, com as extensões de oito e dezesseis dimensões dos complexos, conhecidas como octônios e sedênios, respectivamente. Além de ser apresentado algumas aplicações dessas extensões, também conhecidas como números hipercomplexos.
APA, Harvard, Vancouver, ISO, and other styles
14

Bonnet, Jean-Paul. "Un isomorphisme motivique entre deux variétés homogènes projectives sous l'action d'un groupe de type G2." Lille 1, 2003. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/6a534f30-9098-43a3-8423-d4413bfe78f0.

Full text
Abstract:
Dans toute cette thèse, k désigne un corps de caractéristique différente de 2 et par variété nous désignons un k-schêma, séparé et de type fini. Nous allons étudier X(α1) et X(α2), les variétés homogènes projectives associées à chacune des deux racines d'un groupes de type G2. La pemière d'entre elles, X(α1), est une quadrique projective de dimension 5 associée à une voisine de PFISTER et l'autre, X(α2), est une variété de FANO (de genre 10). Ces deux variétés ne sont pas isomorphes, pourtant elles le deviennent en tant qu'objets d'une catégorie plus large, à savoir la catégorie des correspondances (et par conséquent également dans la catégorie des motifs de CHOW). Nous établissons que ce résultat est vrai que les variétés soient déployées ou non. Dans un premier chapitre, nous rappelons quelques résultats classiques sur les algèbres d'octonions et construisons un modèle d'algèbres d'octonions déployée. Dans le second, nous présentons les variétés mises en jeu et rappelons pour cela des notions essentielles de la théorie des groupes algébriques ainsi que de celle des foncteurs de points. Dans le troisième chapitre, nous construisons une structure cellulaire de X(α2) lorsqu'elle est déployée, étape essentielle de notre travail. C'est également dans ce chapitre que nous calculons les relations définissant la structure d'anneau de X(α2). Enfin, dans le quatrième et dernier chapitre, nous introduisons la catégorie des correspondances avant de prouver notre théorème de nilpotence dans le cas particulier de la variété X(α2), puis, nous établissons l'isomorphisme motivique en toute généralité.
APA, Harvard, Vancouver, ISO, and other styles
15

Pendeza, Cristiane Aparecida [UNESP]. "Álgebras não associativas octoniônicas e relações extensivas do tipo De Moivre." Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/94308.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-02-20Bitstream added on 2014-06-13T20:08:17Z : No. of bitstreams: 1 pendeza_ca_me_sjrp.pdf: 785980 bytes, checksum: 9924600af5c466ce74dbb2b6ceddee2e (MD5)<br>O presente trabalho tem por objetivo apresentar uma anþalise dos octônios, bem como da álgebra octoniônica 8-dimensional, que, apesar de não associativos, são descritos para um número de estruturas excepcionais como por exemplo os grupos de Lie excepcionais e suas respectivas álgebras, favorecendo assim o entendimento das rotações de espaços euclidianos de dimensão inferior. Por essa razão se tornam fascinantes em aplicações nas diversas áreas da Matemática e Física. Apresenta-se também uma aplicação dos octônios na analogia da relação clássica de Moivre, e presentes conexões entre funções octoniônicas transcendentais e operadores diferencias da teoria de Fueter.<br>The objective of this work is to present an analysis of the octonions, as well as the octonionic algebras 8-dimensional. Although they aren't associative, they are described by a number of structures, such as the Lie's exceptional groups and its respective algebras, which help the understanding of rotations of Euclidian spaces of lower dimension. Because of that they are fascinating in applications in several areas of Mathematics and Physics. This work also presents application of octonions in the analog of The Classical De Moivre Relation and presents connections between octonionic transcendent functions and di erential operators of Fueter Theory.
APA, Harvard, Vancouver, ISO, and other styles
16

Rocha, Junior Roldão da. "Álgebras de Clifford, generalizações e aplicações à física-matemática." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277990.

Full text
Abstract:
Orientador: Jayme Vaz Jr<br>Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataglin<br>Made available in DSpace on 2018-08-05T13:26:17Z (GMT). No. of bitstreams: 1 RochaJunior_Roldaoda_D.pdf: 1670364 bytes, checksum: 3d62c507080592c925245e4858fab674 (MD5) Previous issue date: 2005<br>Resumo: Investigamos generalizações das álgebras de Clifford (ACs) e suas vastas aplicações na Física. Classificamos o mais novo candidato à descrição da matéria escura como um campo espinorial bandeira, que pertence à classe 5 proposta por Lounesto, de acordo com os valores assumidos pelos seus covariantes bilineares. Decompomos a AC em partes a pares e ímpares relativas a uma dada a graduação automórfica interna, além de descrever suas diversas consequências na decomposição de operadores que agem sobre a álgebra exterior e sobre a AC. Além de escrever a equação de Dirac no contexto dessa decomposição, estendemos os resultados conhecidos sobre uma partícula-teste nas vizinhanças de um buraco negro de Schwarzschild para um buraco negro de Reissner-Nordstrom. Introduzimos as ACs estendidas, construídas sobre duas cópias (quiral e aquiral) de um espaço vetorial de dimensão finita munido de uma métrica de assinatura (p, q). Formulamos a AC sobre uma cópia quiral do contraespaço, mostrando propriedades surpreendentes, tais como: a indefinição do elemento de volume do contraespaço sob o produto regressivo, com a possibilidade de ele ser um escalar ou pseudoescalar, dependendo da dimensão do espaço vetorial; e o fato de que a co-cadeia de de Rham do operador codiferencial ser formada por uma sequência de subespaços homogêneos da álgebra exterior subsequentemente quirais e aquirais. Dessa maneira provamos que a álgebra exterior sobre o espaço e aquela construída sobre o contraespaço são apenas pseudo-duais ao introduzirmos quiralidade. A super álgebra de Poincaré é obtida a partir da introdução de algumas estruturas algébricas sobre o espaço euclidiano R3, a partir da utilização de spinors puros e do Princípio da Trialidade juntamente com sua generalização. Introduzimos os octonions no contexto das ACs e definimos unidades octoniônicas parametrizadas por elementos arbitrários, mas fixos, de uma AC sobre R0,7 e também produtos octoniônicos entre multivetores, além de generalizarmos as identidades de Moufang para esse formalismo. O Modelo Padrão das partículas elementares é rediscutido nesse contexto, além de obtermos uma Teoria de Calibre não-associativa em Cl0,7 , onde o campo espinorial é dado pela soma direta de um quark e um lépton. Finalmente introduzimos as isotopias, associativas e não-associativas, das ACs e em particular a simetria de sabor SU(6) dos quarks se apresenta como uma simetria exata dentro do contexto do levantamento isotópico da AC CL12. Bárions e mésons também são descritos nesse contexto<br>Abstract: We investigate Clifford algebras (ACs) generalizations and their wide applications in Physics. The candidate for the description of the dark matter is classified as a agpole spinor field, that is in the class 5 spinors proposed by Lounesto according to his spinor field classification by the values assumed by their bilinear covariants. The AC is split in a-even and a-odd components, related to a given inner automorphic a-grading, besides describing various consequences of this decomposition in the splitting of operators acting on the exterior and Clifford algebras. Besides writing the Dirac equation in the spacetime splitting context, we extend the well known results concerning a spinning test particle in a Schwarzschild black hole neighboorhood to a Reissner-Nordstrom black hole. We alsointroduce the extended ACs associated with two copies (chiral and achiral) of a finite-dimensional vector space endowed with a metric of signature (p, q). ACs are formulated on a chiral copy of the counterspace, where we show astounding and astonishing properties such as: the de Rham co-chain associated with the codifferential operator is constituted by a sequence of exterior algebra homogeneous subspaces subsequently chiral and achiral. Thus we prove thatthe exterior algebra on the space and the exterior algebra constructed on the counterspace are pseudoduals, if we introduce chirality. The Poincaré superalgebra is obtained from the introduction of some algebraic structures on the Euclidean space R3 , via the pure spinor formalism and the triality principle and its generalization. Octonions are introduced in thecontext of ACs and we define AC-parametrized octonionic units, besides generalizing Moufang identities in this context. The Standard Model of elementary particles is revisited in the octonionic context and we also obtain a gauge theory using the new octonionic products introduced, where a spinor field describes the direct sum of a quark and a lepton. Finally we introduce associative and non-associative isotopies of ACs. In particular we present the avor quark symmetry SU(6) as an exact symmetry in the Cl12 isotopic lifting context. Barions and mesons are also described via isotopic lifting of ACs<br>Doutorado<br>Fisica-Matematica<br>Doutor em Ciências
APA, Harvard, Vancouver, ISO, and other styles
17

Khemar, Idrisse. "Systèmes intégrables intervenant en géométrie différentielle et en physique mathématique." Phd thesis, Université Paris-Diderot - Paris VII, 2006. http://tel.archives-ouvertes.fr/tel-00277998.

Full text
Abstract:
Notre thèse est divisée en 2 chapitres indépendants correspondant chacun à un article. Dans le premier chapitre, nous définissons une notion de surfaces isotropes dans les octonions, i.e. sur lesquelles certaines formes symplectiques canoniques s'annulent. En utilisant le produit vectoriel dans O, nous définissons une application rho de la grassmanienne des plans de O dans la sphère de dimension 6. Cela nous permet d'associer à chaque surface Sigma de O une fonction rho_Sigma de la surface sur la sphère. Alors, nous montrons que les surfaces isotropes de O telles que cette fonction est harmonique sont solutions d'un système complètement intégrable. En utilisant les groupes de lacets, nous construisons une représentation de type Weierstrass de ces surfaces. Par restriction au corps des quaternions, nous retrouvons comme cas particulier les surfaces lagrangiennes hamiltoniennes stationnaires de R^4. Par restriction à Im(H), nous retrouvons les surfaces CMC de R^3. Dans le second chapitre, nous étudions les applications supersymétriques harmoniques définies sur R^{2|2} et à valeurs dans un espace symétrique, du point de vue des systèmes intégrables. Il est bien connu que les applications harmoniques de R^2 à valeurs dans un espace symétrique sont solutions d'un système intégrable. Nous montrons que les applications superharmoniques de R^{2|2} dans un espace symétrique sont solutions d'un système intégrable, et que l'on a une représentation de type Weierstrass en termes de potentiels holomorphes (ainsi qu'en termes de potentiels méromorphes). Nous montrons également que les applications supersymétriques primitives de R^{2|2} dans un espace 4-symétrique donnent lieu, par restriction à R^2, à des solutions du système elliptique du second ordre associé à l'espace 4-symétrique considéré (au sens de C.L. Terng).Ceci nous permet d'obtenir, de manière conceptuelle, une sorte d'interprétation supersymétrique de tous les systèmes elliptiques du second ordre associés à un espace 4-symétrique, en particulier du système intégrable construit au chapitre 1 (et plus particulièrement des surfaces lagrangiennes hamiltoniennes stationnaires dans un espace symétrique).
APA, Harvard, Vancouver, ISO, and other styles
18

Marão, José Antônio Pires Ferreira [UNESP]. "Hipercomplexos: um estudo da analicidade e da hiperperiodicidade de funções octoniônicas." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/92024.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:25:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-03-02Bitstream added on 2014-06-13T19:12:25Z : No. of bitstreams: 1 marao_japf_me_sjrp.pdf: 616791 bytes, checksum: 148e19ea873e8523461cc526ba0b26a5 (MD5)<br>Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)<br>Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico do Maranhão (FAPEMA)<br>Com o intuido de bem fundamentar bases teóricas para futuras aplicações dos octônios à Mecânica Quântica, Computação Quântica e Criptografia, um dos objetivos maiores deste trabalho é o de determinar e estudar a analiticidade e hiperperiodicidade de funções octoniônicas, de acordo com o Teorema (3.1), enunciado e demonstrado apropriadamente no texto. Além disso, determina-se para as Funções Trigonométricas Octoniônicas a sua periodicidade, enunciada e demonstrada nos Teoremas (3.2) e (3.3). Outro aspecto relevante abordado diz respeito a uma extensão octoniônica da Função Logarítmica, que pode ser importante para aplicações à Física Teórica de Várias dimensões.<br>With the main purpose of setting up a sound theoretical basis in order to apply octonionic algebra to both Quantum Mechanics and Quantum Computation and Criptography, I have studied and determined the regularity of the exponential octonionic function, through the Theorem (3.1). Moreover the determination of the Trigonometrical Octonionic Function is also made and it is obtained its regularity, stated in Theorem (3.2) and (3.3). An octonionic extension of the Logaritimic Function is also well explored, which opens the possibility of a large number of applications in Theoretical Physics of higher dimensions.
APA, Harvard, Vancouver, ISO, and other styles
19

Santos, Davi José dos. "A álgebra dos complexos/quatérnios/octônios e a construção de Cayley-Dickson." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6596.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2016-12-15T15:01:25Z No. of bitstreams: 2 Dissertação - Davi José dos Santos - 2016.pdf: 5567090 bytes, checksum: 5606aa47f640cc5cd4495d2694f38cda (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)<br>Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-15T17:28:21Z (GMT) No. of bitstreams: 2 Dissertação - Davi José dos Santos - 2016.pdf: 5567090 bytes, checksum: 5606aa47f640cc5cd4495d2694f38cda (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)<br>Made available in DSpace on 2016-12-15T17:28:21Z (GMT). No. of bitstreams: 2 Dissertação - Davi José dos Santos - 2016.pdf: 5567090 bytes, checksum: 5606aa47f640cc5cd4495d2694f38cda (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-08-30<br>This research with theoretical approach seeks to investigate inmathematics, octonions,which is a non-associative extension of the quaternions. Its algebra division 8-dimensional formed on the real numbers is more extensive than can be obtained by constructing Cayley-Dickson. In this perspective we have as main goal to answer the following question: "What number systems allow arithmetic operations addition, subtraction, multiplication and division? " In the genesis of octonions is the Irish mathematician William Rowan Hamilton, motivated by a deep belief that quaternions could revolutionize mathematics and physics, was the pioneer of a new theory that transformed the modern world. Today, it is confirmed that the complexs/quaternions/octonions and its applications are manifested in different branches of science such as mechanics, geometry, mathematical physics, with great relevance in 3D animation and robotics. In order to investigate the importance of this issue and make a small contribution, we make an introduction to the theme from the numbers complex and present the rationale and motivations of Hamilton in the discovery of quaternions/octonions. Wemake a presentation of the algebraic structure and its fundamental properties. Then discoremos about constructing Cayley-Dickson algebras that produces a sequence over the field of real numbers, each with twice the previous size. Algebras produced by this process are known as Cayley-Dickson algebras; since they are an extension of complex numbers, that is, hypercomplex numbers. All these concepts have norm, algebra and conjugate. The general idea is that the multiplication of an element and its conjugate should be the square of its norm. The surprise is that, in addition to larger, the following algebra loses some specific algebraic property. Finally, we describe and analyze certain symmetry groups with multiple representations through matrixes and applications to show that This content has a value in the evolution of technology.<br>Esta pesquisa com abordagem teórica busca investigar na matemática, os octônios, que é uma extensão não-associativa dos quatérnios. Sua álgebra com divisão formada de 8 dimensões sobre os números reais é a mais extensa que pode ser obtida através da construção de Cayley-Dickson. Nessa perspectiva temos comometa principal responder a seguinte questão: "Que sistemas numéricos permitemas operações aritméticas de adição, subtração, multiplicação e divisão?" Na gênese dos octônios está o matemático irlandêsWilliam Rowan Hamilton que, motivado por uma profunda convicção de que os quatérnios poderiam revolucionar a Matemática e a Física, foi o pioneiro de uma nova teoria que transformou o mundo moderno. Hoje, confirma-se que os complexos/quatérnios/octônios e suas aplicações se manifestam em diferentes ramos da ciências tais como a mecânica, a geometria, a física matemática, com grande relevância na animação 3D e na robótica. Com o propósito de investigar a importância deste tema e dar uma pequena contribuição, fazemos uma introdução ao tema desde os números complexos e apresentamos o raciocínio e motivações de Hamilton na descoberta dos quatérnios/octônios. Fazemos uma apresentação da estrutura algébrica, bem como as suas propriedades fundamentais. Emseguida discoremos sobre a construção de Cayley-Dickson que produz uma sequência de álgebras sobre o campo de números reais, cada uma com o dobro do tamanho anterior. Álgebras produzidas por este processo são conhecidas como álgebras Cayley-Dickson; uma vez que elas são uma extensão dos números complexos, isto é, os números hipercomplexos. Todos esses conceitos têm norma, álgebra e conjugado. A idéia geral é que o produto de um elemento e seu conjugado deve ser o quadrado de sua norma. A surpresa é que, além de maior dimensão, a álgebra seguinte perde alguma propriedade álgebrica específica. Por fim, descrevemos e analisamos alguns grupos de simetria, com várias representações através de matrizes e aplicações que demonstram que este conteúdo tem uma utilidade na evolução da tecnologia.
APA, Harvard, Vancouver, ISO, and other styles
20

Bushman, Nathan. "Hypercomplex Numbers and Early Vector Systems: A History." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1585666516546138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Grégoire, Chloé. "Espace de modules des G2-fibrés principaux sur une courbe algébrique." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20086.

Full text
Abstract:
L'objet de cette thèse est l'étude de l'espace de modules des G_2-fibrés principaux sur une courbe complexe projective connexe lisse, où G_2 désigne le groupe de Lie exceptionnel de plus petit rang. Le groupe G_2 est tout d'abord présenté comme le groupe des automorphismes de l'algèbre complexe des octaves de Cayley. D'autres définitions sont ensuite proposées. Les différentes réductions et extensions que peut admettre un G_2-fibré principal sont étudiées ainsi que la relation entre la stabilité d'un G_2-fibré principal et celle de son fibré vectoriel associé. L'espace de modules des G_2-fibrés principaux semistables est analysé. Nous obtenons notamment une caractérisation de son lieu lisse, une décomposition explicite de son lieu singulier en trois composantes connexes et une analyse de l'espace de Verlinde de niveau 1 pour le groupe G_2<br>This thesis studies the moduli space of principal G_2-bundles over a smooth connected projective curve, where G_2 is the exceptional Lie group of smallest rank. The group G_2 is first introduced as the group of automorphisms of the complex algebra of the Cayley numbers. Other equivalent definitions are also proposed. We study the reductions and extensions that a principal G_2_bundle can admit, as well as the link between a principal G_2-bundle and its associated vector bundle in relation to the notion of (semi)stability. The moduli space of semistable principal G_2-bundles is analysed. We notably obtain a characterisation of its smooth locus, with an explicit decomposition of its singular locus into three connected componants. We also give an analysis of the Verlinde space of G_2 at level 1
APA, Harvard, Vancouver, ISO, and other styles
22

Oliveira, Sóstenes Souza de. "R-álgebras de dimensão finita." Universidade Federal de Sergipe, 2017. https://ri.ufs.br/handle/riufs/6521.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES<br>In this work we study the notion of R-algebra. Roughly, they are structures that generalize some arithmetic properties of the body of complex numbers. The ?exibi- lity in this generalization is the non-requirement of properties such as commutativity, associativity and identity element existence. We focus primarily on the ?nite dimen- sional division R-algebras. As is well known, modulo isomorphisms exist exactly four of those R-algebras. In the development of the dissertation we will discuss in detail its main algebraic and geometric properties.<br>Nesse trabalho estudamos a noção de R-álgebra. A grosso modo, elas são es- truturas que generalizam algumas propriedades aritméticas do corpo dos números complexos. A ?exibilidade nessa generalização é a não exigência de propriedades como comutatividade, associatividade e existência de elemento identidade. Focamos principalmente nas R-álgebras de divisão de dimensão ?nita. Como é bem conhe- cido, módulo isomor?smos existem exatamente quatro dessas R-álgebras. No desen- volvimento da dissertação discutiremos detalhadamente suas principais propriedades algébricas e geométricas.
APA, Harvard, Vancouver, ISO, and other styles
23

Schray, J��rg. "Octonions and supersymmetry." Thesis, 1994. http://hdl.handle.net/1957/35649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

ORTOLANI, FRANCESCA. "Hypercomplex adaptive filtering." Doctoral thesis, 2018. http://hdl.handle.net/11573/1081800.

Full text
Abstract:
The degree of diffusion of hypercomplex algebras in adaptive and non-adaptive filtering research topics is growing faster and faster. The performance of hypercomplex adaptive filters has been widely experimented during the last decade. Quaternion filters, in particular, have been utilized in systems where the signals to be processed have some form of correlation. Besides correlation, the debate today concerns the usefulness and the benefits of representing multidimensional systems by means of these complicated mathematical structures and the criterions of choice between one algebra or another. One of the goals of this work is to discuss whether the choice of a certain algebra in the description of a problem/environment can play a significant role and determine an adaptive filter performance. That said, adaptive filtering can be expanded to new numerical systems and unseen sides of physical problems can be highlighted thanks to the mathematical properties of such hypercomplex algebras. Each algebra has its own rules and calculation outcomes may not be compatible from one algebra to another. However, such peculiarities diversify algebras in a way that each of them fits specific geometrical/physical problems. The bulk of study and experiments presented in this work was carried out in a 3-Dimensional (3D) audio context. 3D audio is the new frontier in audio technology and it is quickly taking place in many applications, from cinema to virtual reality, audio surveillance and video games. The large amount of data requires fast and compact solutions for signal processing. With this aim in view, research is moving towards the exploration of hypercomplex algebras in order to find a non-redundant and compact form for the representation of 3D sound fields without loss of information. Quaternion sound fields are currently under investigation and this thesis presents some recent results concerning the integration of hypercomplex (quaternion) adaptive signal processing into a 3D audio environment.
APA, Harvard, Vancouver, ISO, and other styles
25

Stroth, Kristin. "Azumaya-Algebren und Oktavenalgebren auf algebraischen Varietäten." Doctoral thesis, 2013. http://hdl.handle.net/11858/00-1735-0000-0001-BC92-4.

Full text
Abstract:
Wir behandeln nichtkommutative Algebren über Ringen und auf algebraischen Varietäten. Im ersten Teil beschreiben wir ein Kriterium, das angibt, ob und wie weit sich eine gegebene Azumaya-Algebra über dem Funktionenkörper einer algebraischen Varietät als Garbe von Azumaya-Algebren auf die Varietät ausdehnen lässt. Außerdem untersuchen wir die lokale Struktur von Azumaya-Algebren oder allgemeiner von Maximalordnungen, die mit Hilfe des Cyclic-Covering-Tricks von Chan konstruiert werden. Mit dieser Methode lassen sich Maximalordnungen auf algebraischen Flächen konstruieren, die zudem genau über einer gewählten Kurve verzweigen. Im zweiten Teil betrachten wir die nichtassoziativen Oktavenalgebren und allgemeiner auch Kompositionsalgebren über Ringen. Dabei übertragen wir die bekannten Aussagen von Kompositionsalgebren über Körpern auf die Situation von Algebren über Ringen. Wir untersuchen Oktavenalgebren und Maximalordnungen über diskreten Bewertungsringen und verallgemeinern ein Resultat von van der Blij und Springer über die lokale Natur von Maximalordnungen über den rationalen Zahlen und über algebraischen Zahlkörpern auf den Fall von beliebigen noetherschen, ganzabgeschlossenen Integritätsbereichen. Abschließend führen wir eine Definition von Garben von Oktavenalgebren und Garben von Maximalordnungen in Oktavenalgebren über algebraischen Varietäten ein.
APA, Harvard, Vancouver, ISO, and other styles
26

Roeseler, Karsten. "Oktaven und Reduktionstheorie." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-B3F4-C.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography