Academic literature on the topic 'Odometri'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Odometri.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Odometri"
Rahman, Abdul, Mohammad Zaenal Arifin, Gesit Pratiknyo, and Bagus Irawan. "DESIGN OF MECHANISM AND MOTION SYSTEM ON TANK PROTOTYPE USING ODOMETRY." JOURNAL ASRO 11, no. 03 (August 31, 2020): 10. http://dx.doi.org/10.37875/asro.v11i03.303.
Full textAsrofi, Anan, Achmad Komarudin, and Agus Pracoyo. "Navigasi Robot Mobil 3wd Omni-wheeled dengan Metode Odometri." Jurnal Elektronika dan Otomasi Industri 1, no. 1 (March 5, 2020): 44. http://dx.doi.org/10.33795/elkolind.v1i1.33.
Full textSrinivasan, M., S. Zhang, and N. Bidwell. "Visually mediated odometry in honeybees." Journal of Experimental Biology 200, no. 19 (October 1, 1997): 2513–22. http://dx.doi.org/10.1242/jeb.200.19.2513.
Full textYang, Jingdong, Jinghui Yang, and Zesu Cai. "An efficient approach to pose tracking based on odometric error modelling for mobile robots." Robotica 33, no. 6 (April 1, 2014): 1231–49. http://dx.doi.org/10.1017/s0263574714000654.
Full textNevalainen, Paavo, Qingqing Li, Timo Melkas, Kirsi Riekki, Tomi Westerlund, and Jukka Heikkonen. "Navigation and Mapping in Forest Environment Using Sparse Point Clouds." Remote Sensing 12, no. 24 (December 14, 2020): 4088. http://dx.doi.org/10.3390/rs12244088.
Full textSun, Qian, Ming Diao, Yibing Li, and Ya Zhang. "An improved binocular visual odometry algorithm based on the Random Sample Consensus in visual navigation systems." Industrial Robot: An International Journal 44, no. 4 (June 19, 2017): 542–51. http://dx.doi.org/10.1108/ir-11-2016-0280.
Full textTang, Hengbo, and Yunhui Liu. "Automatic Simultaneous Extrinsic-Odometric Calibration for Camera-Odometry System." IEEE Sensors Journal 18, no. 1 (January 1, 2018): 348–55. http://dx.doi.org/10.1109/jsen.2017.2764125.
Full textAl Fadli, Muhammad Hanifudin, Munawar Agus Riyadi, and Budi Setiyono. "PERANCANGAN SISTEM ROKET KENDALI BERPEMANDU INFRAMERAH MENGGUNAKAN METODE PENGOLAHAN CITRA YANG DISIMULASIKAN DALAM TEROWONGAN ANGIN." TRANSIENT 7, no. 1 (March 13, 2018): 152. http://dx.doi.org/10.14710/transient.7.1.152-159.
Full textYoussef, Ahmed A., Naif Al-Subaie, Naser El-Sheimy, and Mohamed Elhabiby. "Accelerometer-Based Wheel Odometer for Kinematics Determination." Sensors 21, no. 4 (February 13, 2021): 1327. http://dx.doi.org/10.3390/s21041327.
Full textNikitenko, Agris, Aleksis Liekna, Martins Ekmanis, Guntis Kulikovskis, and Ilze Andersone. "Single Robot Localisation Approach for Indoor Robotic Systems through Integration of Odometry and Artificial Landmarks." Applied Computer Systems 14, no. 1 (June 1, 2013): 50–58. http://dx.doi.org/10.2478/acss-2013-0006.
Full textDissertations / Theses on the topic "Odometri"
Johansson, Sixten. "Navigering och styrning av ett autonomt markfordon." Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-6006.
Full textI detta examensarbete har ett system för navigering och styrning av ett autonomt fordon implementerats. Syftet med detta arbete är att vidareutveckla fordonet som ska användas vid utvärdering av banplaneringsalgoritmer och studier av andra autonomifunktioner. Med hjälp av olika sensormodeller och sensorkonfigurationer går det även att utvärdera olika strategier för navigering. Arbetet har utförts utgående från en given plattform där fordonet endast använder sig av enkla ultraljudssensorer samt pulsgivare på hjulen för att mäta förflyttningar. Fordonet kan även autonomt navigera samt följa en enklare given bana i en känd omgivning. Systemet använder ett partikelfilter för att skatta fordonets tillstånd med hjälp av modeller för fordon och sensorer.
Arbetet är en fortsättning på projektet Collision Avoidance för autonomt fordon som genomfördes vid Linköpings universitet våren 2005.
In this thesis a system for navigation and control of an autonomous ground vehicle has been implemented. The purpose of this thesis is to further develop the vehicle that is to be used in studies and evaluations of path planning algorithms as well as studies of other autonomy functions. With different sensor configurations and sensor models it is also possible to evaluate different strategies for navigation. The work has been performed using a given platform which measures the vehicle’s movement using only simple ultrasonic sensors and pulse encoders. The vehicle is able to navigate autonomously and follow a simple path in a known environment. The state estimation is performed using a particle filter.
The work is a continuation of a previous project, Collision Avoidance för autonomt fordon, at Linköpings University in the spring of 2005.
CHEN, HONGYI. "GPS-oscillation-robust Localization and Visionaided Odometry Estimation." Thesis, KTH, Maskinkonstruktion (Inst.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-247299.
Full textGPS/IMU integrerade system används ofta för navigering av fordon. Algoritmen för detta kopplade system är normalt baserat på ett Kalmanfilter. Ett problem med systemet är att oscillerade GPS mätningar i stadsmiljöer enkelt kan leda till en lokaliseringsdivergens. Dessutom kan riktningsuppskattningen vara känslig för magnetiska störningar om den är beroende av en IMU med integrerad magnetometer. Rapporten försöker lösa lokaliseringsproblemet som skapas av GPS-oscillationer och avbrott med hjälp av ett adaptivt förlängt Kalmanfilter (AEKF). När det gäller riktningsuppskattningen används stereovisuell odometri (VO) för att försvaga effekten av magnetiska störningar genom sensorfusion. En Visionsstödd AEKF-baserad algoritm testas i fall med både goda GPS omständigheter och med oscillationer i GPS mätningar med magnetiska störningar. Under de fallen som är aktuella är algoritmen verifierad för att överträffa det konventionella utökade Kalmanfilteret (CEKF) och ”Unscented Kalman filter” (UKF) när det kommer till positionsuppskattning med 53,74% respektive 40,09% samt minska fel i riktningsuppskattningen.
Pereira, Fabio Irigon. "High precision monocular visual odometry." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/183233.
Full textRecovering three-dimensional information from bi-dimensional images is an important problem in computer vision that finds several applications in our society. Robotics, entertainment industry, medical diagnose and prosthesis, and even interplanetary exploration benefit from vision based 3D estimation. The problem can be divided in two interdependent operations: estimating the camera position and orientation when each image was produced, and estimating the 3D scene structure. This work focuses on computer vision techniques, used to estimate the trajectory of a vehicle equipped camera, a problem known as visual odometry. In order to provide an objective measure of estimation efficiency and to compare the achieved results to the state-of-the-art works in visual odometry a high precision popular dataset was selected and used. In the course of this work new techniques for image feature tracking, camera pose estimation, point 3D position calculation and scale recovery are proposed. The achieved results outperform the best ranked results in the popular chosen dataset.
Porteš, Petr. "Návrh a realizace odometrických snímačů pro mobilní robot s Ackermannovým řízením." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318145.
Full textPärkkä, J. (Jarmo). "Reaaliaikainen visuaalinen odometria." Master's thesis, University of Oulu, 2013. http://urn.fi/URN:NBN:fi:oulu-201312021943.
Full textVisual odometry is the process of estimating the motion of a vehicle, human or robot using the input of a single or multiple cameras. Application domains include robotics, wearable computing, augmented reality and automotive. It is a good supplement to the navigation systems because it operates in the environments where GPS does not. Visual odometry was developed as a substitute for wheel odometry, because its use is not dependent of the terrain. Visual odometry can be applied without restrictions to the way of movement (wheels, flying, walking). In this work visual odometry is examined and developed to be used in real-time embedded system. The basics of visual odometry are discussed. Furthermore, simultaneous localization and mapping (SLAM) is introduced. Visual odometry can appear as a part of SLAM. The purpose of this work is to develop visual odometry algorithm for Parrot’s robot helicopter AR.Drone 2.0, so it could fly independently in the future. The algorithm is based on Civera’s EKF-SLAM method, where feature extraction is replaced with an approach used earlier in global motion estimation. The operation of the algorithm is tested by measuring its performance time with different image sequences and by analyzing the movement of the camera from the map drawn by it. Furthermore, the reality of the navigation information is examined. The operation of the executed system is visually analyzed on the basis of the video and its operation is examined in relation to the comparison method. Developed visual odometry method is found to be a functional solution to the real-time embedded system under certain constraints
Nishitani, André Toshio Nogueira. "Localização baseada em odometria visual." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082016-095838/.
Full textThe localization problem consists of estimating the position of the robot with regards to some external reference and it is an essential part of robots and autonomous vehicles navigation systems. Localization based on visual odometry, compared to encoder based odometry, stands out at the estimation of rotation and direction of the movement. This kind of approach is an interesting choice for vehicle control systems in urban environment, where the visual information is mandatory for the extraction of semantic information contained in the street signs and marks. In this context this project propose the development of a visual odometry system based on structure from motion using visual information acquired from a monocular camera to estimate the vehicle pose. The absolute scale problem, inherent with the use of monocular cameras, is achieved using som previous known information regarding the metric relation between image points and points lying on a same world plane.
Ligocki, Adam. "Metody současné sebelokalizace a mapování pro hloubkové kamery." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316270.
Full textSouza, Anderson Abner de Santana. "Mapeamento com Sonar Usando Grade de Ocupa??o baseado em Modelagem Probabil?stica." Universidade Federal do Rio Grande do Norte, 2008. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15203.
Full textIn this work, we propose a probabilistic mapping method with the mapped environment represented through a modified occupancy grid. The main idea of the proposed method is to allow a mobile robot to construct in a systematic and incremental way the geometry of the underlying space, obtaining at the end a complete environment map. As a consequence, the robot can move in the environment in a safe way, based on a confidence value of data obtained from its perceptive system. The map is represented in a coherent way, according to its sensory data, being these noisy or not, that comes from exterior and proprioceptive sensors of the robot. Characteristic noise incorporated in the data from these sensors are treated by probabilistic modeling in such a way that their effects can be visible in the final result of the mapping process. The results of performed experiments indicate the viability of the methodology and its applicability in the area of autonomous mobile robotics, thus being an contribution to the field
Neste trabalho, propomos um m?todo de mapeamento probabil?stico com a representa??o do ambiente mapeado em uma grade de ocupa??o modificada. A id?ia principal do m?todo proposto ? deixar que um rob? m?vel construa de forma sistem?tica e incremental a geometria do seu entorno, obtendo ao final um mapa completo do ambiente. Como conseq??ncia, o rob? poder? locomover-se no seu ambiente de modo seguro, baseando-se em um ?ndice de confiabilidade dos dados colhidos do seu sistema perceptivo. O mapa ? representado de forma coerente com os dados sensoriais, sejam esses ruidosos ou n?o, oriundos dos sensores externoceptivos e proprioceptivos do rob?. Os ru?dos caracter?sticos incorporados nos dados de tais sensores s?o tratados por modelagem probabil?stica, de modo que seus efeitos possam ser vis?veis no resultado final do processo de mapeamento. Os resultados dos experimentos realizados, mostrados no presente trabalho, indicam a viabilidade desta metodologia e sua aplicabilidade na ?rea da rob?tica m?vel aut?noma, sendo assim uma contribui??o para a ?rea
Silva, Bruno Marques Ferreira da. "Odometria visual baseada em t?cnicas de structure from motion." Universidade Federal do Rio Grande do Norte, 2011. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15364.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Visual Odometry is the process that estimates camera position and orientation based solely on images and in features (projections of visual landmarks present in the scene) extraced from them. With the increasing advance of Computer Vision algorithms and computer processing power, the subarea known as Structure from Motion (SFM) started to supply mathematical tools composing localization systems for robotics and Augmented Reality applications, in contrast with its initial purpose of being used in inherently offline solutions aiming 3D reconstruction and image based modelling. In that way, this work proposes a pipeline to obtain relative position featuring a previously calibrated camera as positional sensor and based entirely on models and algorithms from SFM. Techniques usually applied in camera localization systems such as Kalman filters and particle filters are not used, making unnecessary additional information like probabilistic models for camera state transition. Experiments assessing both 3D reconstruction quality and camera position estimated by the system were performed, in which image sequences captured in reallistic scenarios were processed and compared to localization data gathered from a mobile robotic platform
Odometria Visual ? o processo pelo qual consegue-se obter a posi??o e orienta??o de uma c?mera, baseado somente em imagens e consequentemente, em caracter?sticas (proje??es de marcos visuais da cena) nelas contidas. Com o avan?o nos algoritmos e no poder de processamento dos computadores, a sub?rea de Vis?o Computacional denominada de Structure from Motion (SFM) passou a fornecer ferramentas que comp?em sistemas de localiza??o visando aplica??es como rob?tica e Realidade Aumentada, em contraste com o seu prop?sito inicial de ser usada em aplica??es predominantemente offline como reconstru??o 3D e modelagem baseada em imagens. Sendo assim, este trabalho prop?e um pipeline de obten??o de posi??o relativa que tem como caracter?sticas fazer uso de uma ?nica c?mera calibrada como sensor posicional e ser baseado interamente nos modelos e algoritmos de SFM. T?cnicas usualmente presentes em sistemas de localiza??o de c?mera como filtros de Kalman e filtros de part?culas n?o s?o empregadas, dispensando que informa??es adicionais como um modelo probabil?stico de transi??o de estados para a c?mera sejam necess?rias. Experimentos foram realizados com o prop?sito de avaliar tanto a reconstru??o 3D quanto a posi??o de c?mera retornada pelo sistema, atrav?s de sequ?ncias de imagens capturadas em ambientes reais de opera??o e compara??es com um ground truth fornecido pelos dados do od?metro de uma plataforma rob?tica
Quist, Eric Blaine. "UAV Navigation and Radar Odometry." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/4439.
Full textBooks on the topic "Odometri"
Illinois. Office of Secretary of State. Dept. of Police. Odometer fraud. [Springfield, Ill.]: Jesse White, Secretary of State, 2009.
Find full textSable, Robert. Odometer law. 2nd ed. Boston, MA: National Consumer Law Center, 1988.
Find full textOhio. Odometer Rollback and Disclosure Act. Columbus, Ohio: Attorney General's [Office], 1990.
Find full textIllinois. Office of Secretary of State. Dept. of Police. Protecting yourself from odometer fraud. Springfield, Ill.]: State of Illinois Secretary of State Police, 1999.
Find full textUnited States. Congress. Senate. Committee on Commerce, Science, and Transportation. Consumer protection from fraudulent motor vehicle odometer modifications: Report (to accompany S. 475). [Washington, D.C.?: U.S. G.P.O., 1985.
Find full textCarter, Carolyn L. Automobile fraud: Odometer tampering, lemon laundering, and concealment of salvage or other adverse history. 3rd ed. Boston, MA: National Consumer Law Center, 2007.
Find full textSheldon, Jonathan A. Automobile fraud: Odometer tampering, lemon laundering, and concealment of salvage or other adverse history. 2nd ed. Boston, MA: National Consumer Law Center, 2003.
Find full textCarter, Carolyn L. Automobile fraud: Odometer tampering, lemon laundering, and concealment of salvage or other adverse history. 3rd ed. Boston, MA: National Consumer Law Center, 2007.
Find full textOdette, Williamson, Twomey Tara, Carter Carolyn L, and National Consumer Law Center, eds. Foreclosures: Defenses, workouts, and mortgage servicing. 2nd ed. Boston, MA: National Consumer Law Center, 2007.
Find full textRao, John, and Andrew G. Pizor. Foreclosures: Defenses, workouts, and mortgage servicing. 3rd ed. Boston, MA: National Consumer Law Center, 2010.
Find full textBook chapters on the topic "Odometri"
Harrison, Steven J., and M. T. Turvey. "Odometry." In Encyclopedia of Animal Cognition and Behavior, 1–5. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-47829-6_1474-1.
Full textLamon, Pierre. "3D-Odometry." In Springer Tracts in Advanced Robotics, 21–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78287-2_3.
Full textBen-Ari, Mordechai, and Francesco Mondada. "Robotic Motion and Odometry." In Elements of Robotics, 63–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62533-1_5.
Full textLianos, Konstantinos-Nektarios, Johannes L. Schönberger, Marc Pollefeys, and Torsten Sattler. "VSO: Visual Semantic Odometry." In Computer Vision – ECCV 2018, 246–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01225-0_15.
Full textRöfer, Thomas. "Routenbeschreibung durch Odometrie-Scans." In Informatik aktuell, 122–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60043-2_15.
Full textChien, Hsiang-Jen, Jr-Jiun Lin, Tang-Kai Yin, and Reinhard Klette. "Multi-objective Visual Odometry." In Image and Video Technology, 62–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75786-5_6.
Full textSantamaria-Navarro, A., J. Solà, and J. Andrade-Cetto. "Odometry Estimation for Aerial Manipulators." In Springer Tracts in Advanced Robotics, 219–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12945-3_15.
Full textDudek, Gregory, and Michael Jenkin. "Inertial Sensing, GPS and Odometry." In Springer Handbook of Robotics, 737–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32552-1_29.
Full textMurphy, Liz, Timothy Morris, Ugo Fabrizi, Michael Warren, Michael Milford, Ben Upcroft, Michael Bosse, and Peter Corke. "Experimental Comparison of Odometry Approaches." In Experimental Robotics, 877–90. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00065-7_58.
Full textDudek, Gregory, and Michael Jenkin. "Inertial Sensors, GPS, and Odometry." In Springer Handbook of Robotics, 477–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-30301-5_21.
Full textConference papers on the topic "Odometri"
Zhu, Jianke. "Image Gradient-based Joint Direct Visual Odometry for Stereo Camera." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/636.
Full textAnderson, J. Wesley, Joshua R. Fabian, and Garrett M. Clayton. "Adaptive RGB-D Visual Odometry for Mobile Robots: An Experimental Study." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9829.
Full textClayton, Garrett M., and Joshua R. Fabian. "Spatial Feature Matching for Visual Odometry: A Parametric Study." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3913.
Full textWei, Peng, Guoliang Hua, Weibo Huang, Fanyang Meng, and Hong Liu. "Unsupervised Monocular Visual-inertial Odometry Network." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/325.
Full textKutzer, Michael D., John S. Donnal, Gregory L. Sinsley, and Ryan S. McDowell. "Toward Detecting Cyber-Physical Attacks in Additive Manufacturing Using Multi-View Visual Odometry." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8299.
Full textKleinschmidt, Sebastian P., and Bernardo Wagner. "Visual Multimodal Odometry: Robust Visual Odometry in Harsh Environments." In 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2018. http://dx.doi.org/10.1109/ssrr.2018.8468653.
Full textТрубаков, Евгений, Evgeniy Trubakov, Ольга Трубакова, and Olga Trubakova. "Comparative Analysis of Monocular Visual Odometry Methods for Indoor Navigation." In 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-2-304-307.
Full textLin, Minjie, Qixin Cao, and Haoruo Zhang. "PVO:Panoramic Visual Odometry." In 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2018. http://dx.doi.org/10.1109/icarm.2018.8610700.
Full textCenter, Julian L., Kevin H. Knuth, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "Bayesian Visual Odometry." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573659.
Full textCarey, Kevin, Benjamin Abruzzo, David P. Harvie, and Christopher Korpela. "Performance Comparison of Inertial Measurement Units Fused With Odometry in Extended Kalman Filter for Dead-Reckoning Navigation." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98184.
Full textReports on the topic "Odometri"
Pirozzo, David M., Philip A. Frederick, Shawn Hunt, Bernard Theisen, and Mike Del Rose. Spectrally Queued Feature Selection for Robotic Visual Odometery. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada535663.
Full text