Journal articles on the topic 'OER reaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'OER reaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rahman, Sheikh Tareq, Kyong Yop Rhee, and Soo-Jin Park. "Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives." Nanotechnology Reviews 10, no. 1 (2021): 137–57. http://dx.doi.org/10.1515/ntrev-2021-0008.
Full textYan, Zhenwei, Shuaihui Guo, Zhaojun Tan, et al. "Research Advances of Non-Noble Metal Catalysts for Oxygen Evolution Reaction in Acid." Materials 17, no. 7 (2024): 1637. http://dx.doi.org/10.3390/ma17071637.
Full textMorales, Dulce M., Mariya A. Kazakova, Maximilian Purcel, Justus Masa, and Wolfgang Schuhmann. "The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions." Journal of Solid State Electrochemistry 24, no. 11-12 (2020): 2901–6. http://dx.doi.org/10.1007/s10008-020-04667-2.
Full textHong, Yu-Rim, Sungwook Mhin, Jiseok Kwon, Won-Sik Han, Taeseup Song, and HyukSu Han. "Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions." Royal Society Open Science 5, no. 9 (2018): 180927. http://dx.doi.org/10.1098/rsos.180927.
Full textKim, Yohan, Seongmin Kim, Minyoung Shim, et al. "Alteration of Oxygen Evolution Mechanisms in Layered LiCoO2 Structures By Intercalation of Alkali Metal Ions." ECS Meeting Abstracts MA2022-01, no. 34 (2022): 1356. http://dx.doi.org/10.1149/ma2022-01341356mtgabs.
Full textWan, Xin, Yingjie Song, Hua Zhou, and Mingfei Shao. "Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation." Energy Material Advances 2022 (September 7, 2022): 1–17. http://dx.doi.org/10.34133/2022/9842610.
Full textFukushima, Tomohiro, Masaki Itatani, and Kei Murakoshi. "(Invited) Evaluation of Oxygen Evolution Reaction Electrodes through Machine-Learning Analysis and in-Situ Electrochemical Spectroscopy." ECS Meeting Abstracts MA2024-02, no. 59 (2024): 4023. https://doi.org/10.1149/ma2024-02594023mtgabs.
Full textChae, Sangwoo, Akihito Shio, Tomoya Kishida, et al. "Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction." Materials 17, no. 12 (2024): 2963. http://dx.doi.org/10.3390/ma17122963.
Full textLin, Shiru, Haoxiang Xu, Yekun Wang, Xiao Cheng Zeng, and Zhongfang Chen. "Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning." Journal of Materials Chemistry A 8, no. 11 (2020): 5663–70. http://dx.doi.org/10.1039/c9ta13404b.
Full textWu, Hengbo, Jie Wang, Wei Jin, and Zexing Wu. "Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis." Nanoscale 12, no. 36 (2020): 18497–522. http://dx.doi.org/10.1039/d0nr04458j.
Full textÖztürk, Secil, Yu-Xuan Xiao, Dennis Dietrich, et al. "Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions." Beilstein Journal of Nanotechnology 11 (May 11, 2020): 770–81. http://dx.doi.org/10.3762/bjnano.11.62.
Full textJeon, Jaeeun, Kyoung Ryeol Park, Kang Min Kim, et al. "CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions." Nanomaterials 12, no. 6 (2022): 983. http://dx.doi.org/10.3390/nano12060983.
Full textYao, Bin, Youzhou He, Song Wang, Hongfei Sun, and Xingyan Liu. "Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction." International Journal of Molecular Sciences 23, no. 11 (2022): 6036. http://dx.doi.org/10.3390/ijms23116036.
Full textSui, Chenxi, Kai Chen, Liming Zhao, Li Zhou, and Qu-Quan Wang. "MoS2-modified porous gas diffusion layer with air–solid–liquid interface for efficient electrocatalytic water splitting." Nanoscale 10, no. 32 (2018): 15324–31. http://dx.doi.org/10.1039/c8nr04082f.
Full textXu, Junhua, Daobin Liu, Carmen Lee, et al. "Efficient Electrocatalyst Nanoparticles from Upcycled Class II Capacitors." Nanomaterials 12, no. 15 (2022): 2697. http://dx.doi.org/10.3390/nano12152697.
Full textKim, Jeheon, Tomohiro Fukushima, Ruifeng Zhou, and Kei Murakoshi. "Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media." Materials 12, no. 2 (2019): 211. http://dx.doi.org/10.3390/ma12020211.
Full textIkezawa, Atsunori, Kotaro Seki, and Hajime Arai. "Rational Placement of Catalysts for Oxygen Reduction and Evolution Reactions Based on the Reaction Sites in Porous Gas Diffusion Electrodes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 522. http://dx.doi.org/10.1149/ma2022-024522mtgabs.
Full textChen, Xiaodong, Jianqiao Liu, Tiefeng Yuan, et al. "Recent advances in earth-abundant first-row transition metal (Fe, Co and Ni)-based electrocatalysts for the oxygen evolution reaction." Energy Materials 2, no. 4 (2022): 28. http://dx.doi.org/10.20517/energymater.2022.30.
Full textMilikić, Jadranka, Aldona Balčiūnaitė, Zita Sukackienė, et al. "Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splitting." Materials 14, no. 1 (2020): 92. http://dx.doi.org/10.3390/ma14010092.
Full textBošnjaković, Jovana, Maja Stevanović, Marija Mihailović, et al. "Activity and Operational Loss of IrO2-Ta2O5/Ti Anodes During Oxygen Evolution in Acidic Solutions." Metals 15, no. 7 (2025): 721. https://doi.org/10.3390/met15070721.
Full textYao, Qiufang, Yanping Xiao, Haoqing Wang, Haobin Zhong, and Tongtong Wang. "Multi-Functional Amorphous Nickel Phosphide Electrocatalytic Reduction of Nitrate for Ammonia Production: Unraveling the Anode-Driven Enhancement Mechanism." Sustainability 17, no. 9 (2025): 3835. https://doi.org/10.3390/su17093835.
Full textDymerska, Anna, Wojciech Kukułka, Marcin Biegun, and Ewa Mijowska. "Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction." Materials 13, no. 18 (2020): 3918. http://dx.doi.org/10.3390/ma13183918.
Full textGarcía Caballero, Ariadna D., and Jesus Adrián Diaz-Real. "Alternative Technique to RDE to Evaluate Photoelectrocatalysts for ORR." ECS Meeting Abstracts MA2024-01, no. 44 (2024): 2438. http://dx.doi.org/10.1149/ma2024-01442438mtgabs.
Full textElbaz, Lior, and Wenjamin Moschkowitsch. "Electrocatalyzing Oxygen Evolution Reaction with Nifeooh Aerogels." ECS Meeting Abstracts MA2022-02, no. 44 (2022): 1680. http://dx.doi.org/10.1149/ma2022-02441680mtgabs.
Full textFukushima, Tomohiro. "(Invited) Evaluation of Oxygen Evolution Activity from the Intermediate Analysis." ECS Meeting Abstracts MA2025-01, no. 39 (2025): 2034. https://doi.org/10.1149/ma2025-01392034mtgabs.
Full textSu, Zhaochang, Biyi Huang, Fan Liao, and Jiangping Peng. "Through the anodic oxidation of sodium sulfite aqueous solution to achieve energy-saving cathodic hydrogen production." Journal of Physics: Conference Series 2975, no. 1 (2025): 012002. https://doi.org/10.1088/1742-6596/2975/1/012002.
Full textShafath, Sadiyah, Khulood Logade, Anand Kumar, and Ibrahim Abu Reesh. "(Digital Presentation) Multifunctional Lanthanum Perovskite Electrocatalysts (LaMnxCo1-xO3 (0≤x≤1)) for Alkaline Medium Methanol Oxidation and Oxygen Catalysis." ECS Meeting Abstracts MA2022-02, no. 43 (2022): 1629. http://dx.doi.org/10.1149/ma2022-02431629mtgabs.
Full textCheng, J., P. Ganesan, Z. Wang та ін. "Bifunctional electrochemical properties of La0.8Sr0.2Co0.8M0.2O3−δ (M = Ni, Fe, Mn, and Cu): efficient elemental doping based on a structural and pH-dependent study". Materials Advances 3, № 1 (2022): 272–81. http://dx.doi.org/10.1039/d1ma00632k.
Full textYin, Shikang, Xiaoxue Zhao, Enhui Jiang, Yan Yan, Peng Zhou, and Pengwei Huo. "Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction." Energy & Environmental Science 15, no. 4 (2022): 1556–62. http://dx.doi.org/10.1039/d1ee03764a.
Full textHongxia, Wang, H. L. Zhang Kelvin, P. Hofmann Jan, A. de la Peña O'Shea Victor, and E. Oropeza Freddy. "The electronic structure of transition metal oxides for oxygen evolution reaction." Journal of Materials Chemistry A 9, no. 2021 (2021): 19465. https://doi.org/10.5281/zenodo.7692408.
Full textXie, Wenli, Bin Cui, Desheng Liu, Haicai Huang, and Chuanlu Yang. "Rational Design of Covalent Organic Frameworks-Based Single Atom Catalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction." Molecules 30, no. 7 (2025): 1505. https://doi.org/10.3390/molecules30071505.
Full textTrębala, Michał, and Agata Łamacz. "Modern Catalytic Materials for the Oxygen Evolution Reaction." Molecules 30, no. 8 (2025): 1656. https://doi.org/10.3390/molecules30081656.
Full textAsad, Muhammad, Afzal Shah, Faiza Jan Iftikhar, Rafia Nimal, Jan Nisar, and Muhammad Abid Zia. "Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction." Sustainable Chemistry 3, no. 3 (2022): 286–99. http://dx.doi.org/10.3390/suschem3030018.
Full textElbaz, Lior. "(Keynote) Development of Advanced High Surface Area Metal Oxide Aerogels for Oxygen Evolution Reaction Electrocatalysis." ECS Meeting Abstracts MA2023-02, no. 58 (2023): 2793. http://dx.doi.org/10.1149/ma2023-02582793mtgabs.
Full textKim, Kyung-Hwan, and Yun-Hyuk Choi. "Surface oxidation of cobalt carbonate and oxide nanowires by electrocatalytic oxygen evolution reaction in alkaline solution." Materials Research Express 9, no. 3 (2022): 034001. http://dx.doi.org/10.1088/2053-1591/ac5f89.
Full textLi, Yaxin, Xin Yu, Juan Gao, and Yurong Ma. "Hierarchical Ni2P/Zn-Ni-P Nanosheet Array for Efficient Energy-Saving Hydrogen Evolution and Hydrazine Oxidation." Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta08366c.
Full textWang, Zeyu, William A. Goddard, and Hai Xiao. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-40011-8.
Full textMaduraiveeran, Govindhan. "Transition metal nanomaterial-based electrocatalysts for water and CO2 electrolysis: preparation, catalytic activity, and prospects." Frontiers in Energy Research 12 (October 24, 2024). http://dx.doi.org/10.3389/fenrg.2024.1433103.
Full textYu, Jiayang, Tianmi Tang, Jingqi Guan, and Yupeng Guo. "Improving the oxygen evolution performance of iron–manganese oxyhydroxides by Cr doping." Chemical Communications, 2025. https://doi.org/10.1039/d5cc00389j.
Full text., Krishankant, Aashi Chauhan, Zubair Ahmed, et al. "Nano-interfaced tungsten oxide inwrought with layer double hydroxides for oxygen evolution reaction." Sustainable Energy & Fuels, 2022. http://dx.doi.org/10.1039/d2se00929c.
Full textChen, Xiaodong, Zhiyuan Zhang, Ya Chen, et al. "Research advances in earth-abundant-element-based electrocatalysts for oxygen evolution reaction and oxygen reduction reaction." Energy Materials, 2023. http://dx.doi.org/10.20517/energymater.2023.12.
Full textHuang, Xianggang, Xin Wang, Mengling Zhang, et al. "Manganese- and Selenium-codoping CeO2@Co3O4 Porous Core-shell Nanospheres for Enhanced Oxygen Evolution Reaction." Energy Advances, 2023. http://dx.doi.org/10.1039/d2ya00315e.
Full textAbdollahi, Maliheh, Sara Al Sbei, Miriam A. Rosenbaum, and Falk Harnisch. "The oxygen dilemma: The challenge of the anode reaction for microbial electrosynthesis from CO2." Frontiers in Microbiology 13 (August 3, 2022). http://dx.doi.org/10.3389/fmicb.2022.947550.
Full textHuang, Shih‐Ching, Hsiang‐Chun Yu, Chun‐Kuo Peng, Yan‐Gu Lin, and Chia‐Yu Lin. "P‐Doped NiFe Alloy‐Based Oxygen Evolution Electrocatalyst for Efficient and Stable Seawater Splitting and Organic Electrosynthesis at Neutral pH." Small, December 24, 2024. https://doi.org/10.1002/smll.202408957.
Full textXiao, Zhifei, Haoliang Huang, Sixia Hu, et al. "Bifunctional Square‐Planar NiO4 Coordination of Topotactic LaNiO2.0 Films for Efficient Oxygen Evolution Reaction." Small Methods, November 27, 2023. http://dx.doi.org/10.1002/smtd.202300793.
Full textHu, Mengyu, Hanzhi Yu, Chong Chen, Yukun Zhang, Changjiang Hu, and Jun Ma. "Gamma-rays induced strong coupling between Ru nanoparticle and cobalt-based metal organic framework nanolayer for methanol oxidation and hydrogen evolution." New Journal of Chemistry, 2024. http://dx.doi.org/10.1039/d4nj04418e.
Full textDeng, Bohan, Guang-Qiang Yu, Wei Zhao, et al. "A Self-Circulating Pathway for Oxygen Evolution Reaction." Energy & Environmental Science, 2023. http://dx.doi.org/10.1039/d3ee02360e.
Full textWu, Zhong. "Transition Metal Selenides for Oxygen Evolution Reaction." Energy Technology, April 3, 2024. http://dx.doi.org/10.1002/ente.202301574.
Full textLi, Long, Zhanpeng Sheng, Qingqing Xiao, and qiang hu. "Co9S8 core-shell hollow spheres for enhanced oxygen evolution reaction and methanol oxidation reaction by sulfur vacancies engineering." Dalton Transactions, 2023. http://dx.doi.org/10.1039/d3dt03477a.
Full textLole, Gaurav, Vladimir Roddatis, Ulrich Ross, et al. "Dynamic observation of manganese adatom mobility at perovskite oxide catalyst interfaces with water." Communications Materials 1, no. 1 (2020). http://dx.doi.org/10.1038/s43246-020-00070-6.
Full text