Academic literature on the topic 'Oersted field'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oersted field.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Oersted field"

1

Амеличев, В. В., Д. А. Жуков, С. И. Касаткин, Д. В. Костюк, О. П. Поляков, П. А. Поляков, and В. С. Шевцов. "Особенности расчета и исследования вольт-эрстедной характеристики анизотропного магниторезистивного датчика." Письма в журнал технической физики 47, no. 10 (2021): 19. http://dx.doi.org/10.21883/pjtf.2021.10.50967.18445.

Full text
Abstract:
The results of experimental and theoretical studies of the influence of the current value on the characteristics of anisotropic magnetoresistive magnetic field sensors based on FeNiCo alloy with a "barber-polе" structure are presented. A significant difference was found between the volt-oersted characteristics of the forward and reverse strokes with an increase in the intrinsic current caused by the input supply voltage at sufficiently high external magnetic fields. A theoretical calculation of the volt-oersted characteristic was carried out within the framework of the model of one-dimensional heterogeneity of the magnetization distribution, which coincides with the experimental curves of the forward path.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, B. J., and G. C. Han. "Oersted Field-Guided Electric Field Switching in Perpendicular Magnetic Free Layer." IEEE Transactions on Magnetics 52, no. 9 (September 2016): 1–6. http://dx.doi.org/10.1109/tmag.2016.2569066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhoomeeswaran, H., and P. Sabareesan. "Enhancing Frequency and Reducing the Power of Spin-Torque Nanooscillator By The Generated Oersted Field." SPIN 10, no. 02 (June 2020): 2050012. http://dx.doi.org/10.1142/s2010324720500125.

Full text
Abstract:
The current-driven magnetization precession dynamics stimulated by Spin-Transfer Torque (STT) in a trilayer spin-valve device (typically Spin-Torque Nanooscillator (STNO)) is numerically investigated by solving the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. We have devised four STNO devices made of ferromagnetic alloys such as CoPt, CoFeB, Fe[Formula: see text]B[Formula: see text]Ni2 and EuO, which act as free and fixed layers. Here, copper acts as a nonmagnetic spacer for all the devices. In this work, we have introduced the current-induced Oersted field, which is generated when a spin-polarized current passes through the device. The generated Oersted field strength is varied by increasing the diameter of the STNO device. Frequency tunability is achieved in all the four devices, whereas the power of the individual device reduces. The frequency and power of the devices depend entirely on the saturation magnetization of the material, which inherently reflects in the current density and the coherence of the spin-polarized DC. In all devices, the frequency increases, whereas the power decreases by increasing the strength of the Oersted field. Among the four devices, the maximum frequency can be tuned up to 104[Formula: see text]GHz with 40[Formula: see text]nm device diameter, which is obtained for EuO material. This opens a promising source and paves a glittering future for the nanoscale spintronic devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Le Mouël, J. L., P. Shebalin, and A. Khokhlov. "Earth magnetic field modeling from Oersted and Champ data." Earth, Planets and Space 62, no. 3 (March 2010): 277–86. http://dx.doi.org/10.5047/eps.2009.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Sheng, Seyyed Ruhollah Etesami, Sunjae Chung, Quang Tuan Le, Afshin Houshang, and Johan Akerman. "Impact of the Oersted Field on Droplet Nucleation Boundaries." IEEE Magnetics Letters 9 (2018): 1–4. http://dx.doi.org/10.1109/lmag.2018.2850007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zong, Baoyu, Guchang Han, Jinjun Qiu, Zaibing Guo, Li Wang, Wee-Kay Yeo, and Bo Liu. "Ultrasoft and High Magnetic Moment CoFe Films Directly Electrodeposited from a B-Reducer Contained Solution." Research Letters in Physical Chemistry 2008 (June 12, 2008): 1–4. http://dx.doi.org/10.1155/2008/342976.

Full text
Abstract:
A methodology to fabricate ultrasoft CoFe nano-/microfilms directly via electrodeposition from a semineutral iron sulfate solution is demonstrated. Using boron-reducer as the additive, the CoFe films become very soft with high magnetic moment. Typically, the film coercivity in the easy and hard axes is 6.5 and 2.5 Oersted, respectively, with a saturation polarization up to an average of 2.45 Tesla. Despite the softness, these shining and smooth films still display a high-anisotropic field of ~45 Oersted with permeability up to 104. This kind of films can potentially be used in current and future magnetic recording systems as well as microelectronic and biotechnological devices.
APA, Harvard, Vancouver, ISO, and other styles
7

Otálora, J. A., D. Cortés-Ortuño, D. Görlitz, K. Nielsch, and P. Landeros. "Oersted field assisted magnetization reversal in cylindrical core-shell nanostructures." Journal of Applied Physics 117, no. 17 (May 7, 2015): 173914. http://dx.doi.org/10.1063/1.4919746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feng, Yejun, Yishu Wang, D. M. Silevitch, J. Q. Yan, Riki Kobayashi, Masato Hedo, Takao Nakama, et al. "Linear magnetoresistance in the low-field limit in density-wave materials." Proceedings of the National Academy of Sciences 116, no. 23 (April 11, 2019): 11201–6. http://dx.doi.org/10.1073/pnas.1820092116.

Full text
Abstract:
The magnetoresistance (MR) of a material is typically insensitive to reversing the applied field direction and varies quadratically with magnetic field in the low-field limit. Quantum effects, unusual topological band structures, and inhomogeneities that lead to wandering current paths can induce a cross-over from quadratic to linear MR with increasing magnetic field. Here we explore a series of metallic charge- and spin-density-wave systems that exhibit extremely large positive linear MR. By contrast to other linear MR mechanisms, this effect remains robust down to miniscule magnetic fields of tens of Oersted at low temperature. We frame an explanation of this phenomenon in a semiclassical narrative for a broad category of materials with partially gapped Fermi surfaces due to density waves.
APA, Harvard, Vancouver, ISO, and other styles
9

Hosokawa, K., S. Yamashita, P. Stauning, N. Sato, A. S. Yukimatu, and T. Iyemori. "Origin of the SuperDARN broad Doppler spectra:simultaneous observation with Oersted satellite magnetometer." Annales Geophysicae 22, no. 1 (January 1, 2004): 159–68. http://dx.doi.org/10.5194/angeo-22-159-2004.

Full text
Abstract:
Abstract. We perform a case study of a favorable conjunction of an overpass of the Oersted satellite with the field-of-view of the SuperDARN Syowa East radar during an interval of the southward IMF Bz. At the time, the radar observed an L-shell aligned boundary in the spectral width around the dayside ionosphere. Simultaneously, high-frequency (0.2–5Hz) magnetic field fluctuations were observed by the Oersted satellite's high-time resolution magnetometer. These magnetic field fluctuations are considered to be Alfvén waves possibly associated with the particle which precipitates into the dayside high-latitude ionosphere when magnetic reconnection occurs. It has been theoretically predicted that the time-varying electric field is the dominant physical process to expand the broad HF radar Doppler spectra. Our observation clearly demonstrates that the boundary between narrow and broad spectral widths is corresponding well to the boundary in the level of the fluctuations, which supports the previous theoretical prediction. A close relationship between electric and magnetic field fluctuations and particle precipitations during southward IMF conditions has been confirmed by many authors. The present observation allows us to suggest that the boundary between narrow and broad Doppler spectral widths observed in the dayside ionosphere is connected with the signature of the open/closed field line boundary, such as the cusp particle precipitations via electric and magnetic field fluctuations for the case of the negative IMF Bz conditions. Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma convection). Magnetospheric physics (magnetopause, cusp, and boundary layers)
APA, Harvard, Vancouver, ISO, and other styles
10

Ito, K., T. Devolder, C. Chappert, M. J. Carey, and J. A. Katine. "Micromagnetic simulation on effect of oersted field and hard axis field in spin transfer torque switching." Journal of Physics D: Applied Physics 40, no. 5 (February 16, 2007): 1261–67. http://dx.doi.org/10.1088/0022-3727/40/5/s10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Oersted field"

1

Ishaque, Muhammad Zahid. "Effets d'asymétrie structurale sur le mouvement induit par courant de parois de domaines magnétiques." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY009/document.

Full text
Abstract:
L'objectif de cette thèse est d'étudier l'effet du champ magnétique Oersted sur le mouvement induit par courant de parois de domaines magnetiques dans des nanobandes de bicouches IrPy. Nous avons optimisé la croissance épitaxiale des couches minces IrPy avec faible rugosité de surface et d'interface, peu de défauts structurels et un faible champ coercitif. Cela peut réduire le piégeage de parois et donc augmenter sa mobilité. Nanobandes polycristallins PtPy préparées par pulvérisation ont également été étudiées pour comparer les résultats avec des échantillons épitaxiés. Une première preuve directe de l'effet du champ Oersted sur la configuration magnétique de nanobandes magnétiques a été donnée par V. Uhlir et al. utilisant des mesures XMCD-PEEM résolues en temps. Ils ont observé une grande inclinaison transversale de l'aimantation du Py et CoFeB dans les nanobandes en tricouchesCoCuPy et CoCuCoFeB. Nous avons observé le changement de chiralité des parois transverses sous champ Oersted avec des impulsions de courant en utilisant la microscopie à force magnétique. Un mouvement de parois stochastique a été observé en raison du piégeage, ce qui donne lieu à une large distribution de vitesses de paroi de domaine. Déplacement de paroi opposé au flux d'électrons et transformations de paroi ont également été observés en raison de Joule chauffage. Les grains de grande taille (comparable à la largeur de bande) dans nos couches minces épitaxiales bi-cristallins par rapport aux échantillons polycristallins (~10nm) peut être la source possible du fort piégeage. Néanmoins, des vitesses de parois maximales très élevées (jusqu'à 700 et 250m/s) pour des densités de courant relativement faible (1.7x1012 et 1x1012 A/m2) ont été observées dans échantillons épitaxiales et pulvérisées respectivement. Ces vitesses sont 2 à 5 fois plus élevées avec des densités de courant similaires ou plus faible que celles observées dans des nanobandes de Py seul, rapportés dans la littérature. Le champ Oersted est peut-être à l'origine de la plus grande efficacité du couple de transfert de spin dans ces bandes en bicouche. Des simulations micromagnétiques réalisées dans notre groupe confirment qu'un champ magnétique transverse appliqué en plus d'un champ longitudinal pour déplacemer la paroi peut stabiliser le cœur d'une paroi vortex au centre de la nanobande, supprimant ainsi l'expulsion de cœur au bord de la nanobande et donc empêchant la transformation de parois vortex. De même, il peut stabiliser les parois transverses, empêchant des transformations. Cela peut conduire à une décalage du seuil de Walker vers des courants plus élevés, résultant en une augmentation de la vitesse de paroi. Des mesures XMCD-PEEM résolue en temps seront réalisées dans un avenir proche pour confirmer l'effet du champ Oersted sur le mouvement de la paroi
The aim of this thesis is to study the effect of the magnetic Oersted field on current-induced domain wall (DW) motion in IrPy bilayer nanostripes. We optimized the epitaxial growth of IrPy films on sapphire (0001) substrates with less structural defects, small surface and interface roughness and small coercive fields. This was expected to reduce the DW pinning and hence increase the DW mobility. Polycrystalline PtPy nanostripes prepared by sputtering were also studied to compare the results with epitaxial samples. A first direct evidence of the effect of the Oersted field on the magnetic configuration of magnetic nanostripes was given by V. Uhlir et al. using time-resolved XMCD-PEEM measurements. They observed a large tilt of the Py and CoFeB magnetization in the direction transverse to the stripes in CoCuPy and CoCuCoFeB trilayer nanostripes. We observed chirality switching of transverse walls induced by the Oersted field due to current pulses using magnetic force microscopy. DW motion was found to be stochastic due to DW pinning, which results in a distribution of velocities. DW motion opposite to the electron flow and DW transformations were also observed due to Joule heating. The large grain size (comparable to the stripe width) in our epitaxial bi-crystalline films with respect to the polycrystalline samples (~10nm) may be a possible source of pinning. Nevertheless, very high maximum DW velocities (up to 700 and 250m/s) for relatively low current densities (1.7 x1012 and 1 x1012 A/m2) were observed in epitaxial and sputtered samples respectively. These velocities are 2 to 5 times higher with similar or even smaller current densities than observed in single layer Py nanostripes, reported in the literature. The Oersted field may be at the origin of the high efficiency of the spin transfer torque in these bilayer stripes. Micromagnetic simulations performed in our group confirm that when a transverse magnetic field is applied in addition to a longitudinal field along the nanostripe for VW motion, the vortex core can be stabilized in the center of nanostripe, suppressing the core expulsion at the nanostripe edge and hence preventing the VW transformation. Similarly, it can stabilize transverse walls, preventing DW transformations. This can result in a shift of the Walker breakdown to higher fields/currents, resulting in an increase in DW velocity. Time-resolved XMCD-PEEM measurements will be performed in the near future to confirm the effect of the Oersted field on the DW motion
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Oersted field"

1

Guite, C., I. Kerk, C. Murapaka, R. Maddu, G. Sarjoosing, and W. Lew. "Deterministic generation of single domain wall in ferromagnetic nanowire using local Oersted field." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhoomeeswaran, H., and P. Sabareesan. "Tunability of output frequency in heterogeneous spin torque nano oscillator by generated Oersted field." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2020): 5th National e-Conference on Advanced Materials and Radiation Physics. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhoomeeswaran, H., and P. Sabareesan. "Enhancement of frequency in spin valve device by the generated oersted field: A micromagnetic insight." In NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0060878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rubinshteyn, Alex, Steffen Paeper, and Bruce Nestleroth. "Testing of a Dual Field Magnetic Flux Leakage (MFL) Inspection Tool for Detecting and Characterizing Mechanical Damage Features." In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64377.

Full text
Abstract:
Battelle has developed dual field magnetic flux leakage (MFL) technology for the detection and characterization of mechanical damage to pipelines. The basic principle involves the use of a high magnetic field between 140 and 180 Oersted (11.1 to 14.3 kA/m) and the use of a low magnetic field between 50 and 70 Oersted (4 to 5.6 kA/m). At high magnetic field levels, the flux leakage signal is primarily influenced by changes in the geometry of a pipe wall. At low magnetic field levels, the MFL signal is due to residual stresses and metallurgical changes as well as geometry changes to the pipe caused by mechanical damage and wall thinning. A decoupling signal processing method developed by Battelle is used to isolate the portion of the mechanical damage signals due to metallurgical damage and residual stresses, which allows the characteristics of a dent-gouge feature to be more clearly differentiated. The decoupling method involves first scaling down the high field signal to the level of the low field signal, and then subtracting it from the low field signal. This produces a decoupled signal that is primarily influenced by the residual stresses and metallurgical changes caused by mechanical damage. Rosen has developed a tool to test the dual field technology and is evaluating tool performance by running the tool in a 30 inch diameter pipeline segment. The tool itself is composed of three separate modules coupled together: a high field unit downstream of a low field unit which is downstream of a caliper arm unit that is used to detect and characterize reductions in the internal diameter. The general and magnetic design of the tool, along with the scaling algorithm is discussed. Results from a pull test in a pipe section with dents whose geometry has been independently characterized are also discussed. This work is partially funded by the U.S. Department of Transportation, Pipeline and Hazardous Materials Safety administration (DOT PHMSA) and the Pipeline Research Council International, Inc. (PRCI).
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, B. J., and G. C. Han. "Micro-magnetic simulations on the switching of EF-controlled MTJ free layer magnetization assisted by oersted-field." In Magnetics Symposium 2014 - Celebrating 50th Anniversary of IEEE Magnetics Society. IEEE, 2014. http://dx.doi.org/10.1109/mssc.2014.6947691.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Oersted field"

1

Gerzeski, Roger H. Efforts to Enhance the Properties of Conventional Elevated Temperature Cure Epoxy Resin Systems by Exposing Them to 1250 to 8800 Oersted Magnetic Fields while Thermally Curing Them. Fort Belvoir, VA: Defense Technical Information Center, October 1996. http://dx.doi.org/10.21236/ada326790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography