Academic literature on the topic 'Oil and water displacementsi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oil and water displacementsi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oil and water displacementsi"
Campbell, Bruce T., and Franklin M. Orr. "Flow Visualization for CO2/Crude-Oil Displacements." Society of Petroleum Engineers Journal 25, no. 05 (October 1, 1985): 665–78. http://dx.doi.org/10.2118/11958-pa.
Full textKamali, Fatemeh, Furqan Hussain, and Yildiray Cinar. "An Experimental and Numerical Analysis of Water-Alternating-Gas and Simultaneous-Water-and-Gas Displacements for Carbon Dioxide Enhanced Oil Recovery and Storage." SPE Journal 22, no. 02 (August 30, 2016): 521–38. http://dx.doi.org/10.2118/183633-pa.
Full textBera, Bijoyendra, Ines Hauner, Mohsin Qazi, Daniel Bonn, and Noushine Shahidzadeh. "Oil-water displacements in rough microchannels." Physics of Fluids 30, no. 11 (November 2018): 112101. http://dx.doi.org/10.1063/1.5053625.
Full textBrailovsky, I., A. Babchin, M. Frankel, and G. Sivashinsky. "Fingering Instability in Water-Oil Displacement." Transport in Porous Media 63, no. 3 (June 2006): 363–80. http://dx.doi.org/10.1007/s11242-005-8430-z.
Full textNamdar Zanganeh, M., S. I. I. Kam, T. C. C. LaForce, and W. R. R. Rossen. "The Method of Characteristics Applied to Oil Displacement by Foam." SPE Journal 16, no. 01 (August 19, 2010): 8–23. http://dx.doi.org/10.2118/121580-pa.
Full textZhou, Wen Sheng, Xiao Ru He, Zhan Li Geng, and Ji Cheng Zhang. "Water Displacement Rule at Extra-High Water Cut Stage." Advanced Materials Research 1073-1076 (December 2014): 2239–43. http://dx.doi.org/10.4028/www.scientific.net/amr.1073-1076.2239.
Full textZhao, Jin, Guice Yao, and Dongsheng Wen. "Pore-scale simulation of water/oil displacement in a water-wet channel." Frontiers of Chemical Science and Engineering 13, no. 4 (October 1, 2019): 803–14. http://dx.doi.org/10.1007/s11705-019-1835-y.
Full textSuleimanov, B. A., F. S. Ismayilov, O. A. Dyshin, and N. I. Huseynova. "Fractal analysis of oil - water displacement front." "Proceedings" of "OilGasScientificResearchProjects" Institute, SOCAR, no. 4 (December 30, 2011): 36–43. http://dx.doi.org/10.5510/ogp20110400091.
Full textLiu, Haohan. "New Water-Oil Displacement Efficiency Prediction Method." Open Petroleum Engineering Journal 7, no. 1 (January 9, 2015): 88–91. http://dx.doi.org/10.2174/1874834101407010088.
Full textAbbasov, É. M., and T. S. Kengerli. "Integral Simulation of Oil Displacement by Water." Journal of Engineering Physics and Thermophysics 92, no. 2 (March 2019): 441–49. http://dx.doi.org/10.1007/s10891-019-01949-z.
Full textDissertations / Theses on the topic "Oil and water displacementsi"
Agharazi-Dormani, Nader. "Modeling of radial water/oil displacement in water-wet porous media." Thesis, University of Ottawa (Canada), 1991. http://hdl.handle.net/10393/5706.
Full textVARGAS, KELLY MARGARITA COLMENARES. "OIL DISPLACEMENT IN MICRO MODELS OF POROUS MEDIA BY INJECTION OF OIL IN WATER EMULSION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35523@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
O processo de recuperação de óleo pelo deslocamento com água é o método mais utilizado na indústria de petróleo. No entanto, as altas razões de mobilidade e baixas eficiências de varrido tornam o processo menos eficiente. Uma alternativa usada para minimizar este efeito é a aplicação de tecnologias que atuam como agentes de controle de mobilidade. Dentre eles, e em particular a injeção de emulsões de óleo em água tem sido estudada com relativo sucesso como um método de recuperação avançada de óleo. Alguns estudos indicam melhor varredura do reservatório devido a uma redução da mobilidade da água em regiões do reservatório já varridas por água, mediante a aglomeração e bloqueio parcial dos poros mais permeáveis com gotas da fase dispersa da emulsão. Contudo, ainda não há compreensão plena dos mecanismos associados ao escoamento de emulsões em meios porosos, assim, uma análise e visualização na escala microscópica dos fenômenos envolvidos se faz essencial para a melhora do entendimento do escoamento de emulsões em um reservatório. Neste trabalho, experimentos de escoamento de emulsões foram conduzidos em um micromodelo de vidro, estrutura artificial que busca representar alguns aspectos principais de um meio poroso e proporciona uma adequada visualização do comportamento das faces ao longo do escoamento. Nos experimentos foram realizadas alterações na molhabilidade e variou-se a vazão volumétrica a fim de avaliar diferentes números de capilaridade no meio poroso. Dentro dos resultados mais significativos, foi evidenciado como a fase dispersa da emulsão é capaz de bloquear os poros e gargantas de poro alterando a distribuição dos fluidos no meio poroso, melhorando a eficiência de deslocamento na escala de poro e com isso o fator de recuperação final. Os resultados mostram que, a altos números de capilaridade as forças interfaciais são menos importantes ao reduzir o efeito de bloqueio pelas gotas da fase dispersa nos poros do micromodelo. Estes resultados fornecem um grande aprendizado ao permitir conhecer características do escoamento de emulsões no meio poroso para uma futura aplicação no campo.
The oil recovery process by water-flooding is the most used method in the oil industry. However, the high mobility ratios and low sweep efficiencies make the process less effective. A common alternative to minimize this effect is the application of technologies that act as mobility control agents. Among them and in particular the injection of oil in water emulsions has been studied with relative success as an Enhanced Oil Recovery (EOR) method. Several studies indicate a better reservoir sweep due to the water mobility reduction in regions already swept by water. This reduction can be associated with partial blockage of porous media throats by droplets of emulsion dispersed phase. Nevertheless, there is still no full understanding of the mechanisms associated to the flow of emulsions in porous media, thus, an analysis and visualization at the microscopic scale of the involved phenomena is essential for the improvement of the comprehension of the flow of emulsions in a reservoir. In this work, experimental tests related to the flow of emulsions in a glass micro-model were performed, artificial device that represents some principal features of a porous medium and provides a proper visualization of the phase behavior. In the experiments, the effect of the capillary number on the oil recovery factor and the relative influence of the wettability of the porous medium on the oil displacement process were studied. The results evidence how the oil droplets in the emulsion are capable of block the pores and the pore throats modifying the fluids distribution in the porous medium, improving the displacement efficiency at pore scale and consequently the final oil recovery factor. It was also observed that at high capillary numbers, the blocking caused by the capillary pressure needed to deform the droplet becomes less intense. These results provide a great learning by allowing to know the characteristics of the flow of emulsions in porous media for a future field application.
Thirunavu, Subramanian. "Effects of buoyancy forces on immiscible oil/water displacements in porous media." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/10231.
Full textNUNEZ, VICTOR RAUL GUILLEN. "OIL DISPLACEMENT IN A POROUS MEDIA THROUGH INJECTION OF OIL-IN-WATER EMULSION: ANALYSIS OF LINEAR FLOW." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10663@1.
Full textAGÊNCIA NACIONAL DE PETRÓLEO
A injeção de emulsão é um método comum para melhorar o varrido do reservatório e manter-lo pressurizado. A eficiência de recuperação de óleo no caso de óleos pesados é limitada pela alta razão de mobilidade entre a água injetada e o óleo. Um método de reduzir o problema relativo µa alta razão de viscosidade é por injeção de soluções poliméricas. Porem, a interação líquido- rocha, os grandes volumes e o preço associado dos polímeros podem fazer esta técnica não aplicável em caso de campos gigantes. Diferentes métodos de recuperação avançada de óleo estão sendo desenvolvidos como alternativas µa injeção de polímeros. A injeção de dispersões, em particular a injeção de emulsões, têm sido tratadas com relativo sucesso como um método de recuperação avançada de óleo, mas as técnicas não são totalmente desenvolvidas ou compreendidas. O uso de cada método requer uma completa análise dos diferentes regimes de fluxo de emulsões dentro do espaço poroso de um reservatório. A maioria das análises de fluxo de emulsões em um meio poroso utiliza uma descrição macroscópica. Esta aproximãção é só valida para emulsões com o tamanho da fase dispersa muito menor do que o tamanho do poro. Se o tamanho de gota da fase dispersa é da mesma ordem de magnitude do tamanho de poro, as gotas podem aglomera-se e particularmente podem bloquear o fluxo através dos poros. Este regime de fluxo pode ser utilizado para controlar a mobilidade do líquido injetado, conduzindo a um fator de recuperação maior. Neste trabalho, experimentos de deslocamento de óleo foram executados em um corpo de prova de arenito. Os resultados mostram que a injeção de uma emulsão mudou o fator de recuperação de óleo, elevando este desde 40%, obtido só por injeção de água, ate um valor aproximado de 75%, seja em modo primario ou depois do influxo da água.
Water injection is a common method to improve the reservoir sweep and maintain its pressure. The e±ciency of oil recovery in the case of heavy oils is limited by the high mobility ratio between the injected water and oil. A method of reducing the problem related to the high viscosity ratio is by polymer solution injection. However, the liquid-rock interaction, the large volume and the associated cost of polymer may make this technique not applicable in the case of giant fields. Different enhanced oil recovery methods are being developed and studied as alternatives to polymer injection. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the techniques are not fully developed or understood. The use of such methods requires a complete analysis of the different flow regimes of emulsions inside the porous space of a reservoir. Most analyses of flow of emulsion in a porous media use a macroscopic description. This approach is only valid for dilute emulsion which the size of the disperse phase is much smaller of the pore throat. If the drop size of the disperse phase is of the same order of magnitude of the pore size, the drops may agglomerate and partially block the flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. In this work, experiments of oil displacement were performed in a sandstone plug. The results show that injection of an emulsion changed the oil recovery factor, raising it from approximately 40%, obtained with water injection alone, to approximately 75%, whether in primary mode or after water flooding.
Bristow, Robert Philip. "Micromodels of immiscible two-phase flow in porous media." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235763.
Full textGholamhosseini, Masoud. "Visualization of water/oil displacement in porous media in the presence of chemical reaction." Thesis, University of Ottawa (Canada), 1991. http://hdl.handle.net/10393/7838.
Full textAl-Zaidi, Ebraheam Saheb Azeaz. "Experimental studies on displacements of CO₂ in sandstone core samples." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33183.
Full textFannir, Jamal. "Stability of the two-phase displacement in porous media studied by MRI techniques." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0330.
Full textIt is important to understand the driving forces that control the flow of two immiscible fluids in a porous medium. Indeed, there is a wide range of applications of two-phase flows in porous media, especially those relating to enhanced oil recovery (EOR). The development of quantitative magnetic resonance imaging (MRI) techniques opens up new possibilities for studying and characterizing multiphase flows in porous media. This work is specifically concerned with describing the displacement of two immiscible fluids (water-oil) in a porous medium using MRI techniques. The porous medium is initially saturated with oil which is displaced by injecting water from below, oil and water can be evacuated from above. The general objective of the study is to determine the displacement and the deformation of the front (water-oil) over time, and to specify the trapping mechanisms of the phases. Experiments are conducted on two porous models. One oil wetting consists of a stack of small polystyrene beads (0.4 mm < dp < 0.6 mm), the other wetting with water is a slightly compacted sand (0.02 mm < dp <0.50 mm). We used a 14 T NMR micro-imaging device (1H resonance at 600 MHz) to acquire high resolution images (0.2 mm) inside the porous media during the movement of the two fluids. The results obtained showed that the oil saturation profile is strongly influenced by the properties of the porous material, such as the porosity and the permeability of the sample, the wetting of the phases, the injection rate of the water or even the heterogeneity of the solid matrix. The influence of the water injection flow rate on the residual saturation of oil has been studied more particularly. The experimental results allow a fine understanding of the displacement of two immiscible fluids for two types of porous media, which mainly differ by the effects of wettability. At the same time, a numerical simulation of the upward vertical displacement of oil pushed by water in a porous column was performed and the results compared to our MRI experiments
SOUZA, Márcio Rodrigo de Araújo. "Simulação Numérica de Escoamento Bifásico em reservatório de Petróleo Heterogêneos e Anisotrópicos utilizando um Método de Volumes Finitos “Verdadeiramente” Multidimensional com Aproximação de Alta Ordem." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/17248.
Full textMade available in DSpace on 2016-07-01T15:05:14Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Souza_Tese_2015_09_22.pdf: 8187999 bytes, checksum: 664629aed28d692dce410fefbfe793dc (MD5) Previous issue date: 2015-09-22
Anp
Sob certas hipóteses simplificadoras, o modelo matemático que descreve o escoamento de água e óleo em reservatórios de petróleo pode ser representado por um sistema não linear de Equações Diferenciais Parciais composto por uma equação elíptica de pressão (fluxo) e uma equação hiperbólica de saturação (transporte). Devido a complexidades na modelagem de ambientes deposicionais, nos quais são incluídos camadas inclinadas, canais, falhas e poços inclinados, há uma dificuldade de se construir um modelo que represente adequadamente certas características dos reservatórios, especialmente quando malhas estruturadas são usadas (cartesianas ou corner point). Além disso, a modelagem do escoamento multifásico nessas estruturas geológicas incluem descontinuidades na variável e instabilidades no escoamento, associadas à elevadas razões de mobilidade e efeitos de orientação de malha. Isso representa um grande desafio do ponto de vista numérico. No presente trabalho, uma formulação fundamentada no Método de Volumes Finitos é estudada e proposta para discretizar as equações elíptica de pressão e hiperbólica de saturação. Para resolver a equação de pressão três formulações robustas, com aproximação dos fluxos por múltiplos pontos são estudadas. Essas formulações são abeis para lidar com tensores de permeabilidade completos e malhas poligonais arbitrárias, sendo portanto uma generalização de métodos mais tradicionais com aproximação do fluxo por apenas dois pontos. A discretização da equação de saturação é feita com duas abordagens com característica multidimensional. Em uma abordagem mais convencional, os fluxos numéricos são extrapolados diretamente nas superfícies de controle por uma aproximação de alta resolução no espaço (2ª a 4ª ordem) usando uma estratégia do tipo MUSCL. Uma estratégia baseada na Técnica de Mínimos Quadrados é usada para a reconstrução polinomial. Em uma segunda abordagem, uma variação de uma esquema numérico Verdadeiramente Multidimensional é proposto. Esse esquema diminui o efeito de orientação de malha, especialmente para malhas ortogonais, mesmo embora alguma falta de robustez possa ser observada pra malhas excessivamente distorcidas. Nesse tipo de formulação, os fluxos numéricos são calculados de uma forma multidimensional. Consiste em uma combinação convexa de valores de saturação ou fluxo fracionário, seguindo a orientação do escoamento através do domínio computacional. No entanto, a maioria dos esquemas numéricos achados na literatura tem aproximação apenas de primeira ordem no espaço e requer uma solução implícita de sistemas algébricos locais. Adicionalmente, no presente texto, uma forma modificada desses esquemas “Verdadeiramente” Multidimensionais é proposta em um contexto centrado na célula. Nesse caso, os fluxos numéricos multidimensionais são calculados explicitamente usando aproximações de alta ordem no espaço. Para o esquema proposto, a robustez e o caráter multidimensional também leva em conta a distorção da malha por meio de uma ponderação adaptativa. Essa ponderação regula a característica multidimensional da formulação de acordo com a distorção da malha. Claramente, os efeitos de orientação de malha são reduzidos. A supressão de oscilações espúrias, típicas de aproximações de alta ordem, são obtidas usando, pela primeira vez no contexto de simulação de reservatórios, uma estratégia de limitação multidimensional ou Multidimensional Limiting Process (MLP). Essa estratégia garante soluções monótonas e podem ser usadas em qualquer malha poligonal, sendo naturalmente aplicada em aproximações de ordem arbitrária. Por fim, de modo a garantir soluções convergentes, mesmo para problemas tipicamente não convexos, associados ao modelo de Buckley-Leverett, uma estratégia robusta de correção de entropia é empregada. O desempenho dessas formulações é verificado com a solução de problemas relevantes achados na literatura.
Under certain simplifying assumptions, the problem that describes the fluid flow of oil and water in heterogeneous and anisotropic petroleum reservoir can be described by a system of non-linear partial differential equations that comprises an elliptic pressure equation (flow) and a hyperbolic saturation equation (transport). Due to the modeling of complex depositional environments, including inclined laminated layers, channels, fractures, faults and the geometrical modeling of deviated wells, it is difficult to properly build and handle the Reservoir Characterization Process (RCM), particularly by using structured meshes (cartesian or corner point), which is the current standard in petroleum reservoir simulators. Besides, the multiphase flow in such geological structures includes the proper modeling of water saturation shocks and flow instabilities associated to high mobility ratios and Grid Orientation Effects (GOE), posing a great challenge from a numerical point of view. In this work, a Full Finite Volume Formulation is studied and proposed to discretize both, the elliptic pressure and the hyperbolic saturation equations. To solve the pressure equation, we study and use three robust Multipoint Flux Approximation Methods (MPFA) that are able to deal with full permeability tensors and arbitrary polygonal meshes, making it relatively easy to handle complex geological structures, inclined wells and mesh adaptivity in a natural way. To discretize the saturation equation, two different multidimensional approaches are employed. In a more conventional approach, the numerical fluxes are extrapolated directly on the control surfaces for a higher resolution approximation in space (2nd to 4th order) by a MUSCL (Monotone Upstream Centered Scheme for Conservation Laws) procedure. A least squares based strategy is employed for the polynomial reconstruction. In a second approach, a variation of a “Truly” Multidimensional Finite Volume method is proposed. This scheme diminishes GOE, especially for orthogonal grids, even though some lack of robustness can be observed for extremely distorted meshes. In this type of scheme, the numerical flux is computed in each control surface in a multidimensional way, by a convex combination of the saturation or the fractional flow values, following the approximate wave orientation throughout the computational domain. However, the majority of the schemes found in literature is only first order accurate in space and demand the implicit solution of local conservation problems. In the present text, a Modified Truly Multidimensional Finite Volume Method (MTM-FVM) is proposed in a cell centered context. The truly multidimensional numerical fluxes are explicitly computed using higher order accuracy in space. For the proposed scheme, the robustness and the multidimensional character of the aforementioned MTM-FVM explicitly takes into account the angular distortion of the computational mesh by means of an adaptive weight, that tunes the multidimensional character of the formulation according to the grid distortion, clearly diminishing GOE. The suppression of the spurious oscillations, typical from higher order schemes, is achieved by using for the first time in the context of reservoir simulation a Multidimensional Limiting Process (MLP). The MLP strategy formally guarantees monotone solutions and can be used with any polygonal mesh and arbitrary orders of approximation. Finally, in order to guarantee physically meaningful solutions, a robust “entropy fix” strategy is employed. This produces convergent solutions even for the typical non-convex flux functions that are associated to the Buckley-Leverett problem. The performance of the proposed full finite volume formulation is verified by solving some relevant benchmark problems.
Ligiero, Leticia. "Crude oil/water interface characterization and its relation to water-in-oil emulsion stability." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3048/document.
Full textCrude oil recovery and refining operations rely on high consumption water processes, which may induce the formation of stable water-in-oil emulsions. Although asphaltenes and resins are known to influence the stability of crude oil emulsions, much is still unknown about the real composition of the w/o interfacial layer. Therefore, identifying these molecules and understanding their impact on the w/o interfacial properties are key points for better predicting emulsion problems in the petroleum industry. This thesis presents results on water/oil (w/o) interface characterization using shear and dilatational interfacial rheology as well as results on molecular characterization (GPC-ICP-HRMS and FTMS) of the crude oil interfacial material (IM) and of the amphiphilic crude oil species, which are transferred to the aqueous phase during the emulsification process. Four crude oils forming w/o emulsions of different stability were used in this study. Shear interfacial rheology experiments showed that most of the studied w/o interfaces were capable of forming an elastic interfacial network exhibiting shear elasticity G. A non-null G value interferes on drop deformation and thus on drop shape analysis (DSA) results. Nevertheless, the dilatational elasticity modulus measured by DSA (Eapp) was found to be representative of the sum of the Gibbs modulus plus 2 times G, as long as G 10 mN/m. This condition is generally satisfied since the asphaltene network is broken during dilatational experiments. Consequently, Eapp gives a good approximation of the real Gibbs modulus of the interface. A new phenomenological equation was proposed to fit the dilatational Eapp experimental data, allowing the assignment of a unique characteristic time to describe the w/o interfacial relaxation process and thus sample comparison. The IM of the crude oils was extracted using the “wet silica method” recently developed by Jarvis et al. (Energy Fuels, 2015). Results showed that this method collects the most-surface active compounds that adsorb in the time frame of the extraction procedure. Successive extractions collected species that were larger and less concentrated in the crude oil, but with higher adsorption energies. Molecular characterization revealed that the IM was partially composed of asphaltene compounds, and suggested that sulfur-containing compounds may play a major role in emulsion stability. Lastly, the oil-to-water transferred species were proven to impact the w/o interfacial properties and emulsion stability. Interestingly, concentrating these water-soluble species led to more efficient crude oil dehydration. FTMS analysis of the transferred species revealed that part of the compounds belonged to O2, O3, S1, OS and O2S2 heteroatom classes, and some of them have an asphaltene-type of molecules classification
Books on the topic "Oil and water displacementsi"
B, Scott P. J., ed. Oilfield water technology. Houston, Tex: NACE International, 2006.
Find full textYale Center for British Art., ed. Oil on water: Oil sketches by British watercolorists. New Haven, Conn: Yale Center for British Art, 1986.
Find full textBhushan, Bharat. Bioinspired Water Harvesting, Purification, and Oil-Water Separation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42132-8.
Full textBook chapters on the topic "Oil and water displacementsi"
Li, Dang, and Junbin Chen. "Foundation of Water/Oil Displacement Theory." In Mechanics of Oil and Gas Flow in Porous Media, 183–237. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7313-2_6.
Full textBarenblatt, G. I., V. M. Entov, and V. M. Ryzhik. "Two-Phase Flow and Water-Oil Displacement." In Theory of Fluid Flows Through Natural Rocks, 230–319. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-015-7899-8_5.
Full textBedrikovetsky, Pavel, and Gren Rowan. "Displacement of Oil by a Chemical Slug with Water Drive." In Mathematical Theory of Oil and Gas Recovery, 138–73. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2205-6_7.
Full textBedrikovetsky, Pavel, and Gren Rowan. "Displacement of Non-Newtonian Oil by Hot Water with Heat Losses to Adjacent Layers." In Mathematical Theory of Oil and Gas Recovery, 244–56. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2205-6_14.
Full textZhang, Xiangzhong, Lun Zhao, Jincai Wang, Li Chen, and Xiangan Yue. "Effect of WaterFlooding Speed on Water–Oil Displacement Efficiency of Homogeneous Core." In Proceedings of the International Field Exploration and Development Conference 2018, 932–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7127-1_86.
Full textQadeer, S., K. Dehghani, D. O. Ogbe, and R. D. Ostermann. "Correcting Oil-Water Relative Permeability Data for Capillary End Effect in Displacement Experiments." In Particle Technology and Surface Phenomena in Minerals and Petroleum, 81–104. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-0617-5_8.
Full textBieber, M. T., B. Bourbiaux, and B. Legait. "Oil Displacement by Water in Porous Media and Determination of the Laws of Flow." In Optimization of the Production and Utilization of Hydrocarbons, 250–64. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2256-6_15.
Full textSchuchmann, Heike P., Karsten Köhler, Freddy Aguilar, and Andreas Hensel. "Oil-in-Water and Water-in-Oil Emulsions." In Micro Process Engineering, 325–43. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527631445.ch37.
Full textLi, Na. "Oil-Water Emulsion." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_730-4.
Full textLi, Na. "Oil-Water Emulsion." In Encyclopedia of Membranes, 1424–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_730.
Full textConference papers on the topic "Oil and water displacementsi"
Lepski, B., Z. Bassiouni, and J. Wolcott. "Second-Contact Water Displacement Oil Recovery Process." In SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 1996. http://dx.doi.org/10.2118/35360-ms.
Full textXu, Guangli, Liangxue Cai, Amos Ullmann, and Neima Brauner. "Trapped Water Flushed by Flowing Oil in Upward-Inclined Oil Pipelines." In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90680.
Full textVittoratos Inc., E. S., C. C. West Inc., and C. J. Black. "Flow Regimes of Heavy Oils under Water Displacement." In IOR 2007 - 14th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609-pdb.24.b12.
Full textDietrich, James K. "The Displacement of Heavy Oil From Diatomite Using Hot Water and Steam." In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/129705-ms.
Full textXie, J., and M. Pooladi-Darvish. "Upscaling of Oil-Water Displacement in Naturally Fractured Reservoirs." In Canadian International Petroleum Conference. Petroleum Society of Canada, 2004. http://dx.doi.org/10.2118/2004-146.
Full textCruz-Hernandez, J., R. Islas-Juarez, C. Perez-Rosales, S. Rivas-Gomez, A. Pineda-Munoz, and J. A. Gonzalez-Guevara. "Oil Displacement by Water in Vuggy Fractured Porous Media." In SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 2001. http://dx.doi.org/10.2118/69637-ms.
Full textBarenblatt, G. I., T. W. Patzek, and D. B. Silin. "The Mathematical Model of Non-Equilibrium Effects in Water-Oil Displacement." In SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/75169-ms.
Full textRiazi, M., M. Riazi, M. Jamiolahmady, S. Ireland, and C. Brown. "Direct Observation of CO2 Transport and Oil Displacement Mechanisms in CO2/Water/Oil Systems." In IOR 2009 - 15th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.201404841.
Full textGorell, S. B. "Modeling the Effects of Trapping and Water Alternate Gas (WAG) Injection on Tertiary Miscible Displacements." In SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1988. http://dx.doi.org/10.2118/17340-ms.
Full textSincock, K. J., and C. J. J. Black. "Validation of Water/Oil Displacement Scaling Criteria Using Microvisualization Techniques." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1988. http://dx.doi.org/10.2118/18294-ms.
Full textReports on the topic "Oil and water displacementsi"
Evans, D., H. Baum, B. McCaffrey, G. Mulholland, M. Harkleroad, and W. Menders. Combustion of oil on water. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.86-3420.
Full textSkone, Timothy J. Oilfield Gas, Water, and Oil Separation. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1509428.
Full textSwanson, C. Development of the oil-water monitor. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6856927.
Full textDwyer, Brian P. Treatment of Oil & Gas Produced Water. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1238102.
Full textHeller, A., and J. R. Brock. Photoassisted oxidation of oil films on water. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6470338.
Full textHeller, A., and J. R. Brock. Photoassisted oxidation of oil films on water. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5117156.
Full textVeil, J. A., and J. J. Quinn. Water issues associated with heavy oil production. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/943431.
Full textKlara, Paul C. Coalescing Tubes Test for Oil/Water Separators (OWSs). Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada354868.
Full textCoulombe, S., B. A. Farnand, and H. Sawatzky. Characterization of surfactants isolated by ultrafiltration from enhanced oil recovery oil-in-water emulsions. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/302671.
Full textVeil, J. A., B. G. Langhus, and S. Belieu. Feasibility evaluation of downhole oil/water separator (DOWS) technology. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/917614.
Full text