Journal articles on the topic 'Okazaki fragments'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Okazaki fragments.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Padel, Ruth. "The Okazaki Fragments." Poem 1, no. 1 (2013): 114–23. http://dx.doi.org/10.1080/20519842.2013.11415334.
Full textKumamoto, Soichiro, Atsuya Nishiyama, Yoshie Chiba, et al. "HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation." Nucleic Acids Research 49, no. 9 (2021): 5003–16. http://dx.doi.org/10.1093/nar/gkab269.
Full textSpiering, Michelle M., Philip Hanoian, Swathi Gannavaram, and Stephen J. Benkovic. "RNA primer–primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication." Proceedings of the National Academy of Sciences 114, no. 22 (2017): 5635–40. http://dx.doi.org/10.1073/pnas.1620459114.
Full textChen, Danqi, Hongjun Yue, Michelle M. Spiering, and Stephen J. Benkovic. "Insights into Okazaki Fragment Synthesis by the T4 Replisome." Journal of Biological Chemistry 288, no. 29 (2013): 20807–16. http://dx.doi.org/10.1074/jbc.m113.485961.
Full textCronan, Glen E., Elena A. Kouzminova, and Andrei Kuzminov. "Near-continuously synthesized leading strands inEscherichia coliare broken by ribonucleotide excision." Proceedings of the National Academy of Sciences 116, no. 4 (2019): 1251–60. http://dx.doi.org/10.1073/pnas.1814512116.
Full textHernandez, Alfredo J., Seung-Joo Lee, and Charles C. Richardson. "Primer release is the rate-limiting event in lagging-strand synthesis mediated by the T7 replisome." Proceedings of the National Academy of Sciences 113, no. 21 (2016): 5916–21. http://dx.doi.org/10.1073/pnas.1604894113.
Full textBartoszek, Krzysztof, and Wojciech Bartoszek. "On the time behaviour of Okazaki fragments." Journal of Applied Probability 43, no. 02 (2006): 500–509. http://dx.doi.org/10.1017/s0021900200001789.
Full textBartoszek, Krzysztof, and Wojciech Bartoszek. "On the time behaviour of Okazaki fragments." Journal of Applied Probability 43, no. 2 (2006): 500–509. http://dx.doi.org/10.1239/jap/1152413737.
Full textHenneke, Ghislaine. "In vitro reconstitution of RNA primer removal in Archaea reveals the existence of two pathways." Biochemical Journal 447, no. 2 (2012): 271–80. http://dx.doi.org/10.1042/bj20120959.
Full textKang, Ho-Young, Eunjoo Choi, Sung-Ho Bae, et al. "Genetic Analyses of Schizosaccharomyces pombe dna2+ Reveal That Dna2 Plays an Essential Role in Okazaki Fragment Metabolism." Genetics 155, no. 3 (2000): 1055–67. http://dx.doi.org/10.1093/genetics/155.3.1055.
Full textVaitsiankova, Alina, Kamila Burdova, Margarita Sobol, et al. "PARP inhibition impedes the maturation of nascent DNA strands during DNA replication." Nature Structural & Molecular Biology 29, no. 4 (2022): 329–38. http://dx.doi.org/10.1038/s41594-022-00747-1.
Full textSoto, Ana Maria, William H. Gmeiner, and Luis A. Marky. "Energetic and Conformational Contributions to the Stability of Okazaki Fragments†." Biochemistry 41, no. 21 (2002): 6842–49. http://dx.doi.org/10.1021/bi025715o.
Full textYanga, Wenchao, and Xinhui Lib. "Next-generation sequencing of Okazaki fragments extracted from Saccharomyces cerevisiae." FEBS Letters 587, no. 15 (2013): 2441–47. http://dx.doi.org/10.1016/j.febslet.2013.06.014.
Full textBudd, M. E., and J. L. Campbell. "A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function." Molecular and Cellular Biology 17, no. 4 (1997): 2136–42. http://dx.doi.org/10.1128/mcb.17.4.2136.
Full textBae, Sung-Ho, Kwang-Hee Bae, Jung-Ae Kim, and Yeon-Soo Seo. "RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes." Nature 412, no. 6845 (2001): 456–61. http://dx.doi.org/10.1038/35086609.
Full textSalazar, Miguel, James J. Champoux, and Brian R. Reid. "Sugar conformations at hybrid duplex junctions in HIV-1 and Okazaki fragments." Biochemistry 32, no. 3 (1993): 739–44. http://dx.doi.org/10.1021/bi00054a002.
Full textMatsunaga, Fujihiko, Cédric Norais, Patrick Forterre, and Hannu Myllykallio. "Identification of short ‘eukaryotic’ Okazaki fragments synthesized from a prokaryotic replication origin." EMBO reports 4, no. 2 (2003): 154–58. http://dx.doi.org/10.1038/sj.embor.embor732.
Full textWang, T. C. V., and S. H. Chen. "Okazaki DNA Fragments Contain Equal Amounts of Lagging-Strand and Leading-Strand Sequences." Biochemical and Biophysical Research Communications 198, no. 3 (1994): 844–49. http://dx.doi.org/10.1006/bbrc.1994.1120.
Full textQiu, Junzhuan, Ying Qian, Peter Frank, Ulrike Wintersberger, and Binghui Shen. "Saccharomyces cerevisiae RNase H(35) Functions in RNA Primer Removal during Lagging-Strand DNA Synthesis, Most Efficiently in Cooperation with Rad27 Nuclease." Molecular and Cellular Biology 19, no. 12 (1999): 8361–71. http://dx.doi.org/10.1128/mcb.19.12.8361.
Full textBeattie, Thomas R., and Stephen D. Bell. "The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes." Biochemical Society Transactions 39, no. 1 (2011): 70–76. http://dx.doi.org/10.1042/bst0390070.
Full textKellner, Vanessa, and Duncan J. Smith. "Hold on Tight: Lagging-Strand DNA Polymerases Synthesize Multiple Okazaki Fragments without Letting Go." Molecular Cell 80, no. 1 (2020): 6–8. http://dx.doi.org/10.1016/j.molcel.2020.09.010.
Full textParenteau, Julie, and Raymund J. Wellinger. "Accumulation of Single-Stranded DNA and Destabilization of Telomeric Repeats in Yeast Mutant Strains Carrying a Deletion of RAD27." Molecular and Cellular Biology 19, no. 6 (1999): 4143–52. http://dx.doi.org/10.1128/mcb.19.6.4143.
Full textHuang, L., Y. Kim, J. J. Turchi, and R. A. Bambara. "Structure-specific cleavage of the RNA primer from Okazaki fragments by calf thymus RNase HI." Journal of Biological Chemistry 269, no. 41 (1994): 25922–27. http://dx.doi.org/10.1016/s0021-9258(18)47334-6.
Full textMurante, Richard S., Jeffrey A. Rumbaugh, Carole J. Barnes, J. Russell Norton, and Robert A. Bambara. "Calf RTH-1 Nuclease Can Remove the Initiator RNAs of Okazaki Fragments by Endonuclease Activity." Journal of Biological Chemistry 271, no. 42 (1996): 25888–97. http://dx.doi.org/10.1074/jbc.271.42.25888.
Full textNguyen, Hai Dang, Jordan Becker, Yee Mon Thu, et al. "Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression." PLoS ONE 8, no. 6 (2013): e66379. http://dx.doi.org/10.1371/journal.pone.0066379.
Full textLiu, Beiyu, Jianyang Wang, Gokben Yildirir, and Paul T. Englund. "TbPIF5 Is a Trypanosoma brucei Mitochondrial DNA Helicase Involved in Processing of Minicircle Okazaki Fragments." PLoS Pathogens 5, no. 9 (2009): e1000589. http://dx.doi.org/10.1371/journal.ppat.1000589.
Full textRossi, Marie L., Jason E. Pike, Wensheng Wang, Peter M. J. Burgers, Judith L. Campbell, and Robert A. Bambara. "Pif1 Helicase Directs Eukaryotic Okazaki Fragments toward the Two-nuclease Cleavage Pathway for Primer Removal." Journal of Biological Chemistry 283, no. 41 (2008): 27483–93. http://dx.doi.org/10.1074/jbc.m804550200.
Full textCowan, Richard, and S. N. Chiu. "A stochastic model of fragment formation when DNA replicates." Journal of Applied Probability 31, no. 2 (1994): 301–8. http://dx.doi.org/10.2307/3215025.
Full textCowan, Richard, and S. N. Chiu. "A stochastic model of fragment formation when DNA replicates." Journal of Applied Probability 31, no. 02 (1994): 301–8. http://dx.doi.org/10.1017/s0021900200044843.
Full textBellizzi, Dina, M. Adele Losso, and Vittorio Sgaramella. "A model for the involvement of Okazaki fragments maturation in the expansion of short tandem repeats." Gene 276, no. 1-2 (2001): 153–59. http://dx.doi.org/10.1016/s0378-1119(01)00642-4.
Full textKahli, Malik, Joseph S. Osmundson, Rani Yeung, and Duncan J. Smith. "Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replicationin vivo." Nucleic Acids Research 47, no. 4 (2018): 1814–22. http://dx.doi.org/10.1093/nar/gky1242.
Full textBartos, Jeremy D., Wensheng Wang, Jason E. Pike, and Robert A. Bambara. "Mechanisms by Which Bloom Protein Can Disrupt Recombination Intermediates of Okazaki Fragment Maturation." Journal of Biological Chemistry 281, no. 43 (2006): 32227–39. http://dx.doi.org/10.1074/jbc.m606310200.
Full textMuzi-Falconi, Marco, Michele Giannattasio, Marco Foiani, and Paolo Plevani. "The DNA Polymerase _-Primase Complex: Multiple Functions and Interactions." Scientific World JOURNAL 3 (2003): 21–33. http://dx.doi.org/10.1100/tsw.2003.05.
Full textHanzlikova, Hana, Ilona Kalasova, Annie A. Demin, Lewis E. Pennicott, Zuzana Cihlarova, and Keith W. Caldecott. "The Importance of Poly(ADP-Ribose) Polymerase as a Sensor of Unligated Okazaki Fragments during DNA Replication." Molecular Cell 71, no. 2 (2018): 319–31. http://dx.doi.org/10.1016/j.molcel.2018.06.004.
Full textLevikova, Maryna, and Petr Cejka. "TheSaccharomyces cerevisiaeDna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication." Nucleic Acids Research 43, no. 16 (2015): 7888–97. http://dx.doi.org/10.1093/nar/gkv710.
Full textChoe, Wonchae, Martin Budd, Osamu Imamura, Laura Hoopes, and Judith L. Campbell. "Dynamic Localization of an Okazaki Fragment Processing Protein Suggests a Novel Role in Telomere Replication." Molecular and Cellular Biology 22, no. 12 (2002): 4202–17. http://dx.doi.org/10.1128/mcb.22.12.4202-4217.2002.
Full textvan Schendel, Robin, Ron Romeijn, Helena Buijs та Marcel Tijsterman. "Preservation of lagging strand integrity at sites of stalled replication by Pol α-primase and 9-1-1 complex". Science Advances 7, № 21 (2021): eabf2278. http://dx.doi.org/10.1126/sciadv.abf2278.
Full textCSUKA, ILDIKO, and GASPAR BANFALVI. "Analysis of 5′-Termini of Early Intermediates of Okazaki Fragments Accumulated in Thymocytes after Emetine Treatment of Mice." DNA and Cell Biology 16, no. 8 (1997): 979–84. http://dx.doi.org/10.1089/dna.1997.16.979.
Full textMerrill, Bradley J., and Connie Holm. "The RAD52 Recombinational Repair Pathway is Essential in pol30 (PCNA) Mutants That Accumulate Small Single-Stranded DNA Fragments During DNA Synthesis." Genetics 148, no. 2 (1998): 611–24. http://dx.doi.org/10.1093/genetics/148.2.611.
Full textLe Laz, Sébastien, Audrey Le Goaziou, and Ghislaine Henneke. "Structure-Specific Nuclease Activities of Pyrococcus abyssi RNase HII." Journal of Bacteriology 192, no. 14 (2010): 3689–98. http://dx.doi.org/10.1128/jb.00268-10.
Full textPohjanpelto, P., and E. Hölttä. "Phosphorylation of Okazaki-like DNA fragments in mammalian cells and role of polyamines in the processing of this DNA." EMBO Journal 15, no. 5 (1996): 1193–200. http://dx.doi.org/10.1002/j.1460-2075.1996.tb00458.x.
Full textLarsen, Elisabeth, Christine Gran, Barbro Elisabet Sæther, Erling Seeberg, and Arne Klungland. "Proliferation Failure and Gamma Radiation Sensitivity of Fen1 Null Mutant Mice at the Blastocyst Stage." Molecular and Cellular Biology 23, no. 15 (2003): 5346–53. http://dx.doi.org/10.1128/mcb.23.15.5346-5353.2003.
Full textPrigent, C., M. S. Satoh, G. Daly, D. E. Barnes, and T. Lindahl. "Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I." Molecular and Cellular Biology 14, no. 1 (1994): 310–17. http://dx.doi.org/10.1128/mcb.14.1.310.
Full textPrigent, C., M. S. Satoh, G. Daly, D. E. Barnes, and T. Lindahl. "Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I." Molecular and Cellular Biology 14, no. 1 (1994): 310–17. http://dx.doi.org/10.1128/mcb.14.1.310-317.1994.
Full textGmeiner, W. H. "NMR Spectroscopy as A Tool to Investigate the Structural Basis of Anticancer Drugs." Current Medicinal Chemistry 5, no. 2 (1998): 115–35. http://dx.doi.org/10.2174/0929867305666220314202136.
Full textLevin, David S., Allison E. McKenna, Teresa A. Motycka, Yoshihiro Matsumoto, and Alan E. Tomkinson. "Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair." Current Biology 10, no. 15 (2000): 919—S2. http://dx.doi.org/10.1016/s0960-9822(00)00619-9.
Full textGloor, Jason W., Lata Balakrishnan, Judith L. Campbell, and Robert A. Bambara. "Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1." Nucleic Acids Research 40, no. 14 (2012): 6774–86. http://dx.doi.org/10.1093/nar/gks388.
Full textShapiro, Adam B., Ann E. Eakin, Grant K. Walkup, and Olga Rivin. "A High-Throughput Fluorescence Resonance Energy Transfer-Based Assay for DNA Ligase." Journal of Biomolecular Screening 16, no. 5 (2011): 486–93. http://dx.doi.org/10.1177/1087057111398295.
Full textKokoska, Robert J., Lela Stefanovic, Hiep T. Tran, Michael A. Resnick, Dmitry A. Gordenin та Thomas D. Petes. "Destabilization of Yeast Micro- and Minisatellite DNA Sequences by Mutations Affecting a Nuclease Involved in Okazaki Fragment Processing (rad27) and DNA Polymerase δ (pol3-t)". Molecular and Cellular Biology 18, № 5 (1998): 2779–88. http://dx.doi.org/10.1128/mcb.18.5.2779.
Full textDenis, D., and P. A. Bullock. "Primer-DNA formation during simian virus 40 DNA replication in vitro." Molecular and Cellular Biology 13, no. 5 (1993): 2882–90. http://dx.doi.org/10.1128/mcb.13.5.2882.
Full text