Contents
Academic literature on the topic 'Olfactory drive'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Olfactory drive.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Olfactory drive"
Shao, Z., A. C. Puche, E. Kiyokage, G. Szabo, and M. T. Shipley. "Two GABAergic Intraglomerular Circuits Differentially Regulate Tonic and Phasic Presynaptic Inhibition of Olfactory Nerve Terminals." Journal of Neurophysiology 101, no. 4 (2009): 1988–2001. http://dx.doi.org/10.1152/jn.91116.2008.
Full textPoivet, Erwan, Aurore Gallot, Nicolas Montagné, et al. "Transcriptome Profiling of Starvation in the Peripheral Chemosensory Organs of the Crop Pest Spodoptera littoralis Caterpillars." Insects 12, no. 7 (2021): 573. http://dx.doi.org/10.3390/insects12070573.
Full textLindeman, Sander, Xiaochen Fu, Janine Kristin Reinert, and Izumi Fukunaga. "Value-related learning in the olfactory bulb occurs through pathway-dependent perisomatic inhibition of mitral cells." PLOS Biology 22, no. 3 (2024): e3002536. http://dx.doi.org/10.1371/journal.pbio.3002536.
Full textSchoppa, Nathan E., and Gary L. Westbrook. "AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli." Nature Neuroscience 5, no. 11 (2002): 1194–202. http://dx.doi.org/10.1038/nn953.
Full textDuan, Duo, Hu Zhang, Xiaomin Yue, et al. "Sensory Glia Detect Repulsive Odorants and Drive Olfactory Adaptation." Neuron 108, no. 4 (2020): 707–21. http://dx.doi.org/10.1016/j.neuron.2020.08.026.
Full textAvnat, Eden, Guy Shapira, David Gurwitz, and Noam Shomron. "Elevated Expression of RGS2 May Underlie Reduced Olfaction in COVID-19 Patients." Journal of Personalized Medicine 12, no. 9 (2022): 1396. http://dx.doi.org/10.3390/jpm12091396.
Full textNarikiyo, Kimiya, Hiroyuki Manabe, and Kensaku Mori. "Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep." Journal of Neurophysiology 111, no. 1 (2014): 72–81. http://dx.doi.org/10.1152/jn.00535.2013.
Full textInoue, Tsuyoshi, and Ben W. Strowbridge. "Transient Activity Induces a Long-Lasting Increase in the Excitability of Olfactory Bulb Interneurons." Journal of Neurophysiology 99, no. 1 (2008): 187–99. http://dx.doi.org/10.1152/jn.00526.2007.
Full textRaza, Muhammad Fahad, Muhammad Ajmal Ali, Ahmed Rady, Zhiguo Li, Hongyi Nie, and Songkun Su. "Neurotransmitters receptors gene drive the olfactory learning behavior of honeybee." Learning and Motivation 79 (August 2022): 101818. http://dx.doi.org/10.1016/j.lmot.2022.101818.
Full textSabandal, John Martin, Paul Rafael Sabandal, Young-Cho Kim, and Kyung-An Han. "Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning." Journal of Neuroscience 40, no. 21 (2020): 4240–50. http://dx.doi.org/10.1523/jneurosci.1756-19.2020.
Full text