Academic literature on the topic 'OMEGA laser facility'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'OMEGA laser facility.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "OMEGA laser facility"

1

Ping, Yuan, and Federica Coppari. "Laser shock XAFS studies at OMEGA facility." High Pressure Research 36, no. 3 (July 2, 2016): 303–14. http://dx.doi.org/10.1080/08957959.2016.1196203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Niemann, C., G. Antonini, S. Compton, S. H. Glenzer, D. Hargrove, J. D. Moody, R. K. Kirkwood, et al. "Transmitted laser beam diagnostic at the Omega laser facility." Review of Scientific Instruments 75, no. 10 (October 2004): 4171–73. http://dx.doi.org/10.1063/1.1787602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kelly, J. H., L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. J. Kessler, et al. "OMEGA EP: High-energy petawatt capability for the OMEGA laser facility." Journal de Physique IV (Proceedings) 133 (June 2006): 75–80. http://dx.doi.org/10.1051/jp4:2006133015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campbell, E. M., T. C. Sangster, V. N. Goncharov, J. D. Zuegel, S. F. B. Morse, C. Sorce, G. W. Collins, et al. "Direct-drive laser fusion: status, plans and future." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2189 (December 7, 2020): 20200011. http://dx.doi.org/10.1098/rsta.2020.0011.

Full text
Abstract:
Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser–plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser–plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the ‘polar-drive’ configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
APA, Harvard, Vancouver, ISO, and other styles
5

BOEHLY, T. R., A. BABUSHKIN, D. K. BRADLEY, R. S. CRAXTON, J. A. DELETTREZ, R. EPSTEIN, T. J. KESSLER, et al. "Laser uniformity and hydrodynamic stability experiments at the OMEGA laser facility." Laser and Particle Beams 18, no. 1 (January 2000): 11–19. http://dx.doi.org/10.1017/s0263034600181029.

Full text
Abstract:
Experiments to demonstrate the effects of various beam-smoothing techniques have been performed on the 60-beam, 30-kJ UV OMEGA laser system. These include direct measurements of the effect beam-smoothing techniques have on laser beam nonuniformity and on both planar and spherical targets. Demonstrated techniques include polarization smoothing and “dual-tripler” third-harmonic generation required for future broad bandwidth (∼1 THz) smoothing by spectral dispersion (SSD). The effects of improvements in single-beam uniformity are clearly seen in the target-physics experiments, which also show the effect of the laser pulse shape on the efficacy of SSD smoothing. Saturation of the Rayleigh-Taylor (RT) growth of the broad-bandwidth features, in agreement with the Haan model (Haan, 1989), produced by laser imprinting has also been observed.
APA, Harvard, Vancouver, ISO, and other styles
6

Froula, D. H., V. Rekow, C. Sorce, K. Piston, R. Knight, S. Alvarez, R. Griffith, et al. "3ω transmitted beam diagnostic at the Omega Laser Facility." Review of Scientific Instruments 77, no. 10 (October 2006): 10E507. http://dx.doi.org/10.1063/1.2221911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rosen, P. A., J. M. Foster, R. J. R. Williams, B. H. Wilde, R. F. Coker, B. Blue, T. S. Perry, et al. "Laboratory-astrophysics jet experiments at the omega laser facility." Journal de Physique IV (Proceedings) 133 (June 2006): 1019–23. http://dx.doi.org/10.1051/jp4:2006133206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Soures, John M. "The Omega Upgrade laser facility for direct-drive experiements." Journal of Fusion Energy 10, no. 4 (December 1991): 295–98. http://dx.doi.org/10.1007/bf01052126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Soures, J. M., R. L. McCrory, T. R. Boehly, R. S. Craxton, S. D. Jacobs, J. H. Kelly, T. J. Kessler, et al. "OMEGA Upgrade laser for direct-drive target experiments." Laser and Particle Beams 11, no. 2 (June 1993): 317–21. http://dx.doi.org/10.1017/s0263034600004912.

Full text
Abstract:
Validation of the direct-drive approach to inertial confinement fusion requires the development of a 351-nm wavelength, 30-kJ, 50-TW laser system with flexible pulse shaping and irradiation uniformity approaching 1%. An upgrade of the existing OMEGA direct-drive facility at Rochester is planned to meet these objectives. In this article, we review the design rationale and specifications of the OMEGA Upgrade laser with particular emphasis on techniques planned to achieve the required degree of beam smoothing, temporal pulse shape, and beam-to-beam power balance.
APA, Harvard, Vancouver, ISO, and other styles
10

Bennett, Guy R. "Advanced one-dimensional x-ray microscope for the Omega Laser Facility." Review of Scientific Instruments 70, no. 1 (January 1999): 608–12. http://dx.doi.org/10.1063/1.1149433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "OMEGA laser facility"

1

Casey, Daniel Thomas. "Diagnosing inertial confinement fusion implosions at OMEGA and the NIF Using novel neutron spectrometry." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76813.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 139-148).
A novel neutron spectrometer, called the Magnetic Recoil Spectrometer (MRS), was designed, built, and implemented on the OMEGA laser facility and the National Ignition Facility (NIF) to measure the neutron spectra from inertial confinement fusion (ICF) implosions. Using the MRS, the down-scattered neutron (DSn) spectrum has been used to infer the areal density ([rho]R) of ICF implosions for the first time. The DSn technique is essential for diagnosing high [rho]R (>180mg/cm²) cryogenic deuterium-tritium (DT) implosions, where most other methods fail. The MRS has helped to guide the cryogenic campaign toward the highest [rho]Rs ever achieved at OMEGA. In addition, the MRS is currently being used to diagnose the DSn spectrum from cryogenic implosions at the NIF during the beginning phases of the National Ignition Campaign (NIC). MRS data have already been essential for tuning these implosions to the highest [rho]Rs ever achieved in an ICF implosion (>1 g/cm²), and thus for guiding the NIC toward the realization of thermonuclear ignition. The first measurements of the T(t,2n)⁴He (TT) neutron spectrum in DT implosions at OMEGA have also been conducted using the MRS. The TT-neutron (TTn) spectrum was measured at low reactant central-mass energies of ~23 keV. The results from these measurements indicate that the TT reaction proceeds primarily through the direct three-body reaction channel, which is in contrast to the results obtained in higher energy accelerator experiments. Measurements of the TTn and DD proton yields were also conducted and compared to the DT neutron yield in DT implosions. From these measurements, it is concluded that the DD yield is anomalously low and the TTn yield is anomalously high, relative to the DT yield. These results have been explained by a stratification of the fuel in the core of an ICF implosion.
by Daniel Thomas Casey.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Rojas, Jimmy A. (Rojas Herrera). "Impact of x-ray dose on the response of CR-39 nuclear track detector to 1-5.5 MeV alphas and 0.5-9.1 MeV protons for spectroscopy at the OMEGA Laser Facility and the National Ignition Facility." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/106770.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, June 2016.
Page 47 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 45-46).
The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to protons and alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 30 and 8keV Cu-K[alpha] and K[beta] x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas or 0.5- 9.1 MeV protons. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0±0.1 Gy causes a decrease of (19±2)% in the track diameter of a 5.5 MeV alpha, while a dose of 6.0±0.1 Gy results in a decrease of (29±1)% in the track diameter of a 3.0 MeV proton. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect, due to changes in track etch rate and dependent on incident particle energy, was characterized by an empirical formula.
by Jimmy A. Rojas.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
3

Lafon, Marion. "Étude du schéma d'allumage par choc en fusion par confinement inertiel." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14403/document.

Full text
Abstract:
Le schéma d'allumage par choc représente une alternative aux schémas d'allumage classiques en Fusion par Confinement Inertiel. Sa singularité repose sur la relaxation des contraintes sur la phase de compression et l'atteinte des conditions d'allumage par l'envoi d'une impulsion laser brève (~500 ps) et très puissante (~300 TW) sur le combustible en fin d'implosion.Au cours de ce travail de thèse, il a été établi que ce procédé induit une configuration non-isobare du combustible au moment de l'allumage, modifiant ainsi les critères d'inflammation du Deutérium-Tritium (DT) par rapport aux schémas conventionnels d'allumage. Un modèle de gain pour la combustion est ensuite développé et des courbes de gain pour l'allumage par choc sont alors obtenues puis validées numériquement. La modélisation hydrodynamique présentée a démontré qu'il est ainsi possible d'obtenir de hauts gains à plus faibles énergies laser que l'allumage conventionnel du fait de la haute pression du point chaud au moment de l'allumage résultante de la propagation du choc d'allumage.Le code d'hydrodynamique radiative CHIC du CELIA a été utilisé afin de développer des dépendances paramétriques définissant les conditions optimales en termes de paramètres de dimensionnement de cibles pour l'atteinte des conditions d'ignition. Ces études numériques ont mis en lumière le potentiel du procédé d'allumage par choc en termes d'économie d'énergie laser, de hauts gains mais aussi de marges de sécurité et de robustesse pour l'allumage. Enfin, les résultats des premières campagnes expérimentales d'allumage par choc en symétrie sphérique effectuées sur l'installation laser OMEGA (NY, USA) sont présentés. Une interprétation des résultats est proposée à partir de simulations hydrodynamiques mono et bidimensionnelles. Différentes pistes sont alors explorées afin d'expliquer les différences observées et des solutions potentielles pour l'amélioration des performances à l'échelle de l'installation OMEGA sont proposées
The Shock Ignition (SI) scheme is an alternative to classical ignition schemes in Inertial Confinement Fusion. Its singularity relies on the relaxation of constraints during the compression phase and fulfilment of ignition conditions by launching a short and intense laser pulse (~500 ps, ~300 TW) on the preassembled fuel at the end of the implosion.In this thesis, it has been established that the SI process leads to a non-isobaric fuel configuration at the ignition time thus modifying the ignition criteria of Deuterium-Tritium (DT) against the conventional schemes. A gain model has been developed and gain curves have been infered and numerically validated. This hydrodynamical modeling has demonstrated that the SI process allows higher gain and lower ignition energy threshold than conventional ignition due to the high hot spot pressure at ignition time resulting from the ignitor shock propagation.The radiative hydrodynamic CHIC code developed at the CELIA laboratory has been used to determine parametric dependences describing the optimal conditions for target design leading to ignition. These numerical studies have enlightened the potential of SI with regards to saving up laser energy, obtain high gains but also to safety margins and ignition robustness.Finally, the results of the first SI experiments performed in spherical geometry on the OMEGA laser facility (NY, USA) are presented. An interpretation of the experimental data is proposed from mono and bidimensional hydrodynamic simulations. Then, different trails are explored to account for the differences observed between experimental and numerical data and alternative solutions to improve performances are suggested
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "OMEGA laser facility"

1

Le Pape, S., L. Divol, S. Ross, S. Wilks, P. Amendt, L. Berzak Hopkins, G. Huser, J. Moody, A. J. Mackinnon, and N. Meezan. "Plasma interpenatration study on the omega laser facility." In 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2016. http://dx.doi.org/10.1109/plasma.2016.7533964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, C. K., F. H. Seguin, J. A. Frenje, R. Rygg, J. L. DeCiantis, C. D. Chen, R. D. Petrasso, et al. "Charged Particle Diagnostics on the Omega Laser Facility." In IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katz, J., W. R. Donaldson, R. Huff, E. M. Hill, J. H. Kelly, J. Kwiatkowski, and R. B. Brannon. "3ω beam timing diagnostic for the OMEGA laser facility." In SPIE Optical Engineering + Applications, edited by Jeffrey A. Koch and Gary P. Grim. SPIE, 2015. http://dx.doi.org/10.1117/12.2189394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dorrer, C., D. Irwin, A. Consentino, and J. Qiao. "Contrast Measurements of Kilojoule Laser Pulses at the Omega EP Laser Facility." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.jthe117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Okishev, Andrey V., Mark D. Skeldon, Robert L. Keck, and Wolf D. Seka. "New high-bandwidth all-solid-state pulse-shaping system for the OMEGA laser facility." In Laser Optics 2000, edited by Alexander A. Andreev and Vladimir E. Yashin. SPIE, 2001. http://dx.doi.org/10.1117/12.418784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Okishev, Andrey V., Mark D. Skeldon, and Wolf Seka. "A Highly Stable, Diode-Pumped Master Oscillator for the OMEGA Laser Facility." In Advanced Solid State Lasers. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/assl.1999.me5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Okishev, A. V., M. D. Skeldon, R. L. Keck, and W. Seka. "All-solid-state optical pulse shaper for the OMEGA laser fusion facility." In Advanced Solid State Lasers. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/assl.2000.mb3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Okishev, Audrey V., Devon J. Battaglia, Ildar A. Begishev, and Jonathan D. Zuegel. "Highly stable, diode-pumped, cavity-dumped Nd:YLF regenerative amplifier for the OMEGA laser fusion facility." In Advanced Solid State Lasers. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/assl.2002.wb12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dorrer, C. "Characterization of a High-Contrast Front-End Prototype for the Omega EP Laser Facility." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cwg2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okishev, Andrey V., John R. Marciante, and Jonathan D. Zuegel. "A novel discrete-arbitrary-picket pulse-shaping system for the OMEGA laser fusion facility." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.itui11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "OMEGA laser facility"

1

Loomis, Eric Nicholas. Summaries of FY13 LANL experimental campaigns at the OMEGA Laser Facility. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1095887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Loomis, Eric Nicholas, John F. Benage, Rahul C. Shah, Andreas Klein, Kirk A. Flippo, Yong Ho Kim, James A. Cobble, and Gary P. Grim. Summaries of FY12 LANL Experimental Campaigns at the OMEGA Laser Facility. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1053121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McCoy, Chad. FY20 Sandia National Laboratories Dynamic Materials Experiments at the Omega Laser Facility. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1817316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nguyen, Khanh. Nonlinear Saturation of Cross-Beam Energy Transfer in Top9 Experiments on the Omega Laser Facility [Slides]. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1770087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/763047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography