Journal articles on the topic 'Omic data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Omic data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Oromendia, Ana, Dorina Ismailgeci, Michele Ciofii, Taylor Donnelly, Linda Bojmar, John Jyazbek, Arnaub Chatterjee, David Lyden, Kenneth H. Yu, and David Paul Kelsen. "Error-free, automated data integration of exosome cargo protein data with extensive clinical data in an ongoing, multi-omic translational research study." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e16743-e16743. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16743.
Full textUgidos, Manuel, Sonia Tarazona, José M. Prats-Montalbán, Alberto Ferrer, and Ana Conesa. "MultiBaC: A strategy to remove batch effects between different omic data types." Statistical Methods in Medical Research 29, no. 10 (March 4, 2020): 2851–64. http://dx.doi.org/10.1177/0962280220907365.
Full textRappoport, Nimrod, and Ron Shamir. "NEMO: cancer subtyping by integration of partial multi-omic data." Bioinformatics 35, no. 18 (January 30, 2019): 3348–56. http://dx.doi.org/10.1093/bioinformatics/btz058.
Full textCanela, Núria Anela. "A pioneering multi-omics data platform sheds light on the understanding of biological systems." Project Repository Journal 20, no. 1 (July 4, 2024): 20–23. http://dx.doi.org/10.54050/prj2021863.
Full textLancaster, Samuel M., Akshay Sanghi, Si Wu, and Michael P. Snyder. "A Customizable Analysis Flow in Integrative Multi-Omics." Biomolecules 10, no. 12 (November 27, 2020): 1606. http://dx.doi.org/10.3390/biom10121606.
Full textMorota, Gota. "30 Mutli-omic data integration in quantitative genetics." Journal of Animal Science 97, Supplement_2 (July 2019): 15. http://dx.doi.org/10.1093/jas/skz122.027.
Full textEscriba-Montagut, Xavier, Yannick Marcon, Augusto Anguita-Ruiz, Demetris Avraam, Jose Urquiza, Andrei S. Morgan, Rebecca C. Wilson, Paul Burton, and Juan R. Gonzalez. "Federated privacy-protected meta- and mega-omics data analysis in multi-center studies with a fully open-source analytic platform." PLOS Computational Biology 20, no. 12 (December 9, 2024): e1012626. https://doi.org/10.1371/journal.pcbi.1012626.
Full textMeunier, Lea, Guillaume Appe, Abdelkader Behdenna, Valentin Bernu, Helia Brull Corretger, Prashant Dhillon, Eleonore Fox, et al. "Abstract 6209: From data disparity to data harmony: A comprehensive pan-cancer omics data collection." Cancer Research 84, no. 6_Supplement (March 22, 2024): 6209. http://dx.doi.org/10.1158/1538-7445.am2024-6209.
Full textQuackenbush, John. "Data standards for 'omic' science." Nature Biotechnology 22, no. 5 (May 2004): 613–14. http://dx.doi.org/10.1038/nbt0504-613.
Full textBoekel, Jorrit, John M. Chilton, Ira R. Cooke, Peter L. Horvatovich, Pratik D. Jagtap, Lukas Käll, Janne Lehtiö, Pieter Lukasse, Perry D. Moerland, and Timothy J. Griffin. "Multi-omic data analysis using Galaxy." Nature Biotechnology 33, no. 2 (February 2015): 137–39. http://dx.doi.org/10.1038/nbt.3134.
Full textKrittanawong, Chayakrit. "Big Data Analytics, the Microbiome, Host-omic and Bug-omic Data and Risk for Cardiovascular Disease." Heart, Lung and Circulation 27, no. 3 (March 2018): e26-e27. http://dx.doi.org/10.1016/j.hlc.2017.07.012.
Full textZhu, Shuwei, Wenping Wang, Wei Fang, and Meiji Cui. "Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping." Mathematical Biosciences and Engineering 20, no. 12 (2023): 21098–119. http://dx.doi.org/10.3934/mbe.2023933.
Full textDemirel, Habibe Cansu, Muslum Kaan Arici, and Nurcan Tuncbag. "Computational approaches leveraging integrated connections of multi-omic data toward clinical applications." Molecular Omics 18, no. 1 (2022): 7–18. http://dx.doi.org/10.1039/d1mo00158b.
Full textChu, Su, Mengna Huang, Rachel Kelly, Elisa Benedetti, Jalal Siddiqui, Oana Zeleznik, Alexandre Pereira, et al. "Integration of Metabolomic and Other Omics Data in Population-Based Study Designs: An Epidemiological Perspective." Metabolites 9, no. 6 (June 18, 2019): 117. http://dx.doi.org/10.3390/metabo9060117.
Full textChorna, Nataliya, and Filipa Godoy-Vitorino. "A Protocol for the Multi-Omic Integration of Cervical Microbiota and Urine Metabolomics to Understand Human Papillomavirus (HPV)-Driven Dysbiosis." Biomedicines 8, no. 4 (April 8, 2020): 81. http://dx.doi.org/10.3390/biomedicines8040081.
Full textShah, Tariq, Jinsong Xu, Xiling Zou, Yong Cheng, Mubasher Nasir, and Xuekun Zhang. "Omics Approaches for Engineering Wheat Production under Abiotic Stresses." International Journal of Molecular Sciences 19, no. 8 (August 14, 2018): 2390. http://dx.doi.org/10.3390/ijms19082390.
Full textAli, Johar, and Ome Kalsoom Afridi. "Omic or Multi-omics Approach Can Save The Mankind." Current Trends in OMICS 1, no. 1 (August 16, 2021): 01–07. http://dx.doi.org/10.32350/cto.11.01.
Full textPan, Jianqiao, Baoshan Ma, Xiaoyu Hou, Chongyang Li, Tong Xiong, Yi Gong, and Fengju Song. "The construction of transcriptional risk scores for breast cancer based on lightGBM and multiple omics data." Mathematical Biosciences and Engineering 19, no. 12 (2022): 12353–70. http://dx.doi.org/10.3934/mbe.2022576.
Full textSangaralingam, Ajanthah, Abu Z. Dayem Ullah, Jacek Marzec, Emanuela Gadaleta, Ai Nagano, Helen Ross-Adams, Jun Wang, Nicholas R. Lemoine, and Claude Chelala. "‘Multi-omic’ data analysis using O-miner." Briefings in Bioinformatics 20, no. 1 (August 4, 2017): 130–43. http://dx.doi.org/10.1093/bib/bbx080.
Full textMadrid-Márquez, Laura, Cristina Rubio-Escudero, Beatriz Pontes, Antonio González-Pérez, José C. Riquelme, and Maria E. Sáez. "MOMIC: A Multi-Omics Pipeline for Data Analysis, Integration and Interpretation." Applied Sciences 12, no. 8 (April 14, 2022): 3987. http://dx.doi.org/10.3390/app12083987.
Full textvon der Heyde, Silvia, Margarita Krawczyk, Julia Bischof, Thomas Corwin, Peter Frommolt, Jonathan Woodsmith, and Hartmut Juhl. "Clinically relevant multi-omic analysis of colorectal cancer." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e16063-e16063. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16063.
Full textBadimon, Lina, Guiomar Mendieta, Soumaya Ben-Aicha, and Gemma Vilahur. "Post-Genomic Methodologies and Preclinical Animal Models: Chances for the Translation of Cardioprotection to the Clinic." International Journal of Molecular Sciences 20, no. 3 (January 25, 2019): 514. http://dx.doi.org/10.3390/ijms20030514.
Full textPalsson, Bernhard, and Karsten Zengler. "The challenges of integrating multi-omic data sets." Nature Chemical Biology 6, no. 11 (October 18, 2010): 787–89. http://dx.doi.org/10.1038/nchembio.462.
Full textYurkovich, James T., and Bernhard O. Palsson. "Quantitative -omic data empowers bottom-up systems biology." Current Opinion in Biotechnology 51 (June 2018): 130–36. http://dx.doi.org/10.1016/j.copbio.2018.01.009.
Full textYang, Xiaoxi, Yuqi Wen, Xinyu Song, Song He, and Xiaochen Bo. "Exploring the classification of cancer cell lines from multiple omic views." PeerJ 8 (August 18, 2020): e9440. http://dx.doi.org/10.7717/peerj.9440.
Full textAlizadeh, Madeline, Natalia Sampaio Moura, Alyssa Schledwitz, Seema A. Patil, Jacques Ravel, and Jean-Pierre Raufman. "Big Data in Gastroenterology Research." International Journal of Molecular Sciences 24, no. 3 (January 27, 2023): 2458. http://dx.doi.org/10.3390/ijms24032458.
Full textO'Hara, Eóin, André L. A. Neves, Yang Song, and Le Luo Guan. "The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger?" Annual Review of Animal Biosciences 8, no. 1 (February 15, 2020): 199–220. http://dx.doi.org/10.1146/annurev-animal-021419-083952.
Full textYugi, Katsuyuki, Satoshi Ohno, James R. Krycer, David E. James, and Shinya Kuroda. "Rate-oriented trans-omics: integration of multiple omic data on the basis of reaction kinetics." Current Opinion in Systems Biology 15 (June 2019): 109–20. http://dx.doi.org/10.1016/j.coisb.2019.04.005.
Full textBaena-Miret, Sergi, Ferran Reverter, and Esteban Vegas. "A framework for block-wise missing data in multi-omics." PLOS ONE 19, no. 7 (July 23, 2024): e0307482. http://dx.doi.org/10.1371/journal.pone.0307482.
Full textFutorian, David, Oren Fischman, Gali Arad, Nitzan Simchi, Omri Erez, Eran Seger, Rozanne Groen, and Kirill Pevzner. "Abstract 5410: Predictive biomarker discovery method to bridge the gap between preclinical disease model dose-response and clinical trials." Cancer Research 83, no. 7_Supplement (April 4, 2023): 5410. http://dx.doi.org/10.1158/1538-7445.am2023-5410.
Full textKemmo Tsafack, Ulrich Kemmo, Kwang Woo Ahn, Anne E. Kwitek, and Chien-Wei Lin. "Meta-Analytic Gene-Clustering Algorithm for Integrating Multi-Omics and Multi-Study Data." Bioengineering 11, no. 6 (June 8, 2024): 587. http://dx.doi.org/10.3390/bioengineering11060587.
Full textLi, Jin, Feng Chen, Hong Liang, and Jingwen Yan. "MoNET: an R package for multi-omic network analysis." Bioinformatics 38, no. 4 (October 25, 2021): 1165–67. http://dx.doi.org/10.1093/bioinformatics/btab722.
Full textZhou, Juexiao, Siyuan Chen, Yulian Wu, Haoyang Li, Bin Zhang, Longxi Zhou, Yan Hu, et al. "PPML-Omics: A privacy-preserving federated machine learning method protects patients’ privacy in omic data." Science Advances 10, no. 5 (February 2, 2024). http://dx.doi.org/10.1126/sciadv.adh8601.
Full textItai, Yonatan, Nimrod Rappoport, and Ron Shamir. "Integration of gene expression and DNA methylation data across different experiments." Nucleic Acids Research, July 3, 2023. http://dx.doi.org/10.1093/nar/gkad566.
Full textFlores, Javier E., Daniel M. Claborne, Zachary D. Weller, Bobbie-Jo M. Webb-Robertson, Katrina M. Waters, and Lisa M. Bramer. "Missing data in multi-omics integration: Recent advances through artificial intelligence." Frontiers in Artificial Intelligence 6 (February 9, 2023). http://dx.doi.org/10.3389/frai.2023.1098308.
Full textDrouard, Gabin, Juha Mykkänen, Jarkko Heiskanen, Joona Pohjonen, Saku Ruohonen, Katja Pahkala, Terho Lehtimäki, et al. "Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data." BMC Medical Informatics and Decision Making 24, no. 1 (May 2, 2024). http://dx.doi.org/10.1186/s12911-024-02521-3.
Full textArehart, Christopher H., John D. Sterrett, Rosanna L. Garris, Ruth E. Quispe-Pilco, Christopher R. Gignoux, Luke M. Evans, and Maggie A. Stanislawski. "Poly-omic risk scores predict inflammatory bowel disease diagnosis." mSystems, December 14, 2023. http://dx.doi.org/10.1128/msystems.00677-23.
Full textDowning, Tim, and Nicos Angelopoulos. "A primer on correlation-based dimension reduction methods for multi-omics analysis." Journal of The Royal Society Interface 20, no. 207 (October 2023). http://dx.doi.org/10.1098/rsif.2023.0344.
Full textLiu, Yufang, Yongkai Chen, Haoran Lu, Wenxuan Zhong, Guo-Cheng Yuan, and Ping Ma. "Orthogonal multimodality integration and clustering in single-cell data." BMC Bioinformatics 25, no. 1 (April 25, 2024). http://dx.doi.org/10.1186/s12859-024-05773-y.
Full textHernández-Lemus, Enrique, and Soledad Ochoa. "Methods for multi-omic data integration in cancer research." Frontiers in Genetics 15 (September 19, 2024). http://dx.doi.org/10.3389/fgene.2024.1425456.
Full textNardini, Christine, Jennifer Dent, and Paolo Tieri. "Editorial: Multi-omic data integration." Frontiers in Cell and Developmental Biology 3 (July 7, 2015). http://dx.doi.org/10.3389/fcell.2015.00046.
Full textMuller, Efrat, Itamar Shiryan, and Elhanan Borenstein. "Multi-omic integration of microbiome data for identifying disease-associated modules." Nature Communications 15, no. 1 (March 23, 2024). http://dx.doi.org/10.1038/s41467-024-46888-3.
Full textZhang, Qiang, Xiang-He Meng, Chuan Qiu, Hui Shen, Qi Zhao, Lan-Juan Zhao, Qing Tian, Chang-Qing Sun, and Hong-Wen Deng. "Integrative analysis of multi-omics data to detect the underlying molecular mechanisms for obesity in vivo in humans." Human Genomics 16, no. 1 (May 14, 2022). http://dx.doi.org/10.1186/s40246-022-00388-x.
Full textMadhumita, Archit Dwivedi, and Sushmita Paul. "Recursive integration of synergised graph representations of multi-omics data for cancer subtypes identification." Scientific Reports 12, no. 1 (September 17, 2022). http://dx.doi.org/10.1038/s41598-022-17585-2.
Full textS, Kishaanth, Abishek VP, Lokeswari Y. Venkataramana, and Venkata Vara Prasad D. "Enhancing Breast Cancer Survival Prognosis through Omic and Non-Omic Data Integration." Clinical Breast Cancer, August 2024. http://dx.doi.org/10.1016/j.clbc.2024.08.009.
Full textKnepper, Mark A. "Utilizing Omic Data to Understand Integrative Physiology." Physiology, February 12, 2025. https://doi.org/10.1152/physiol.00045.2024.
Full textStassen, Shobana V., Gwinky G. K. Yip, Kenneth K. Y. Wong, Joshua W. K. Ho, and Kevin K. Tsia. "Generalized and scalable trajectory inference in single-cell omics data with VIA." Nature Communications 12, no. 1 (September 20, 2021). http://dx.doi.org/10.1038/s41467-021-25773-3.
Full textHabowski, A. N., T. J. Habowski, and M. L. Waterman. "GECO: gene expression clustering optimization app for non-linear data visualization of patterns." BMC Bioinformatics 22, no. 1 (January 25, 2021). http://dx.doi.org/10.1186/s12859-020-03951-2.
Full textBornhofen, Elesandro, Dario Fè, Istvan Nagy, Ingo Lenk, Morten Greve, Thomas Didion, Christian S. Jensen, Torben Asp, and Luc Janss. "Genetic architecture of inter-specific and -generic grass hybrids by network analysis on multi-omics data." BMC Genomics 24, no. 1 (April 25, 2023). http://dx.doi.org/10.1186/s12864-023-09292-7.
Full textWang, Ruo Han, Jianping Wang, and Shuai Cheng Li. "Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data." Nucleic Acids Research, July 5, 2023. http://dx.doi.org/10.1093/nar/gkad570.
Full text