Academic literature on the topic 'Online learning methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Online learning methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Online learning methods"
Tarasenko, M. "ONLINE LEARNING: INTERACTIVE METHODS." Pedagogy of the formation of a creative person in higher and secondary schools 2, no. 77 (2021): 49–53. http://dx.doi.org/10.32840/1992-5786.2021.77-2.9.
Full textTekin, Cem, and Mingyan Liu. "Online Learning Methods for Networking." Foundations and Trends® in Networking 8, no. 4 (2013): 281–409. http://dx.doi.org/10.1561/1300000050.
Full textSalmons, Janet. "Case methods for online learning." eLearn 2003, no. 6 (June 2003): 2. http://dx.doi.org/10.1145/863928.863932.
Full textPRASETYA, Prita, and Sekar Wulan PRASETYANINGTYAS. "LEARNING STATISTICAL METHODES WITH ONLINE ONLINE COURSE." ICCD 3, no. 1 (October 27, 2021): 312–15. http://dx.doi.org/10.33068/iccd.vol3.iss1.368.
Full textVilkhovchenko, Nadiia P. "ESP distance learning methods At technical universities." Bulletin of Alfred Nobel University Series "Pedagogy and Psychology» 1, no. 23 (June 2022): 116–23. http://dx.doi.org/10.32342/2522-4115-2022-1-23-14.
Full textRini, Hesty Prima, and Dewi Khrisna Sawitri. "Effectiveness of Online Learning: The Learning Methods and Media." Ilomata International Journal of Social Science 3, no. 1 (February 10, 2022): 330–39. http://dx.doi.org/10.52728/ijss.v3i1.389.
Full textTîrziu, Andreea-Maria, and Cătălin I. Vrabie. "NET Generation. Thinking outside the box by using online learning methods." New Trends and Issues Proceedings on Humanities and Social Sciences 2, no. 7 (January 27, 2016): 41–47. http://dx.doi.org/10.18844/gjhss.v2i7.1178.
Full textSampe, Maria Zefanya, and Syafrudi Syafrudi. "ONLINE MATHEMATICS LEARNING STRATEGY APPROACH: TEACHING METHODS AND LEARNING ASSESSMENT." Jurnal Pendidikan Matematika (JUPITEK) 7, no. 1 (July 7, 2024): 42–55. http://dx.doi.org/10.30598/jupitekvol7iss1pp42-55.
Full textLoi, Chek Kim, Jason Miin Hwa Lim, Norazah Mohd Suki, and Hock Ann Lee. "Exploring University Students’ Online Learning Readiness: A Mixed Methods Study of Forced Online Learning." Journal of Language and Education 10, no. 1 (March 30, 2024): 49–67. http://dx.doi.org/10.17323/jle.2024.16016.
Full textNF, Jhoanita, and Siti Khadijah. "PARENTS’ PERCEPTIONS OF ONLINE LEARNING METHODS: A QUANTITATIVE STUDY." Makna: Jurnal Kajian Komunikasi, Bahasa, dan Budaya 10, no. 1 (March 9, 2022): 21–30. http://dx.doi.org/10.33558/makna.v10i1.3242.
Full textDissertations / Theses on the topic "Online learning methods"
Qin, Lei. "Online machine learning methods for visual tracking." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0017/document.
Full textWe study the challenging problem of tracking an arbitrary object in video sequences with no prior knowledge other than a template annotated in the first frame. To tackle this problem, we build a robust tracking system consisting of the following components. First, for image region representation, we propose some improvements to the region covariance descriptor. Characteristics of a specific object are taken into consideration, before constructing the covariance descriptor. Second, for building the object appearance model, we propose to combine the merits of both generative models and discriminative models by organizing them in a detection cascade. Specifically, generative models are deployed in the early layers for eliminating most easy candidates whereas discriminative models are in the later layers for distinguishing the object from a few similar "distracters". The Partial Least Squares Discriminant Analysis (PLS-DA) is employed for building the discriminative object appearance models. Third, for updating the generative models, we propose a weakly-supervised model updating method, which is based on cluster analysis using the mean-shift gradient density estimation procedure. Fourth, a novel online PLS-DA learning algorithm is developed for incrementally updating the discriminative models. The final tracking system that integrates all these building blocks exhibits good robustness for most challenges in visual tracking. Comparing results conducted in challenging video sequences showed that the proposed tracking system performs favorably with respect to a number of state-of-the-art methods
Kovanovic, Vitomir. "Assessing cognitive presence using automated learning analytics methods." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28759.
Full textJohnson, Alicia Leinaala. "Exploration of Factors Affecting the Self-Efficacy of Asynchronous Online Learners: a Mixed Methods Study." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77518.
Full textPh. D.
Conesa, Gago Agustin. "Methods to combine predictions from ensemble learning in multivariate forecasting." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103600.
Full textHäglund, Emil. "Estimating Prediction Intervals with Machine Learning and Monte Carlo Methods in Online Advertising." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282826.
Full textReklam på nätet är en komplex miljö. Mängden hemsidor, plattformar och format såväl som trenden med programmatiska reklamköp gör det svårt att utvärdera planerad reklam beträffande förväntad kostnad och värde. Den här rapporten använder maskininlärning för att prediktera kostnaden för tusen visningar (CPM), ett mått på annonseringseffektivitet, för ett planerat reklamköp. Random forest och neurala nätverksmodeller jämfördes med avseende på deras förmåga att producera punktskattningar och prediktionsintervall. För att skatta prediktionsintervall för neurala nätverk användes Monte Carlo dropout och skattning av datamängdens brusnivå. För random forest användes en Monte Carlo metod där ett stort antal modeller parametriseras med bootstrapping. Implementerade algoritmer jämfördes med 5x2cv test. Random forest och neural nätverksmodellerna producerade liknande precision för punktskattningar. För att erhålla giltiga prediktionsintervall avseende täckningssannolikhet för random forest krävdes det att parametrar justerades för att öka de enskilda beslutsträdens varians. Detta påverkade precisionen för punktskattningar negativt och prediktionsintervallen för random forest var mindre optimala än de som skattades av neurala nätverksalgoritmen. Denna skillnad i förmåga att skatta prediktionsintervall bekräftades statistiskt av 5x2cv testet.
Wright, Robert Demmon. "Students' Attitudes Towards Rapport-building Traits and Practices in Online Learning Environments." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc177265/.
Full textLuca, Joseph. "Developing generic skills for tertiary students in an online learning environment." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2002. https://ro.ecu.edu.au/theses/713.
Full textCunningham, E. Ann. "Comparison of Student Success by Course Delivery Methods at an Eastern Tennessee Community College." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etd/2585.
Full textJoshi, Apoorva. "Trajectory-based methods to predict user churn in online health communities." Thesis, University of Iowa, 2018. https://ir.uiowa.edu/etd/6152.
Full textTunningley, Joan M. "Self-Regulated Learning and Reflective Journaling in an Online Interprofessional Course: A Mixed Methods Study." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1511799445626182.
Full textBooks on the topic "Online learning methods"
plc, Epic Group, ed. Methods: A practical guide to the methods used in online learning. Brighton: Epic Group, 1999.
Find full textA, Fisher Cheryl, and Rietschel Matthew J, eds. Developing online learning environments in nursing education. 3rd ed. New York, NY: Springer, 2014.
Find full text1966-, Lindberg J. Ola, and Olofsson Anders D. 1973-, eds. Online learning communities and teacher professional development: Methods for improved education delivery. Hershey, PA: Information Science Reference, 2010.
Find full text1966-, Lambropoulos Niki, and Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Find full text1966-, Lambropoulos Niki, and Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Find full text1966-, Lambropoulos Niki, and Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Find full textLoke, Jennifer C. F. Critical discourse analysis of interprofessional online learning in health care education. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textConceição, Simone C. O., 1963-, ed. Motivating and retaining online students: Research-based strategies that work. San Francisco, CA: Jossey-Bass, a Wiley brand, 2014.
Find full textTekin and Mingyan Liu. Online Learning Methods for Networking. Now Publishers, 2015.
Find full textLOK, Johnny Ch. Advantages Comparision Between Classroom and Online Learning Methods. Independently Published, 2020.
Find full textBook chapters on the topic "Online learning methods"
Bartz-Beielstein, Thomas. "Special Requirements for Online Machine Learning Methods." In Online Machine Learning, 63–69. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7007-0_6.
Full textConceição, Simone C. O., and Susan M. Yelich Biniecki. "Closed and Open Online Discussion Forums." In Methods for Facilitating Adult Learning, 316–32. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003446019-25.
Full textMittelman, Rachel J. "Overcoming Resistance to Teaching History Online and Methods of Engagement." In Teaching and Learning History Online, 7–14. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003258414-3.
Full textGunawardena, Charlotte Nirmalani, Nick V. Flor, and Damien M. Sánchez. "Social Construction of Knowledge (SCK) Platforms, Scraping, and Methods." In Knowledge Co-Construction in Online Learning, 70–77. New York: Routledge, 2025. https://doi.org/10.4324/9781003324461-7.
Full textRay, Asmita, Vishal Goyal, and Samir Kumar Bandyopadhyay. "Student Stress Detection in Online Learning During Outbreak." In Computational Methods in Psychiatry, 259–81. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6637-0_13.
Full textGunawardena, Charlotte Nirmalani, Nick V. Flor, and Damien M. Sánchez. "Social Learning Analytic Methods (SLAM) for Examining Online Social Dynamics." In Knowledge Co-Construction in Online Learning, 57–69. New York: Routledge, 2025. https://doi.org/10.4324/9781003324461-6.
Full textPark, Sunyoung, Boreum (Jenny) Ju, and Shinhee Jeong. "Adopting Massive Open Online Courses (MOOCs) in Adult Learning Contexts." In Methods for Facilitating Adult Learning, 333–49. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003446019-26.
Full textSiska, Jumiati, Meydia Afrina, Sudarwan Danim, and Agus Susanta. "The Effectiveness of Demonstrative Learning Methods in Improving Students’ Learning Outcomes." In Online Conference of Education Research International (OCERI 2023), 319–25. Paris: Atlantis Press SARL, 2023. http://dx.doi.org/10.2991/978-2-38476-108-1_31.
Full textKatiyar, Kalpana, Hera Fatma, and Simran Singh. "Student’s Stress Detection in Online Learning During the Outbreak." In Computational Methods in Psychiatry, 335–48. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6637-0_16.
Full textOiwa, Hidekazu, Shin Matsushima, and Hiroshi Nakagawa. "Frequency-Aware Truncated Methods for Sparse Online Learning." In Machine Learning and Knowledge Discovery in Databases, 533–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23783-6_34.
Full textConference papers on the topic "Online learning methods"
Atia, Hend Abdelbakey, Magdy Aboul-Ela, Christina Albert Reyad, and Nancy Awadallah Awad. "Online Payments Fraud Detection Using Machine Learning Techniques." In 2024 Intelligent Methods, Systems, and Applications (IMSA), 402–9. IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652834.
Full textZhang, Hao, Liang Huang, Kai Zhao, and Ryan McDonald. "Online Learning for Inexact Hypergraph Search." In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 908–13. Stroudsburg, PA, USA: Association for Computational Linguistics, 2013. http://dx.doi.org/10.18653/v1/d13-1093.
Full textJung, Hoin, and Xiaoqian Wang. "Fairness-Aware Online Positive-Unlabeled Learning." In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, 170–85. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-industry.14.
Full textShdefat, Ahmed Younes, Mennatallah Mohamed, Shahd Khaled, Farrah Hany, Hanaa Fathi, and Diaa Salama AbdElminaam. "Comparative Analysis of Machine Learning Models in Online Payment Fraud Prediction." In 2024 Intelligent Methods, Systems, and Applications (IMSA), 243–50. IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652861.
Full textDe Silva, D. I., and K. S. N. Athukorala. "Advancing Online Education: An Interactive Framework for Aligning Teaching Methods with Learning Styles." In 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–7. IEEE, 2024. https://doi.org/10.1109/icses63760.2024.10910891.
Full textHillier, Michael, Florian Wellmann, Boyan Brodaric, Eric de Kemp, and Ernst Schetselaar. "MACHINE LEARNING METHODS FOR 3D GEOLOGICAL MODEL CONSTRUCTION." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-355922.
Full textSaenal, Selfiana, Syakhruni Syakhruni, and Muh Kurniawan Adi Kusuma Wiharja. "Online Learning Methods for Learning Dance at School." In 1st World Conference on Social and Humanities Research (W-SHARE 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220402.056.
Full textLu, Lyujian, Hua Wang, Hua Wang, Yaoguo Li, Yaoguo Li, Thomas Monecke, Thomas Monecke, Hoon Seo, and Hoon Seo. "PREDICTING 3D GEOSPATIAL DATA USING MACHINE LEARNING-BASED IMPUTATION METHODS." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-356905.
Full textLui, Timothy, Daniel Gregory, Sharon A. Cowling, and Well-Shen Lee. "APPLYING MACHINE LEARNING METHODS TO PREDICT GEOLOGY USING SOIL SAMPLE GEOCHEMISTRY." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-359454.
Full textLuo, Hongyin, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. "Online Learning of Interpretable Word Embeddings." In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/d15-1196.
Full textReports on the topic "Online learning methods"
Stanley, April Elisha, and Arienne McCracken. Methods for increasing student learning in an online undergraduate analysis of apparel and production course. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-353.
Full textYatsenko, Halyna, and Andriy Yatsenko. Використання креативних методів навчання під час викладання дисциплін «Історія української журналістики» і «Креативний текст». Ivan Franko National University of Lviv, March 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11736.
Full textTusiime, Hilary Mukwenda, and Nahom Eyasu Alemu. Embracing E-Learning in Public Universities in Ethiopia and Uganda. Mary Lou Fulton Teachers College, December 2023. http://dx.doi.org/10.14507/mcf-eli.j2.
Full textClement, Timothy, and Brett Vaughan. Evaluation of a mobile learning platform for clinical supervision. University of Melbourne, 2021. http://dx.doi.org/10.46580/124369.
Full textAkhmedjanova, Diana, and Komiljon Karimov. Covid-19’s Effects on Higher Education in Uzbekistan: The Case of Westminster International University in Tashkent. TOSHKENT SHAHRIDAGI XALQARO VESTMINSTER UNIVERSITETI, November 2020. https://doi.org/10.70735/azco9450.
Full textNahorniak, Maya. Occupation of profession: Methodology of laboratory classes from practically-oriented courses under distance learning (on an example of discipline «Radioproduction»). Ivan Franko National University of Lviv, February 2022. http://dx.doi.org/10.30970/vjo.2022.51.11412.
Full textSchmidt-Sane, Megan, Tabitha Hrynick, Erica Nelson, and Tom Barker. Mutual Learning for Policy Impact: Insights from CORE. Adapting research methods in the context of Covid-19. Institute of Development Studies (IDS), December 2021. http://dx.doi.org/10.19088/core.2021.008.
Full textFalfushynska, Halina I., Bogdan B. Buyak, Hryhorii V. Tereshchuk, Grygoriy M. Torbin, and Mykhailo M. Kasianchuk. Strengthening of e-learning at the leading Ukrainian pedagogical universities in the time of COVID-19 pandemic. [б. в.], June 2021. http://dx.doi.org/10.31812/123456789/4442.
Full textДирда, Ірина Анатоліївна, Марина Вікторівна Малоіван, and Анна Олександрівна Томіліна. Innovative online teaching tools for students who major in english philology: challenges and opportinutuies. Видавнича група «Наукові перспективи», 2023. http://dx.doi.org/10.31812/123456789/7078.
Full textDanylchuk, Hanna B., and Serhiy O. Semerikov. Advances in machine learning for the innovation economy: in the shadow of war. Криворізький державний педагогічний університет, August 2023. http://dx.doi.org/10.31812/123456789/7732.
Full text