To see the other types of publications on this topic, follow the link: Oocyte Maturation Factors.

Journal articles on the topic 'Oocyte Maturation Factors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Oocyte Maturation Factors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Rui-Hua, Yong-Hai Li, Li-Hong Jiao, Xiao-Ning Wang, Hong Wang, and Wei-Hua Wang. "Extracellular and intracellular factors affecting nuclear and cytoplasmic maturation of porcine oocytes collected from different sizes of follicles." Zygote 10, no. 3 (August 2002): 253–60. http://dx.doi.org/10.1017/s0967199402002332.

Full text
Abstract:
Nuclear and cytoplasmic maturation of porcine oocytes collected from different sizes of follicles were examined. Oocyte-cumulus complexes were collected from small (1-2 mm in diameter), medium (3-6 in diameter) and large (7-8 mm in diameter) follicles and cultured in a modified tissue culture medium 199 for 44 h. Nuclear maturation was evaluated after orcein staining, and cytoplasmic maturation was evaluated by intracellular glutathione (GSH) assay. Oocyte diameter, cumulus morphology, steroid hormones and glutathione in the follicular fluid (FF), were also examined. Significantly higher proportions of oocytes collected from large and medium follicles reached metaphase II than did oocytes from small follicles. Oocytes from small follicles also had a smaller size. GSH content was significantly higher (p < 0.05) in oocytes from large (14.24 ± 2.1 pmol/oocyte) and medium (13.69 ± 1.5 pmol/oocyte) follicles than in oocytes from small (9.44 ± 1.28 pmol/oocyte) follicles just after collection. After maturation, oocytes from medium follicles had a higher GSH concentration than oocytes from small follicles. It was found that between 49.7 ± 5.18 nM and 52.25 ± 0.78 nM GSH was present in FF but there was no statistical difference between follicle sizes. A significantly higher (p < 0.001) estradiol level was present in FF from large follicles (299.2 ± 68.6 ng/ml) than from medium (40.0 ± 6.4 ng/ml) and small (41.2 ± 3.7 ng/ml) follicles. Progesterone concentrations in FF from large (281.6 ± 45.9 ng/ml) and medium (267.5 ± 38.6 ng/ml) follicles were significantly higher than that (174.7 ± 22.0 ng/ml) from small follicles. These results indicate that the oocyte's ability to accumulate intracellular GSH during maturation, and extracellular steroid hormones and cumulus cells, affect the competence of porcine oocytes to undergo nuclear and cytoplasmic maturation.
APA, Harvard, Vancouver, ISO, and other styles
2

Rodriguez, Karina F., and Charlotte E. Farin. "Gene transcription and regulation of oocyte maturation." Reproduction, Fertility and Development 16, no. 2 (2004): 55. http://dx.doi.org/10.1071/rd03078.

Full text
Abstract:
The developmental potential of an embryo is dependent on the developmental potential of the oocyte from which it originates. The process of oocyte maturation is critical for the efficient application of biotechnologies such as in vitro embryo production and mammalian cloning. However, the overall efficiency of in vitro maturation remains low because oocytes matured in vitro have a lower developmental competence than oocytes matured in vivo. Furthermore, oocytes that have been exposed to gonadotropins have greater developmental competence than oocytes matured in the absence of gonadotropins. By understanding the molecular mechanisms underlying gonadotropin-induced maturation, improvement in oocyte maturation technologies may be expected as procedures to manipulate specific factors involved in signalling for resumption of meiosis are identified. The present review will focus on transcriptional mechanisms underlying the maturation of mammalian oocytes in vitro, as well as on the acquisition of oocyte developmental competence. In addition, a working model for the transcriptional control of mammalian oocyte maturation is proposed.
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Bo, Naresh Doni Jayavelu, Stephanie L. Battle, Jessica C. Mar, Timothy Schimmel, Jacques Cohen, and R. David Hawkins. "Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation." PLOS ONE 15, no. 11 (November 5, 2020): e0241698. http://dx.doi.org/10.1371/journal.pone.0241698.

Full text
Abstract:
Oocyte maturation is a coordinated process that is tightly linked to reproductive potential. A better understanding of gene regulation during human oocyte maturation will not only answer an important question in biology, but also facilitate the development of in vitro maturation technology as a fertility treatment. We generated single-cell transcriptome and used our previously published single-cell methylome data from human oocytes at different maturation stages to investigate how genes are regulated during oocyte maturation, focusing on the potential regulatory role of non-CpG methylation. DNMT3B, a gene encoding a key non-CpG methylation enzyme, is one of the 1,077 genes upregulated in mature oocytes, which may be at least partially responsible for the increased non-CpG methylation as oocytes mature. Non-CpG differentially methylated regions (DMRs) between mature and immature oocytes have multiple binding motifs for transcription factors, some of which bind with DNMT3B and may be important regulators of oocyte maturation through non-CpG methylation. Over 98% of non-CpG DMRs locate in transposable elements, and these DMRs are correlated with expression changes of the nearby genes. Taken together, this data indicates that global non-CpG hypermethylation during oocyte maturation may play an active role in gene expression regulation, potentially through the interaction with transcription factors.
APA, Harvard, Vancouver, ISO, and other styles
4

Fathi, Mohamed, and Amr F. Elkarmoty. "Effect of adding growth factors during in vitro maturation on the developmental potentials of ewe oocytes selected by brilliant cresyl blue staining." Veterinary World 14, no. 2 (February 22, 2021): 452–56. http://dx.doi.org/10.14202/vetworld.2021.452-456.

Full text
Abstract:
Aim: Several factors had been concerned with the developmental competence of the sheep oocyte. This study aims to investigate the effect of adding growth factors (insulin-like growth factor 1 [IGF-1] and epidermal growth factor [EGF]) in the maturation medium of ewe oocytes selected based on brilliant cresyl blue (BCB) screening on in vitro maturation (IVM), fertilization, and pre-implantation embryo development. Materials and Methods: Cumulus-oocyte complexes (COCs) were obtained from the ovaries of slaughtered ewes by either aspiration or slicing techniques. COCs were in vitro matured in a medium containing IGF-1 and EGF (control group). For BCB screening, oocytes were stained and divided into BCB+ oocytes that matured in the same maturation conditions without adding growth factors (Group 2) or in the presence of growth factors (Group 3), and BCB– oocytes that matured in medium without growth factors (Group 4) or with growth factors (Group 5). Results: The supplementation of the maturation medium with growth factors during IVM of (BCB+) oocytes resulted in a significant increase in nuclear maturation rate (90.9%), fertilization rate (75.6%), and embryo developmental rates (60.0%, 46.7%, and 33.3% for cleavage, morula, and blastocyst, respectively). Conclusion: Culturing BCB+ oocytes in a maturation medium containing both EGF and IGF-1 showed a significant improvement in nuclear maturation, fertilization, and pre-implantation embryo development in vitro.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Seok Hee. "Human Adipose-Derived Stem Cells’ Paracrine Factors in Conditioned Medium Can Enhance Porcine Oocyte Maturation and Subsequent Embryo Development." International Journal of Molecular Sciences 22, no. 2 (January 8, 2021): 579. http://dx.doi.org/10.3390/ijms22020579.

Full text
Abstract:
An essential requirement for the success of in vitro maturation (IVM) of the oocyte is to provide an optimal microenvironment similar to in vivo conditions. Recently, somatic cell-based coculture or supplementation of a conditioned medium during IVM has been performed to obtain better quality of oocytes, because they mimic the in vivo reproductive tract by secreting paracrine factors. In this study, human adipose-derived stem cells (ASC) and their conditioned medium (ASC-CM) were applied to IVM of porcine oocytes to evaluate the effectiveness of ASC on oocyte development and subsequent embryo development. In results, both ASC and ASC-CM positively influence on oocyte maturation and embryo development by regulating growth factor receptors (VEGF, FGFR, and IGFR), apoptosis (BCL2), cumulus expansion (PTGS2, HAS2, and TNFAIP6), and oocyte maturation-related genes (GDF9 and BMP15). In particular, the fluorescence intensity of GDF9 and BMP15 was markedly upregulated in the oocytes from the ASC-CM group. Furthermore, significantly high levels of growth factors/cytokine including VEGF, bFGF, IGF-1, IL-10, and EGF were observed in ASC-CM. Additionally, the ASC-CM showed active scavenging activity by reducing the ROS production in a culture medium. Consequently, for the first time, this study demonstrated the effect of human ASC-CM on porcine oocyte development and the alteration of mRNA transcript levels in cumulus–oocyte complexes.
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Seok Hee. "Human Adipose-Derived Stem Cells’ Paracrine Factors in Conditioned Medium Can Enhance Porcine Oocyte Maturation and Subsequent Embryo Development." International Journal of Molecular Sciences 22, no. 2 (January 8, 2021): 579. http://dx.doi.org/10.3390/ijms22020579.

Full text
Abstract:
An essential requirement for the success of in vitro maturation (IVM) of the oocyte is to provide an optimal microenvironment similar to in vivo conditions. Recently, somatic cell-based coculture or supplementation of a conditioned medium during IVM has been performed to obtain better quality of oocytes, because they mimic the in vivo reproductive tract by secreting paracrine factors. In this study, human adipose-derived stem cells (ASC) and their conditioned medium (ASC-CM) were applied to IVM of porcine oocytes to evaluate the effectiveness of ASC on oocyte development and subsequent embryo development. In results, both ASC and ASC-CM positively influence on oocyte maturation and embryo development by regulating growth factor receptors (VEGF, FGFR, and IGFR), apoptosis (BCL2), cumulus expansion (PTGS2, HAS2, and TNFAIP6), and oocyte maturation-related genes (GDF9 and BMP15). In particular, the fluorescence intensity of GDF9 and BMP15 was markedly upregulated in the oocytes from the ASC-CM group. Furthermore, significantly high levels of growth factors/cytokine including VEGF, bFGF, IGF-1, IL-10, and EGF were observed in ASC-CM. Additionally, the ASC-CM showed active scavenging activity by reducing the ROS production in a culture medium. Consequently, for the first time, this study demonstrated the effect of human ASC-CM on porcine oocyte development and the alteration of mRNA transcript levels in cumulus–oocyte complexes.
APA, Harvard, Vancouver, ISO, and other styles
7

Gill, Arvind, Michelle Jamnongjit, and Stephen R. Hammes. "Androgens Promote Maturation and Signaling in Mouse Oocytes Independent of Transcription: A Release of Inhibition Model for Mammalian Oocyte Meiosis." Molecular Endocrinology 18, no. 1 (January 1, 2004): 97–104. http://dx.doi.org/10.1210/me.2003-0326.

Full text
Abstract:
Abstract Normal fertility in females depends upon precise regulation of oocyte meiosis. Oocytes are arrested in prophase I of meiosis until just before ovulation, when meiosis, or maturation, is triggered to resume. Whereas sex steroids appear to promote maturation in fish and amphibians, the factors regulating mammalian oocyte maturation have remained obscure. We show here that, similar to lower vertebrates, steroids may play a role in promoting the release of meiotic inhibition in mammals. Specifically, testosterone induced maturation of mouse oocytes arrested in meiosis, as well as activation of MAPK and cyclin-dependent kinase 1 signaling. These responses appeared to be transcription independent and might involve signaling through classical androgen receptors expressed in the oocytes. Our results are the first to show that sex steroids can modulate meiosis in mammalian oocytes and suggest a model whereby dominant ovarian follicles in mammals may produce sufficient androgen and/or other steroids to overcome constitutive inhibitory signals and allow oocyte maturation and subsequent ovulation to occur.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, M., S. Hu, L. Cox, M. Regouski, H. Rutigliano, C. Isom, and I. Polejaeva. "307 MATURATION RATE AND GENE EXPRESSION ANALYSIS OF GOAT OOCYTES SELECTED BY FOLLICLE SIZE AND BRILLIANT CRESYL BLUE STAINING." Reproduction, Fertility and Development 27, no. 1 (2015): 242. http://dx.doi.org/10.1071/rdv27n1ab307.

Full text
Abstract:
Oocyte quality plays a critical role in determining the success of embryo development. Studies on cattle and goats indicate that oocytes derived from large follicles (LFO) have greater developmental competence than those derived from small follicles (SFO). Brilliant cresyl blue (BCB) staining determines the activity of glucose-6-phosphate dehydrogenase and is a commonly used noninvasive marker of oocyte competence. Studies in pigs, goats, cows, mice, and dogs showed that the maturation and blastocyst developmental rate of BCB+ oocytes is significantly higher than BCB– oocytes. The aim of this study was to evaluate the maturation rate of goat oocytes selected based on follicular size and BCB staining and compare their relative patterns of gene expression. Maturation rate and gene expression profile were expected to be different in these oocyte groups. Cumulus-oocyte complexes were recovered from abattoir-derived ovaries using a slicing technique. Eleven rounds of oocyte maturation and 4 rounds of BCB staining were carried out. During each replicate, oocytes from large (≥3 mm) and small (<3 mm) follicles were collected separately from the same group of ovaries. Oocyte maturation rates were 54.3 ± 5.4% for LFO (n = 378) and only 33.5 ± 3.7% for SFO (n = 981; P < 0.01). The BCB+ (n = 223) oocytes yielded a significantly higher maturation rate than the BCB– (n = 194) oocytes (56.1 ± 1.8 v. 20.6 ± 3.8%, respectively; P < 0.001). Gene expression analysis was conducted on individual MII oocytes (21 oocytes per group). Specific target amplification was performed on a single oocyte directly by using the CellsDirect One-Step qRT–PCR Kit (Invitrogen). Quantitative real-time PCR was then performed using the 48.48 BioMark platform from Fluidigm. Forty two genes were selected from the following categories: growth factors, transcription factors, metabolism, pluripotency, cell cycle, apoptosis, and oocyte-specific genes. Relative expression values were calculated using the ΔΔCT (fold change) method and analysed by ANOVA. The significance was assigned at P < 0.05. The relative expression of CCNA2, CDK2, CCNB1, POU5F1, SOX2, EGF, FGF2, GDF9, ZP3, BCL2, GJA1, DDR1, PFKFB3, IGF2R, and GRB10 was significantly greater (P < 0.05) in both LFO and BCB+ oocytes compared to SFO and BCB– oocytes, respectively. The proapoptotic gene BAX, the ACSL3 gene involved in fatty acid oxidation, and the growth factor IGF1 were expressed significantly higher (P < 0.05) in SFO compared to LFO. By investigating these differentially expressed transcripts, we will better understand pathways involved in oocyte developmental competence and potentially use them as markers of oocyte quality. We expect that the ability to select oocytes of better quality based on BCB staining will improve outcomes of IVF and SCNT.
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, F. Z., and R. M. Moor. "Nuclear-cytoplasmic interactions during ovine oocyte maturation." Development 111, no. 1 (January 1, 1991): 171–80. http://dx.doi.org/10.1242/dev.111.1.171.

Full text
Abstract:
The present studies have been undertaken to investigate the interactions that occur between the nucleus and cytoplasm of ovine oocytes at various stages during meiotic maturation. We report that the nucleus of ovine fully grown dictyate stage oocytes can be efficiently removed by a microsurgical enucleation procedure. It is demonstrated that between the initiation of maturation and germinal vesicle breakdown certain newly synthesized polypeptides are selectively sequestered in the oocyte nucleus and the major sequestered polypeptide has a relative molecular mass of 28,000, which represent at least 9% of the total labelled polypeptides transferred to the oocyte nucleus during the first 4 h of maturation. The experiments provide evidence that the removal of the oocyte nucleus at various times before germinal vesicle breakdown (GVBD) does not prevent the major series of changes in protein synthesis that occurs after entry into a metaphase. We conclude therefore that the mixing of the nucleoplasm and cytoplasm is not essential for the initiation or progression of the protein reprogramming process during maturation. In addition, the experiments show that the development of the ability to condense chromatin during ovine oocyte maturation is independent of the oocyte nucleus. The combined results strongly support the hypothesis that the extensive series of translational changes that occur in oocytes during maturation are controlled by cytoplasmic rather than nuclear factors.
APA, Harvard, Vancouver, ISO, and other styles
10

Giotto, Angelo Bertani, Daniela Dos Santos Brum, Francielli Weber Santos, Antonio Carlos Galarça Guimarães, Cibele Garcia Moreira Gonçalves, Cecilia Urquiza Machado Pavin, Natalia Picoli Folchini, Aline Barros Moyses, Daniele Missio, and Fábio Gallas Leivas. "Oxygen tension and oocyte density during in vitro maturation affect the in vitro fertilization of bovine oocytes." Semina: Ciências Agrárias 36, no. 6Supl2 (December 16, 2015): 4277. http://dx.doi.org/10.5433/1679-0359.2015v36n6sup2p4277.

Full text
Abstract:
Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20%) with different oocyte densities (1:10?l or 1:20?l) in the in vitro maturation (IVM) of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH) and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P>0.05). In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P<0.05). Additionally, ROS levels in IVM medium were higher in treatments with high oocyte density by volume of medium, which was independent of oxygen tension (P<0.05). In Experiment III, the fertilization and penetration rates were higher in the treatment with 20% oxygen tension and high oocyte density (P<0.05). Furthermore, a high incidence of polyspermy was observed in groups with high oxygen tension and low oocyte density (P<0.05). In conclusion, the results of this study indicate an interaction between oxygen tension and oocyte density, which increases ROS production in certain associations and subsequently influences the rates of in vitro fertilization of bovine oocytes. The improved rates of IVF were obtained when IVM was conducted using 20% oxygen tension and high oocyte density (1:20 ul).
APA, Harvard, Vancouver, ISO, and other styles
11

Wu, Di, and Jurrien Dean. "EXOSC10 sculpts the transcriptome during the growth-to-maturation transition in mouse oocytes." Nucleic Acids Research 48, no. 10 (April 20, 2020): 5349–65. http://dx.doi.org/10.1093/nar/gkaa249.

Full text
Abstract:
Abstract Growing mammalian oocytes accumulate substantial amounts of RNA, most of which is degraded during subsequent meiotic maturation. The growth-to-maturation transition begins with germinal vesicle or nuclear envelope breakdown (GVBD) and is critical for oocyte quality and early development. The molecular machinery responsible for the oocyte transcriptome transition remains unclear. Here, we report that an exosome-associated RNase, EXOSC10, sculpts the transcriptome to facilitate the growth-to-maturation transition of mouse oocytes. We establish an oocyte-specific conditional knockout of Exosc10 in mice using CRISPR/Cas9 which results in female subfertility due to delayed GVBD. By performing multiple single oocyte RNA-seq, we document dysregulation of several types of RNA, and the mRNAs that encode proteins important for endomembrane trafficking and meiotic cell cycle. As expected, EXOSC10-depleted oocytes have impaired endomembrane components including endosomes, lysosomes, endoplasmic reticulum and Golgi. In addition, CDK1 fails to activate, possibly due to persistent WEE1 activity, which blocks lamina phosphorylation and disassembly. Moreover, we identified rRNA processing defects that cause higher percentage of developmentally incompetent oocytes after EXOSC10 depletion. Collectively, we propose that EXOSC10 promotes normal growth-to-maturation transition in mouse oocytes by sculpting the transcriptome to degrade RNAs encoding growth-phase factors and, thus, support the maturation phase of oogenesis.
APA, Harvard, Vancouver, ISO, and other styles
12

Andreu-Vázquez, C., F. López-Gatius, I. García-Ispierto, M. J. Maya-Soriano, R. H. F. Hunter, and M. López-Béjar. "Does heat stress provoke the loss of a continuous layer of cortical granules beneath the plasma membrane during oocyte maturation?" Zygote 18, no. 4 (March 24, 2010): 293–99. http://dx.doi.org/10.1017/s0967199410000043.

Full text
Abstract:
SummaryThe objective of the present study was to evaluate the influence of heat stress on bovine oocyte maturation. Both nuclear stage and distribution of cortical granules (CG) were simultaneously evaluated in each oocyte. Oocyte overmaturation under standard conditions of culture was also evaluated. For this purpose, logistic regression procedures were used to evaluate possible effects of factors such as heat stress, overmaturation, replicate, CG distribution and metaphase II (MII) morphology on oocyte maturation. Based on the odds ratio, oocytes on heat stressed (HSO) and overmaturated (OMO) oocyte group were, respectively, 14.5 and 5.4 times more likely to show anomalous MII morphology than those matured under control conditions (CO). The likelihood for an oocyte of showing the CG distribution pattern IV (aging oocyte) was 6.3 and 9.3 times higher for HSO and OMO groups, respectively, than for the CO group. The risk of undergoing anomalous oocyte maturation, considering both nuclear stage and distribution of CG was 17.1 and 18 times greater in oocytes cultured in HSO and OMO groups, respectively, than those in the CO group. In conclusion, heat stress proved to be valuable in aging oocytes. Heat stress advanced age for nuclear and cytoplasmic processes in a similar form to that of oocyte overmaturation.
APA, Harvard, Vancouver, ISO, and other styles
13

Ritter, Lesley J., Satoshi Sugimura, and Robert B. Gilchrist. "Oocyte Induction of EGF Responsiveness in Somatic Cells Is Associated With the Acquisition of Porcine Oocyte Developmental Competence." Endocrinology 156, no. 6 (June 1, 2015): 2299–312. http://dx.doi.org/10.1210/en.2014-1884.

Full text
Abstract:
Abstract Oocytes progressively acquire the competence to support embryo development as oogenesis proceeds with ovarian folliculogenesis. The objectives of this study were to investigate oocyte-secreted factor (OSF) participation in the development of somatic cell epidermal growth factor (EGF) responsiveness associated with oocyte developmental competence. A well-established porcine model was employed using oocytes from small (&lt;4 mm) vs medium sized (&gt;4 mm) antral follicles, representing low vs moderate developmental competence, respectively. Cumulus-oocyte complexes (COCs) were treated in vitro with inducers of oocyte maturation, and cumulus cell functions and oocyte developmental competence were assessed. COCs from small follicles responded to FSH but, unlike COCs from larger follicles, were incapable of responding to EGF family growth factors known to mediate oocyte maturation in vivo, exhibiting perturbed cumulus expansion and expression of associated transcripts (HAS2 and TNFAIP6). Low and moderate competence COCs expressed equivalent levels of EGF receptor (EGFR) mRNA; however, the former had less total EGFR protein leading to failed activation of phospho-EGFR and phospho-ERK1/2, despite equivalent total ERK1/2 protein levels. Native OSFs from moderate, but not from low, competence oocytes established EGF responsiveness in low competence COCs. Four candidate recombinant OSFs failed to mimic the actions of native OSFs in regulating cumulus expansion. Treatment with OSFs and EGF enhanced oocyte competence but only of the low competence COCs. These data suggest that developmental acquisition by the oocyte of capacity to regulate EGF responsiveness in the oocyte's somatic cells is a major milestone in the oocyte's developmental program and contributes to coordinated oocyte and somatic cell development.
APA, Harvard, Vancouver, ISO, and other styles
14

Hammes, Stephen R. "Steroids and Oocyte Maturation—A New Look at an Old Story." Molecular Endocrinology 18, no. 4 (April 1, 2004): 769–75. http://dx.doi.org/10.1210/me.2003-0317.

Full text
Abstract:
Abstract Female fertility requires precise regulation of oocyte meiosis. Oocytes are arrested early in the meiotic cycle until just before ovulation, when ovarian factors trigger meiosis, or maturation, to continue. Although much has been learned about the late signaling events that accompany meiosis, until recently less was known about the early actions that initiate maturation. Studies using the well-characterized model of transcription-independent steroid-induced oocyte maturation in Xenopus laevis now show that steroid metabolism, classical steroid receptors, G protein-mediated signaling, and novel G protein-coupled receptors, all may play important roles in regulating meiosis. Furthermore, steroids appear to promote similar events in mammalian oocytes, implying a conserved mechanism of maturation in vertebrates. Interestingly, testosterone is a potent promoter of mammalian oocyte maturation, suggesting that androgen actions in the oocyte might be partially responsible for the polycystic ovarian phenotype and accompanying infertility associated with high androgen states such as polycystic ovarian syndrome or congenital adrenal hyperplasia. A detailed appreciation of the steroid-activated signaling pathways in frog and mammalian oocytes may therefore prove useful in understanding both normal and abnormal ovarian development in humans.
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Tao, Jae Lee, Jung Kang, Hyeon Shin, Ju Lee, and Dong Jin. "Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development." International Journal of Molecular Sciences 20, no. 2 (January 18, 2019): 409. http://dx.doi.org/10.3390/ijms20020409.

Full text
Abstract:
Mammalian oocytes and early embryos derived from in vitro production are highly susceptible to a variety of cellular stresses. During oocyte maturation and preimplantation embryo development, functional proteins must be folded properly in the endoplasmic reticulum (ER) to maintain oocyte and embryo development. However, some adverse factors negatively impact ER functions and protein synthesis, resulting in the activation of ER stress and unfolded protein response (UPR) signaling pathways. ER stress and UPR signaling have been identified in mammalian oocytes and embryos produced in vitro, suggesting that modulation of ER stress and UPR signaling play very important roles in oocyte maturation and the development of preimplantation embryos. In this review, we briefly describe the current state of knowledge regarding ER stress, UPR signaling pathways, and their roles and mechanisms in mammalian (excluding human) oocyte maturation and preimplantation embryo development.
APA, Harvard, Vancouver, ISO, and other styles
16

Podhorec, P., and J. Kouril. "Induction of final oocyte maturation in Cyprinidae fish by hypothalamic factors: a review." Veterinární Medicína 54, No. 3 (April 8, 2009): 97–110. http://dx.doi.org/10.17221/50/2009-vetmed.

Full text
Abstract:
Gonadotropin-releasing hormone in Cyprinidae as in other Vertebrates functions as a brain signal which stimulates the secretion of luteinizing hormone from the pituitary gland. Two forms of gonadotropin-releasing hormone have been identified in cyprinids, chicken gonadotropin-releasing hormone II and salmon gonadotropin-releasing hormone. Hypohysiotropic functions are fulfilled mainly by salmon gonadotropin-releasing hormone. The only known factor having an inhibitory effect on LH secretion in the family Cyprinidae is dopamine. Most cyprinids reared under controlled conditions exhibit signs of reproductive dysfunction, which is manifested in the failure to undergo final oocyte maturation and ovulation. In captivity a disruption of endogenous gonadotropin-releasing hormone stimulation occurs and sequentially that of luteinizing hormone, which is indispensible for the final phases of gametogenesis. In addition to methods based on the application of exogenous gonadotropins, the usage of a method functioning on the basis of hypothalamic control of final oocyte maturation and ovulation has become popular recently. The replacement of natural gonadotropin-releasing hormones with chemically synthesized gonadotropin-releasing hormone analogues characterized by amino acid substitutions at positions sensitive to enzymatic degradation has resulted in a centuple increase in the effectiveness of luteinizing hormone secretion induction. Combining gonadotropin-releasing hormone analogues with Dopamine inhibitory factors have made it possible to develop an extremely effective agent, which is necessary for the successful artificial reproduction of cyprinids.
APA, Harvard, Vancouver, ISO, and other styles
17

Hunter, Morag G. "Follicular factors regulating oocyte maturation and quality." Human Fertility 1, no. 1 (January 1998): 69–74. http://dx.doi.org/10.1080/1464727982000198151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

HILLENSÖ, TORBJÖRN, MATS BRäNNSTRÖM, SREEMATHI CHARI, ERHARD DAUME, CLAES MAGNUSSON, LARS NILSSON, ANITA SJÖGREN, and JAN TÖRNELL. "Oocyte Maturation as Regulated by Follicular Factors." Annals of the New York Academy of Sciences 442, no. 1 In Vitro Fert (May 1985): 73–79. http://dx.doi.org/10.1111/j.1749-6632.1985.tb37506.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gomez, Ma Ninia L., Jung Taek Kang, Ok Jae Koo, Su Jin Kim, Dae Kee Kwon, Sol Ji Park, Mohammad Atikuzzaman, So Gun Hong, Goo Jang, and Byeong Chun Lee. "Effect of oocyte-secreted factors on porcine in vitro maturation, cumulus expansion and developmental competence of parthenotes." Zygote 20, no. 2 (July 27, 2011): 135–45. http://dx.doi.org/10.1017/s0967199411000256.

Full text
Abstract:
SummaryThe oocyte is known from recent studies in the mouse, cow, sheep and human to be a central regulator of follicular cell function. However, in the pig, little information is known about the regulation of cumulus expansion by oocyte-secreted factors and oocyte quality. We investigated the possible effects of oocyte-secreted factors during in vitro maturation on cumulus expansion and on porcine oocytes as judged by subsequent embryonic development after parthenogenetic activation. Cumulus–oocyte complexes (COC) from antral follicles of pig ovaries collected from a local abattoir were divided into control and treatment groups and were cultured in tissue culture medium 199 supplemented with follicle-stimulating hormone. Treatment groups consisted of increasing numbers of denuded oocytes (DO) co-cultured with COC (at ratios of COC to DO of 1:1, 1:2, 1:3, 1:4 and 1:5). After incubation for 44 h, cumulus expansion and maturation rates were assessed and oocytes were activated parthenogenetically. Cumulus expansion in the 1 COC:4 DO and 1 COC:5 DO groups was low and altered because full dispersion of the outer layer did not occur. Cell viability was not affected, as measured by the automated cell counter, but scanning electron microscopy revealed only a scanty extracellular matrix. Blastocyst rate was significantly higher in the 1 COC:4 DO (34.4%) and in the 1 COC:5 DO (34.9%) groups (p < 0.05) when compared with other groups. Maturation rate, cleavage rate and total cell number showed no significant difference between control and treatment groups. Amplification by reverse transcription polymerase chain reaction (RT-PCR) showed up-regulation of growth differentiation factor 9 (GDF9) in the cumulus cells in the 1 COC:4 DO group at 44 h. We conclude that denuded porcine oocytes could improve the maturation of COC as evidenced by increased blastocyst development in the 1 COC:4 DO, even though cumulus expansion was poor. This improvement could be a result of the GDF9 up-regulation.
APA, Harvard, Vancouver, ISO, and other styles
20

Giotto, Angelo Bertani, Daniela Dos Santos Brum, Francielli Weber Santos, Antonio Carlos Galarça Guimarães, Cibele Garcia Moreira Gonçalves, Cecilia Urquiza Machado Pavin, Natalia Picoli Folchini, Aline Barros Moyses, Daniele Missio, and Fábio Gallas Leivas. "Oxygen tension and oocyte density during in vitro maturation affect the in vitro fertilization of bovine oocytes." Semina: Ciências Agrárias 36, no. 6Supl2 (December 16, 2015): 4277. http://dx.doi.org/10.5433/1679-0359.2015v36n6supl2p4277.

Full text
Abstract:
<p>Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20%) with different oocyte densities (1:10?l or 1:20?l) in the <em>in vitro </em>maturation (IVM) of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH) and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P&gt;0.05). In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P&lt;0.05). Additionally, ROS levels in IVM medium were higher in treatments with high oocyte density by volume of medium, which was independent of oxygen tension (P&lt;0.05). In Experiment III, the fertilization and penetration rates were higher in the treatment with 20% oxygen tension and high oocyte density (P&lt;0.05). Furthermore, a high incidence of polyspermy was observed in groups with high oxygen tension and low oocyte density (P&lt;0.05). In conclusion, the results of this study indicate an interaction between oxygen tension and oocyte density, which increases ROS production in certain associations and subsequently influences the rates of <em>in vitro </em>fertilization of bovine oocytes. The improved rates of IVF were obtained when IVM was conducted using 20% oxygen tension and high oocyte density (1:20 ul).</p>
APA, Harvard, Vancouver, ISO, and other styles
21

Mariela, Roldán-Olarte, Maillo Verónica, Sánchez-Calabuig María Jesús, Beltrán-Breña Paula, Rizos Dimitrios, and Gutiérrez-Adán Alfonso. "Effect of urokinase type plasminogen activator on in vitro bovine oocyte maturation." Reproduction 154, no. 3 (September 2017): 331–40. http://dx.doi.org/10.1530/rep-17-0204.

Full text
Abstract:
This study examines the impacts of the urokinase-type plasminogen activator (uPA) on thein vitromaturation (IVM) of bovine oocytes. Cumulus–oocyte complexes in IVM medium were treated with uPA, amiloride (an uPA inhibitor), dimethyl sulfoxide (DMSO) or left untreated (control group). After 24 h of IVM, oocytes were recovered for testing or werein vitrofertilized and cultured to the blastocyst stage. The factors examined in all groups were: (i) oocyte nuclear maturation (Hoëscht staining); (ii) oocyte cytoplasmic maturation (cortical granules, CGs, distribution assessed by LCA-FITC); (iii) oocyte and cumulus cell (CC) gene expression (RT-qPCR); and (iv) embryo development (cleavage rate and blastocyst yield). Oocytes subjected to uPA treatment showed rates of nuclear maturation and CG distribution patterns similar to controls (P > 0.05), whereas lower rates of oocyte maturation were recorded in the amiloride group (P < 0.05). Both in oocytes and CC, treatment with uPA did not affect the transcription of genes related to apoptosis, cell junctions, cell cycle or serpin protease inhibitors. In contrast, amiloride altered the expression of genes associated with cell junctions, cell cycle, oxidative stress and CC serpins. No differences were observed between the control and uPA group in cleavage rate or in blastocyst yield recorded on Days 7, 8 or 9 post-insemination. However, amiloride led to drastically reduced cleavage rate (28.5% vs 83.2%) and Day 9 embryo production (6.0% vs 21.0%) over the rates recorded for DMSO. These results indicate that the proteolytic activity of uPA is needed for successful oocyte maturation in bovine.
APA, Harvard, Vancouver, ISO, and other styles
22

Eppig, JJ. "Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals." Reproduction, Fertility and Development 8, no. 4 (1996): 485. http://dx.doi.org/10.1071/rd9960485.

Full text
Abstract:
As oocytes near the end of their growth phase, they become competent to undergo two aspects of maturation, cytoplasmic and nuclear. Both are essential for the formation of an egg having the capacity for fertilization and development to live offspring. Nuclear maturation encompasses the processes reversing meiotic arrest at prophase I and driving the progression of meiosis to metaphase II. Cytoplasmic maturation refers to the processes that prepare the egg for activation and preimplantation development. This review focuses on the developmental programmes whereby oocytes at the germinal vesicle (GV) stage acquire competence to undergo nuclear and cytoplasmic maturation, the coordination of programmes regulating the acquisition of these competencies in GV-stage oocytes, and the coordination of the maturational processes themselves. Although the developmental programme of the GV-stage oocyte for acquiring competence to complete preimplantation development does not appear to be tightly linked to the acquisition of competence to complete nuclear maturation, GV breakdown (GVB) is probably essential for activating some critical aspects of cytoplasmic maturation, particularly those related to fertilization and activation. Nuclear and cytoplasmic maturation are normally coordinated by this mechanism requiring the mixing of the GV contents with the cytoplasm at the time of GVB, but some processes of cytoplasmic maturation related to successful preimplantation development probably still occur without coordination with nuclear maturation. Thus, continued differentiation of GV-stage oocytes is necessary after the acquisition of competence to undergo nuclear maturation, to allow for the deposition of the maternal factors required for the development of preimplantation embryos beyond the 2-cell stage.
APA, Harvard, Vancouver, ISO, and other styles
23

Park, J. Y., H. J. Park, J. W. Kim, S. Y. Park, S. G. Yang, J. M. Jung, M. J. Kim, and D. B. Koo. "173 MELATONIN ALLEVIATES THE ENDOPLASMIC RETICULUM STRESS THROUGH THE REGULATING OF UNFOLDING PROTEIN RESPONSE SIGNALING DURING PORCINE OOCYTE MATURATION IN VITRO." Reproduction, Fertility and Development 29, no. 1 (2017): 195. http://dx.doi.org/10.1071/rdv29n1ab173.

Full text
Abstract:
Unfolding protein response (UPR) is a defence mechanism during endoplasmic reticulum (ER) stress in mammalian cells. Especially, UPR genes and regulation of reactive oxygen species is involved in ER stress response on porcine oocyte maturation in vitro. Some studies have shown that melatonin treatment results in reducing oxidative stress, a protective function of free radical damage in oocyte maturation and embryo development. Also, melatonin has an important role in reducing reactive oxygen species and ER stress. However, it is unknown how the changes of UPR genes expression levels are affected the porcine oocyte maturation. In addition, there are no reports about ER stress recovery mechanism by melatonin during porcine oocyte maturation. Here, we investigated the UPR signal genes (Bip/Grp78, Atf4, p90/p50Atf6, and Xbp1) and ER-stress mediated apoptosis factors (Chop and Cleaved caspase 3) in porcine oocyte maturation in vitro. Expression of Chop and Cleaved caspase 3 mRNA levels were significantly increased (P < 0.01) in matured oocytes (metaphase II; 44 h) in vitro. Porcine oocytes were cultured in maturation medium with ER stress inducer, tunicamycin (Tm), and supplemented with various concentrations (1, 5, and 10 μg mL−1) of Tm for 0 to 44 h. Our results indicated that the proportion of matured oocytes was significantly decreased in Tm-treated groups in a dose-dependent manner (60.1 ± 1.3, 46.5 ± 2.1, and 38.9 ± 5.1% at 1, 5, and 10 μg mL−1 of Tm) compared with the control group (76.6 ± 1.9%). Likewise, mRNA expression of UPR regulator genes (Grp78/Bip, Aft4, Xbp1, Chop, and Cleaved caspase 3) was decreased by melatonin treatment (0.1 μM, 22–44 h) after pretreatment of Tm (5 μg mL−1, 0–22 h) during oocyte maturation. Our results demonstrated that the roles of melatonin as UPR signaling regulator for reducing ER stress are essential for promotion of porcine oocyte maturation and cumulus cell expansion of cumulus-oocyte complex. Moreover, the current study was initiated to confirm a functional link between effect of melatonin and regulating of UPR signaling in porcine oocytes maturation. These results suggest that melatonin improve the oocyte maturation and cumulus cells expansion by regulating of UPR signal genes against the ER stress during the porcine in vitro maturation process. This work was supported by grants from the Next-Generation BioGreen 21 Program (PJ01117604) and the Bio-industry Technology Development Program (316037–04–1-HD020) through the Rural Development Administration, the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.
APA, Harvard, Vancouver, ISO, and other styles
24

Hussein, Tamer S., Melanie L. Sutton-McDowall, Robert B. Gilchrist, and Jeremy G. Thompson. "Temporal effects of exogenous oocyte-secreted factors on bovine oocyte developmental competence during IVM." Reproduction, Fertility and Development 23, no. 4 (2011): 576. http://dx.doi.org/10.1071/rd10323.

Full text
Abstract:
We investigated whether paracrine signalling between the bovine oocyte and cumulus cells is altered during the course of in vitro maturation (IVM). Bovine COCs were cocultured with denuded oocytes or treated with specific oocyte-secreted factors, namely recombinant bone morphogenetic protein (BMP)-15 or growth differentiation factor (GDF)-9, beginning from 0 or 9 h IVM. To generate a 9-h denuded oocyte (DO) group, COCs were cultured intact for the first 9 h of IVM and then denuded. Coculturing intact COCs with DOs denuded immediately after collection or following 9 h of maturation did not affect cleavage rate, but improved blastocyst yield (P < 0.05) on Day 8 (51 and 61%, respectively; P < 0.05) and cell number compared with COCs cultured alone (41%). Significantly, we observed higher levels of endogenous GDF-9 and BMP-15 protein in oocytes of COCs matured for 9 h compared with no incubation. The addition of 175 ng mL–1 GDF-9 or 10% v/v BMP-15 from partially purified transfected 293H cell supernatant for 24 h IVM significantly enhanced development to the blastocyst stage from 40% (control) to 51 and 47%, respectively (P < 0.05). However, treatment of COCs with GDF-9 or BMP-15 between 9 and 24 h of IVM did not increase blastocyst yield. These results provide evidence of quantitative and possibly qualitative temporal changes in oocyte paracrine factor production during IVM.
APA, Harvard, Vancouver, ISO, and other styles
25

Demeestere, I., J. Centner, C. Gervy, Y. Englert, and A. Delbaere. "Impact of various endocrine and paracrine factors on in vitro culture of preantral follicles in rodents." Reproduction 130, no. 2 (August 2005): 147–56. http://dx.doi.org/10.1530/rep.1.00648.

Full text
Abstract:
Folliculogenesis is a complex process regulated by various paracrine and autocrine factors. In vitro growth systems of primordial and preantral follicles have been developed for future use of immature oocytes, as sources of fertilizable oocytes and for studying follicular growth and oocyte maturation mechanisms. Rodents were often chosen for in vitro follicular culture research and a lot of factors implicated in folliculogenesis have been identified using this model. To date, the mouse is the only species in which the whole process of follicular growth, oocyte maturation, fertilization and embryo transfer into recipient females was successfully performed. However, the efficiency of in vitro culture systems must still be considerably improved. Within the follicle, numerous events affect cell proliferation and the acquisition of oocyte developmental competency in vitro, including interactions between the follicular cells and the oocyte, and the composition of the culture medium. Effects of the acting factors depend on the stage of follicle development, the culture system used and the species. This paper reviews the action of endocrine, paracrine factors and other components of culture medium on in vitro growth of preantral follicles in rodents.
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Kun, Peter J. Hansen, and Alan D. Ealy. "Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro." REPRODUCTION 140, no. 6 (December 2010): 815–26. http://dx.doi.org/10.1530/rep-10-0190.

Full text
Abstract:
The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the cumulus–oocyte complexes to FGF10 duringin vitromaturation did not affect cleavage rates, but increases (P<0.05) in the percentage of embryos at the 8–16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes. The progression of oocytes through meiosis and cumulus expansion was increased (P<0.05) by FGF10. The importance of the endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity decreased (P<0.05) the percentage of oocytes developing into blastocysts and limited (P<0.05) cumulus expansion. Expression profiles of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10 influenced the expression ofCTSBandSPRY2in cumulus cells andBMP15in oocytes. In summary, this work provides new insight into the importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact onin vitroembryo development implicates it as a noteworthy oocyte competent factor.
APA, Harvard, Vancouver, ISO, and other styles
27

Memili, E., D. Peddinti, L. A. Shack, B. Nanduri, F. McCarthy, H. Sagirkaya, and S. C. Burgess. "Bovine germinal vesicle oocyte and cumulus cell proteomics." Reproduction 133, no. 6 (June 2007): 1107–20. http://dx.doi.org/10.1530/rep-06-0149.

Full text
Abstract:
Germinal vesicle (GV) breakdown is fundamental for maturation of fully grown, developmentally competent, mammalian oocytes. Bidirectional communication between oocytes and surrounding cumulus cells (CC) is essential for maturation of a competent oocyte. However, neither the factors involved in this communication nor the mechanisms of their actions are well defined. Here, we define the proteomes of GV oocytes and their surrounding CC, including membrane proteins, using proteomics in a bovine model. We found that 4395 proteins were expressed in the CC and 1092 proteins were expressed in oocytes. Further, 858 proteins were common to both the CC and the oocytes. This first comprehensive proteome analysis of bovine oocytes and CC not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level. Furthermore, some of these proteins may represent molecular biomarkers for developmental potential of oocytes.
APA, Harvard, Vancouver, ISO, and other styles
28

Ghaffari Novin, M., Azra Allahveisi, M. Noruzinia, F. Farhadifar, E. Yousefian, A. Dehghani Fard, and M. Salimi. "The Relationship Between Transcript Expression Levels of Nuclear Encoded (TFAM, NRF1) and Mitochondrial Encoded (MT-CO1) Genes in Single Human Oocytes During Oocyte Maturation." Balkan Journal of Medical Genetics 18, no. 1 (June 1, 2015): 39–46. http://dx.doi.org/10.1515/bjmg-2015-0004.

Full text
Abstract:
Abstract In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII) stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA), copied in oocytes, is essential for providing adenosine triphosphate (ATP) during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1) and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) in various stages of human oocyte maturation. Nine consenting patients, age 21-35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI) procedures. mRNA levels of mitochondrial- related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR). There was no significant relationship between the relative expression levels in germinal vesicle (GV) stage oocytes (p = 0.62). On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI) and MII (p = 0.03 and p = 0.002). A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation.
APA, Harvard, Vancouver, ISO, and other styles
29

Mao, J., K. M. Whitworth, L. D. Spate, E. M. Walters, J. Zhao, and R. S. Prather. "191 SUPPLEMENTATION OF MATURATION MEDIUM WITH FOLLICULAR FLUID, EPIDERMAL GROWTH FACTOR AND NEUREGULIN AFFECTS MITOCHONDRIAL DNA REPLICATION, OOCYTE MATURATION AND EMBRYO DEVELOPMENT IN PIGS." Reproduction, Fertility and Development 24, no. 1 (2012): 208. http://dx.doi.org/10.1071/rdv24n1ab191.

Full text
Abstract:
Mitochondria supply the majority of ATP in a cell. Mitochondrial DNA (mtDNA) copy number in oocytes might be used as a marker of viability and might be a key determinant of pre-implantation embryo development. However, little is known about mtDNA copy number changes during porcine oocyte maturation and its regulation by extracellular growth factors. The objectives of the current study were to determine the effects of supplementation of in vitro maturation medium with porcine follicular fluid (pFF; 0, 10, 20 and 30%), epidermal growth factor (EGF; 10 ng mL–1), neuregulin 1 (NRG; 20 ng mL–1) and NRG + IGF1 (insulin-like growth factor-1; 100 ng mL–1 + NRG, 20 ng mL–1) during in vitro maturation on mtDNA copy number, oocyte meiotic maturation and subsequent embryo development after parthenogenic activation. Follicular fluid used for the pFF supplementation experiment was prepared from medium-sized (3–6 mm in diameter) healthy follicles. Cumulus–oocyte complexes (COCs) were collected from antral follicles (3–6 mm in diameter), cultured in LH- and FSH-containing maturation medium for 22 h at 38.5°C, transferred into basic maturation medium without FSH and LH and cultured for another 22 h. The basic maturation medium was TCM-199 supplemented with 0.1% polyvinylalcohol (w/v), 3.05 mM D-glucose, 0.91 mM sodium pyruvate, 10 μg mL–1 of gentamicin, 0.57 mM cysteine and without or with different growth factors depending on the experimental design. In total, 177 germinal vesicle (GV) oocytes and 3837 MII oocytes were used for this study. All data were analyzed by the general linear model (GLM) procedure of SAS software (V9.2). The mtDNA copy number in oocytes increased (P < 0.05) from GV to MII stage oocytes (MII oocytes from all treatment groups pooled). Supplementation of IVM media with 10% pFF decreased mtDNA copy number (P < 0.05), whereas 20 and 30% pFF had no major effect on mtDNA copy number, resulting in a quadratic correlation between percentage of pFF and mtDNA copy number. There was a negative linear correlation between percentage of pFF and oocyte meiotic maturation, with a higher percentage of pFF inhibiting meiotic maturation (73.2 ± 5.2, 71.9 ± 4.8, 64.1 ± 8.5 and 65.8 ± 6.4% for 0, 10, 20 and 30% pFF groups, respectively). The mtDNA copy numbers in EGF and NRG-treated MII oocytes were significantly higher than those in GV oocytes, whereas the control was not different (EGF, 237 042.6 ± 22 198.2; NRG, 281 293.4 ± 22 893.5; and control, 231 856.8 ± 21 883.5 in MII oocytes vs 192 288.7 ± 21 675.4 in GV oocytes). The EGF, NRG and NRG+IGF1 treatments enhanced oocyte maturation as well. There was no difference in Day-7 blastocyst formation between EGF, NRG+IGF1 and the control, whereas the NRG treatment enhanced blastocyst formation as compared to the control (23.8 ± 2.4 vs 15.1 ± 2.1%; P < 0.05). This study demonstrated that there was an increase in mtDNA copy number during in vitro maturation. The EGF and NRG treatments stimulated mitochondria biogenesis, which may provide new means to increase oocyte quality and enhance embryonic development.
APA, Harvard, Vancouver, ISO, and other styles
30

Lee, Seok Hee. "Effects of Human Endothelial Progenitor Cell and Its Conditioned Medium on Oocyte Development and Subsequent Embryo Development." International Journal of Molecular Sciences 21, no. 21 (October 27, 2020): 7983. http://dx.doi.org/10.3390/ijms21217983.

Full text
Abstract:
Human endothelial progenitor cells (EPCs) secrete numerous growth factors, and they have been applied to regenerative medicine for their roles in angiogenesis as well as neovascularization. Angiogenesis is one of the essential factors for the maturation of ovarian follicles; however, the physiological function of EPCs or their derivatives on in vitro culture systems has not been fully understood. The aim of this study was to evaluate the effectiveness of EPCs and their conditioned medium (EPC-CM) on oocyte development and subsequent embryo development. In the results, the oocyte development and subsequent embryo development were significantly improved in EPCs and the EPC-CM group. In addition, markedly increased levels of growth factors/cytokines, such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin growth factor-1 (IGF-1), interleukin-10 (IL-10), and epidermal growth factor (EGF), were observed in medium from the EPC-CM group. Additionally, EPC-CM after in vitro maturation (IVM) had significantly decreased reactive oxygen species (ROS) levels compared to those of other groups. Transcriptional levels of growth factor receptor-related genes (FGFR2, IGF1R) and anti-apoptotic-related gene (BCL2) were significantly upregulated in cumulus cells/oocytes from the EPC-CM group compared with those from the control. Furthermore, the expression levels of cumulus expansion-related genes (PTGS2, TNFAIP6, HAS2) and oocyte-maturation-related factors (GDF9, BMP15) were significantly enhanced in the EPC-CM group. Consequently, the present study provides the first evidence that EPC-CM contains several essential growth factors for oocyte development by regulating genes involved in oocyte maturation.
APA, Harvard, Vancouver, ISO, and other styles
31

Hussein, T. S., R. B. Gilchrist, and J. G. Thompson. "327 OOCYTE-SECRETED FACTORS DIRECTLY AFFECT OOCYTE DEVELOPMENTAL COMPETENCE DURING IN VITRO MATURATION OF THE BOVINE CUMULUS - OOCYTE COMPLEX." Reproduction, Fertility and Development 18, no. 2 (2006): 271. http://dx.doi.org/10.1071/rdv18n2ab327.

Full text
Abstract:
Paracrine factors secreted by the oocyte (oocyte-secreted factors, OSFs) regulate a broad range of cumulus cell functions including proliferation, differentiation, and apoptosis. The capacity of oocytes to regulate their own microenvironment by OSFs may in turn contribute to oocyte developmental competence. The aim of this study was to determine if OSFs have a direct influence on bovine oocyte developmental competence during in vitro maturation (IVM). Cumulus-oocyte complexes (COCs) were obtained by aspiration of >3-mm follicles from abattoir-derived ovaries. IVM was conducted in Bovine VitroMat (Cook Australia, Eight Mile Plains, Brisbane, Australia) supplemented with 0.1 IU/mL rhFSH for 24 h under 6% CO2 in air at 38.5�C. In the first experiment, COCs were co-cultured with denuded oocytes (DOs, 5/COC in 10 �L) beginning at either 0 or 9-h of IVM. To generate the 9-h DO group, COCs were first cultured intact for 9-h and then denuded. In the second experiment, specific OSFs, recombinant bone morphogenetic protein-15 (BMP-15) and growth differentiation factor 9 (GDF-9), were prepared as partially purified supernatants of transfected 293H cells, and used as 10% v/v supplements in Bovine VitroMat. Treatments were: (1) control (no supplement), (2) BMP-15, (3) GDF-9, (4) BMP-15 and GDF-9, and (5) untransfected 293H control. Following maturation, in vitro production of embryos was performed using the Bovine Vitro system (Cook Australia) and blastocysts were examined on Day 8 for development. Developmental data were arcsine-transformed and analyzed by ANOVA, followed by Tukey's test. Cell numbers were analyzed by ANOVA. Co-culturing intact COCs with DOs from 0 or 9 h did not affect cleavage rate, but increased (P < 0.001) the proportion of cleaved embryos that reached the blastocyst stage post-insemination (50.6 � 1.9 and 61.3 � 1.9%, respectively), compared to COCs cultured alone (40.7 � 1.4%). Therefore, paracrine factors secreted by DOs increased the developmental competence of oocytes matured as COCs. OSFs also improved embryo quality, as co-culture of COCs with DOs (0 or 9 h) significantly increased total cell (156.1 � 1.3 and 159.1 � 1.3, respectively) and trophectoderm (105.7 � 1.3 and 109.8 � 0.4, respectively) numbers, compared to control COCs (total = 148 � 1.2, trophectoderm = 98.2 � 0.8, P < 0.001). BMP-15 alone or with GDF-9 also significantly (P < 0.001) increased the proportion of oocytes that reached the blastocyst stage post insemination (57.5 � 2.4% and 55.1 � 4.5%, respectively), compared to control (41.0 � 0.9%) and 293H-treated (27.1 � 3.1%) COCs. GDF-9 also increased blastocyst yield (49.5 � 3.9%) but not significantly. These results are the first to demonstrate that OSFs, and particularly BMP-15 and GDF-9, directly affect bovine oocyte developmental competence. These results have far-reaching implications for improving the efficiency of IVM in domestic species and human infertility treatment, and support the role of OSF production by oocytes as a diagnostic marker for developmental competence.
APA, Harvard, Vancouver, ISO, and other styles
32

Yang, X., C. Kubota, H. Suzuki, M. Taneja, P. E. J. Bols, and G. A. Presicce. "Control of oocyte maturation in cows — Biological factors." Theriogenology 49, no. 2 (January 1998): 471–82. http://dx.doi.org/10.1016/s0093-691x(97)00419-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kranc, Wiesława, Maciej Brązert, Katarzyna Ożegowska, Joanna Budna-Tukan, Piotr Celichowski, Maurycy Jankowski, Artur Bryja, et al. "Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes." Medical Journal of Cell Biology 6, no. 3 (December 1, 2018): 91–100. http://dx.doi.org/10.2478/acb-2018-0015.

Full text
Abstract:
Abstract The efficiency of the process of obtaining mature oocytes, and then of porcine embryos in vitro depends on many factors and requires meeting many conditions. These include selection of morphologically appropriate oocytes, selection of appropriate medium components, as well as a number of abiotic factors (appropriate microenvironment during in vitro culture). Oocytes were taken from 45 pubertal crossbred Landrace gilts. The BCB test was carried out. BCB + oocytes were divided into two groups: “before IVM” and “after IVM”. “Before IVM” oocytes were subjected to molecular analyzes immediately after collection, while “after IVM” oocytes underwent in vitro maturation and then the second BCB test. Oocytes that remained BCB+ after the second test were used for molecular analyzes using Affymetrix expression microarrays. A group of genes responsible for response to organic substance and response to abiotic stimulus, which underwent significant changes (decrease) was discovered after oocyte in vitro maturation. Genes such as MM, PLDP, SERPINH, MYOF, DHX9, HSPA5, VCP, KIT, SERPINH1, PLD1, and VCP showed the largest decrease after the culture period. The levels of these genes were therefore elevated in oocytes before the in vitro maturation process. In conclusion, a number of organic and abiotic factors have an impact on the process of the oocyte in vitro maturation. The presented results confirm the literature data in which the low efficiency of obtaining mature oocytes in in vitro conditions is mentioned, which further impacts the amount of viable embryos obtained.
APA, Harvard, Vancouver, ISO, and other styles
34

Flores-Alonso, Juan Carlos, Leticia Lezama-Monfil, María Luisa Sánchez-Vázquez, Rosalina Reyes, and Néstor M. Delgado. "Heparin effect on in vitro nuclear maturation of bovine oocytes." Zygote 16, no. 1 (February 2008): 1–8. http://dx.doi.org/10.1017/s0967199407004418.

Full text
Abstract:
SummaryOocytes undergo numerous biochemical and morphological changes during their development from preantral to preovulatory phases. In vitro studies have suggested several compounds that might induce oocyte maturation. Heparin is a natural component of ooplasm, follicular fluid and uterine fluid and previous studies indicated that it might act as a chromatin maturation factor in bovine oocytes. We tested this hypothesis in vitro by timing germinal vesicle breakdown (GVBD) and first polar body (PB) formation without any other natural or introduced factors that might influence the rate of oocyte maturation. We also determined if these oocytes could be fertilized.Bovine oocytes were incubated in a salt medium and TCM 199 supplemented with different concentrations of heparin for 24 h at 37.5 °C in a humidified atmosphere of 5% CO2. With 1.0 and 6.5 mg/ml heparin, the time of GVBD was reduced from 4.7 ± 1.1 h to about 1.5 h and the time of first PB formation was reduced from 22.0 ± 1.1 h to 9.0–11.0 h in salt medium. In TCM 199, only 6.5 mg/ml heparin significantly reduced the time of PB formation. In both incubation media, 1.0 and 6.5 mg/ml heparin induced GVBD, extrusion of the first PB and formation of the metaphase II nucleus. Moreover, heparin did not interfere with the fertilization of oocytes matured in TCM 199. Based on the results, we propose that heparin plays an important role in the rearrangement of the oocyte chromatin and acts as an oocyte maturation factor.
APA, Harvard, Vancouver, ISO, and other styles
35

Linh, Nguyen Hoang-Kieu, Phung Ngoc Minh Doan, Pham Truong Duy, Bui Hong Thuy, and Nguyen Van Thuan. "ID: 1064 Effects of FSH, cumulus cell morphology and follicular fluid from different follicular sizes on the in vitro maturation of bovine oocytes." Biomedical Research and Therapy 4, S (September 5, 2017): 146. http://dx.doi.org/10.15419/bmrat.v4is.338.

Full text
Abstract:
The quality of mature oocyte plays a vital role in assisted reproductive technology, as well as animal cloning. Therefore, optimization of the in vitro maturation procedure for oocytes has long been of interests for researchers in the fields of reproduction. In this study, we investigated the effect of different supplement culture factors on in vitro maturation of bovine oocytes such as follicular-stimulating hormone (FSH) (experiment 1), different layers of cumulus cells (CCs) (experiment 2), and follicular fluid (FF) collected from different follicle sizes (experiment 3). With result from experiment 1, bovine oocytes cultured in in vitro maturation (IVM) medium supplemented with FSH reached to higher maturation rate than cultured in the basic one (85.9% and 69.3% respectively). In addition, experiment 2 suggested that, the groups of 3-4 layers and 2-3 layers achieve higher rate of oocyte maturity than group of <1 layers (84.38%; 82.46%; 47.83% respectively). However, the result of experiment 3 show that FF collected from different follicle size did not affect to the maturation rate. In conclusion, FSH and layers of CCs affect to the maturation of bovine oocytes.
APA, Harvard, Vancouver, ISO, and other styles
36

Idrees, Muhammad, Lianguang Xu, Seok-Hwan Song, Myeong-Don Joo, Kyeong-Lim Lee, Tahir Muhammad, Marwa El Sheikh, Tabinda Sidrat, and Il-Keun Kong. "PTPN11 (SHP2) Is Indispensable for Growth Factors and Cytokine Signal Transduction During Bovine Oocyte Maturation and Blastocyst Development." Cells 8, no. 10 (October 18, 2019): 1272. http://dx.doi.org/10.3390/cells8101272.

Full text
Abstract:
This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.
APA, Harvard, Vancouver, ISO, and other styles
37

Su, You-Qiang, Koji Sugiura, Qinglei Li, Karen Wigglesworth, Martin M. Matzuk, and John J. Eppig. "Mouse Oocytes Enable LH-Induced Maturation of the Cumulus-Oocyte Complex via Promoting EGF Receptor-Dependent Signaling." Molecular Endocrinology 24, no. 6 (June 1, 2010): 1230–39. http://dx.doi.org/10.1210/me.2009-0497.

Full text
Abstract:
Abstract LH triggers the maturation of the cumulus-oocyte complex (COC), which is followed by ovulation. These ovarian follicular responses to LH are mediated by epidermal growth factor (EGF)-like growth factors produced by granulosa cells and require the participation of oocyte-derived paracrine factors. However, it is not clear how oocytes coordinate with the EGF receptor (EGFR) signaling to achieve COC maturation. The aim of the present study was to test the hypothesis that oocytes promote the expression of EGFR by cumulus cells, thus enabling them to respond to the LH-induced EGF-like peptides. Egfr mRNA and protein expression were dramatically reduced in cumulus cells of mutant mice deficient in the production of the oocyte-derived paracrine factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15). Moreover, microsurgical removal of oocytes from wild-type COCs dramatically reduced expression of Egfr mRNA and protein, and these levels were restored by either coculture with oocytes or treatment with recombinant GDF9 or GDF9 plus recombinant BMP15. Blocking Sma- and Mad-related protein (SMAD)2/3 phosphorylation in vitro inhibited Egfr expression in wild-type COCs and in GDF9-treated wild-type cumulus cells, and conditional deletion of Smad2 and Smad3 genes in granulosa cells in vivo resulted in the reduction of Egfr mRNA in cumulus cells. These results indicate that oocytes promote expression of Egfr in cumulus cells, and a SMAD2/3-dependent pathway is involved in this process. At least two oocyte-derived growth factors, GDF9 and BMP15, are required for EGFR expression by cumulus cells.
APA, Harvard, Vancouver, ISO, and other styles
38

Gilchrist, Robert B. "Recent insights into oocyte - follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation." Reproduction, Fertility and Development 23, no. 1 (2011): 23. http://dx.doi.org/10.1071/rd10225.

Full text
Abstract:
The last 5–10 years of research in ovarian and oocyte biology has delivered some major new advances in knowledge of the molecular and cellular processes regulating oocyte maturation and oocyte developmental competence. These new insights include, among others: (1) the knowledge that oocytes regulate granulosa and cumulus cell differentiation, ovulation rate and fertility via the secretion of soluble paracrine growth factors; (2) new perspectives on the participation of cyclic nucleotides, phosphodiesterases and gap junctions in the regulation of oocyte meiotic arrest and resumption; and (3) the new appreciation of the mechanisms of LH-induced oocyte maturation and ovulation mediated by the follicular cascade of epidermal growth factor (EGF)-like peptides, the EGF receptor and their intracellular second messengers. These recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to oocyte in vitro maturation (IVM). Laboratory IVM methodologies have changed little over the past 20–30 years and IVM remains notably less efficient than hormone-stimulated IVF, limiting its wider application in reproductive medicine and animal breeding. The challenge for oocyte biologists and clinicians practicing IVM is to modernise clinical IVM systems to benefit from these new insights into oocyte–follicle cell interactions in vivo.
APA, Harvard, Vancouver, ISO, and other styles
39

Uzbekova, S., L. Sanchez-Lazo, A. Desmachais, V. Maillard, and S. Elis. "274 LIPOLYSIS IN CUMULUS CELLS ACCOMPANIES OOCYTE MATURATION IN BOVINE." Reproduction, Fertility and Development 27, no. 1 (2015): 226. http://dx.doi.org/10.1071/rdv27n1ab274.

Full text
Abstract:
Oocyte maturation relies on energy from different nutrients, including fatty acids (FA). Cumulus cells (CC) are metabolically coupled with enclosed oocyte and active FA metabolism occurs in both compartments. Excess of lipids in oocyte environment alters its developmental competence. Lipid droplets (LD), mainly composed of triacylglycerides (TG), are formed inside of CC and in oocyte to store lipids. Liberation of free FA from TG requires lipolysis, which is catalyzed by lipases and involves FA-binding proteins (FABP) and perilipins (PLIN), which interact at the surface of LD as shown in lipogenic tissues. The objective was to elucidate the main factors involved in lipolysis in bovine cumulus-oocyte complex (COC) during oocyte maturation. Gene expression before and after maturation was analysed in CC by microarray hybridization and validated by real time RT-PCR; proteins were detected by Western blot and immunofluorescence. For statistics, ANOVA and Mann-Whitney (M-W) tests were used. In CC, adipose triglyceride lipase PNPLA2, lipoprotein lipase LPL, and monoacylglycerol lipase ABHD6 showed the highest mRNA expression level among 7 detected lipases. Both PLIN5 and PLIN2 were the most abundant perilipins, and among 8 FA-binding proteins, FABP3 and FABP5 were predominant. During in vitro maturation (IVM), expression of most of these genes increased at 6 h of IVM (P < 0.05, ANOVA) in CC. At that time, germinal vesicle breakdown occurred in enclosed oocytes and hyaluronan synthase HAS2, involved in the extra-cellular matrix formation, was upregulated in CC. The most upregulated genes after 18 h of IVM in CC were ABDH6 (48.5-fold as compared to immature, P < 0.01, M-W), FABP3 (16.6-fold, P < 0.01, M-W), and PLIN2 (5.5-fold, P < 0.05, M-W). Expression of all of these lipolysis-related genes was also detected in the oocytes. At the protein level, PLIN2 was mainly localised in the cytoplasmic LD, both in CC and in the oocyte. In CC, FABP3 was detected in the cytoplasm, whereas in oocyte it was also localised to the germinal vesicle of immature oocytes and closely to the chromosomes during the first meiotic division. In addition, active phosphorylated hormone sensitive lipase HSL was always detected in CC and in mature oocytes, but not in immature oocytes. All these data demonstrate that lipolysis occurs both in CC and in the oocyte during maturation. Lipolysis may be necessary to maintain cell energy homeostasis by regulating intracellular concentration of free FA. Moreover, CC were already described to store the excess FA from follicular fluid in order to protect the oocyte. Our data corroborate the essential role of CC in oocyte survival through controlling FA metabolism inside the COC. Active lipolysis may therefore be required to reduce lipid storages as well as to produce energy necessary for oocyte meiosis progression and extracellular matrix secretion by CC in order to prepare COC for further fertilization.This work was supported by INRA, ANR (OSCILE project) and European subvention FP7-KBBE-2012–6 (FECUND project).
APA, Harvard, Vancouver, ISO, and other styles
40

Yoon, Hyemin, Hoon Jang, Eun-Young Kim, Sohyeon Moon, Sangho Lee, Minha Cho, Hye Jung Cho, et al. "Knockdown of PRKAR2B Results in the Failure of Oocyte Maturation." Cellular Physiology and Biochemistry 45, no. 5 (2018): 2009–20. http://dx.doi.org/10.1159/000487978.

Full text
Abstract:
Background/Aims: Cyclic adenosine monophosphate (cAMP)-dependent type 2 regulatory subunit beta (Prkar2b) is a regulatory isoform of cAMP-dependent protein kinase (PKA), which is the primary target for cAMP actions. In oocytes, PKA and the pentose phosphate pathway (PPP) have important roles during the germinal vesicle (GV) stage arrest of development. Although the roles of the PKA signal pathway have been studied in the development of oocyte, there has been no report on the function of PRKAR2B, a key regulator of PKA. Methods: Using reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR (qRT-PCR), immunohistochemistry, and immunofluorescence, we determined the relative expression of Prkar2b in various tissues, including ovarian follicles, during oocyte maturation. Prkar2b-interfering RNA (RNAi) microinjection was conducted to confirm the effect of Prkar2b knockdown, and immunofluorescence, qRT-PCR, and time-lapse video microscopy were used to analyze Prkar2b-deficient oocytes. Results: Prkar2b is strongly expressed in the ovarian tissues, particularly in the growing follicle. During oocyte maturation, the highest expression of Prkar2b was during metaphase I (MI), with a significant decrease at metaphase II (MII). RNAi-mediated Prkar2b suppression resulted in MI-stage arrest during oocyte development, and these oocytes exhibited abnormal spindle formation and chromosome aggregation. Expression of other members of the PKA family (except for Prkaca) were decreased, and the majority of the PPP factors were also reduced in Prkar2b-deficient oocytes. Conclusion: These results suggest that Prkar2b is closely involved in the maturation of oocytes by controlling spindle formation and PPP-mediated metabolism.
APA, Harvard, Vancouver, ISO, and other styles
41

Gharibzadeh, Z., A. Riasi, S. Ostadhosseini, S. M. Hosseini, M. Hajian, and M. H. Nasr-Esfahani. "Effects of heat shock during the early stage of oocyte maturation on the meiotic progression, subsequent embryonic development and gene expression in ovine." Zygote 23, no. 4 (June 25, 2014): 573–82. http://dx.doi.org/10.1017/s0967199414000203.

Full text
Abstract:
SummaryHeat shock may affect different aspects of oocyte maturation and its subsequent development to the blastocyst stage. A series of in vitro experiments was performed to determine whether physiologically heat shock (41°C) disrupts the progression of the ovine oocytes through meiosis, activation and blastocyst formation. Cumulus–oocyte complexes (COCs) were aspirated from 2–6-mm follicles and cultured at 38.5°C (control) or 41°C (heat shock) for the first 12 h of maturation. The oocytes were incubated at 38.5°C during the last 10 h of maturation and 8 days after activation. Results showed that most of the oocytes matured under heat-shock conditions remained at the germinal vesicle breakdown (GVBD) stage and they showed an aberrant chromatin configuration. After heat shock, oocyte diameter and time spent for zona pellucida dissolution increased (P < 0.05). The heat-shocked group had a higher percentage of oocytes with incomplete migration of cortical granules (P < 0.05). The heat-shock condition decreased (P < 0.05) cleavage rates (56.19 versus 89.28%) and morula formation (26.85 versus 37.81%). However, there was no significant difference in blastocyst formation and percentage of hatched blastocysts. At 12 h, heat shock had an adverse effect on embryo quality and reduced inner cell mass number (P < 0.05). Quantitative gene expression analysis showed greater transcripts (P < 0.05) for Na/K-ATPase mRNA in heat-shocked oocytes. To sum up, heat shock has disruptive effects on ovine oocyte maturation and can impair cellular and molecular factors that are important for embryo development.
APA, Harvard, Vancouver, ISO, and other styles
42

Kumari, Pooja, Neeta Sehgal, S. V. Goswami, and Neerja Aggarwal. "Multifactorial control of gonadotropin release for induction of oocyte maturation: Influence of gonadotropin-releasing hormone, gonadotropin release-inhibiting factor and dopamine receptors in the catfish, Heteropneustes fossilis." Journal of Applied and Natural Science 13, no. 2 (June 12, 2021): 686–99. http://dx.doi.org/10.31018/jans.v13i2.2695.

Full text
Abstract:
Several external and internal factors contribute to the reproductive success of teleosts, which makes the reproductive process complex and unique. In the Indian freshwater catfish, Heteropneustes fossilis, monsoon plays a crucial role as it fine tunes the neuroendocrine axis, culminating in oocyte maturation. Therefore, induction of oocyte maturation requires the coordinated interaction among hypothalamic, hypophyseal, and peripheral hormones. In the present investigation, dual neuroendocrine control of oocyte maturation has been demonstrated in the catfish, H. fossilis. The maturational response in gravid catfish is inhibited in the presence of dopamine but GnRH evokes the oocyte maturation and ovulation. GnRH upregulates the expression of lhb gene as well as increases plasma levels of LH significantly within 30 minutes of its administration. Destruction of the preoptic region in gravid catfish by electrolytic or chemical lesions also causes oocyte maturation and ovulation. But this response is inhibited if dopamine is injected into the nucleus preopticus periventricularis-lesioned fishes. These observations support the role of dopamine as an inhibitory factor, therefore specific receptors of dopamine have been characterized in catfish and their expression in the brain has been quantified. Dopamine receptors are upregulated in dopamine-treated fishes and downregulated if a dopamine antagonist (pimozide) is injected. The present study suggests the presence of inhibitory mechanism for LH secretion in gravid catfish. Abolition of this inhibition is necessary to release LH surge, which in turn stimulates resumption of meiosis and ovulation. Thus peptidergic as well as aminergic systems regulate oocyte maturation in H. fossilis. Neuroendocrine regulation of oocyte maturation and ovulation has major implications for inducing spawning in aquaculture.
APA, Harvard, Vancouver, ISO, and other styles
43

Arias-Álvarez, M., R. M. García-García, L. Torres-Rovira, A. González-Bulnes, P. G. Rebollar, and P. L. Lorenzo. "Influence of leptin on in vitro maturation and steroidogenic secretion of cumulus–oocyte complexes through JAK2/STAT3 and MEK 1/2 pathways in the rabbit model." REPRODUCTION 139, no. 3 (March 2010): 523–32. http://dx.doi.org/10.1530/rep-09-0309.

Full text
Abstract:
Extreme body mass indexes may impair reproductive outcome in assisted reproductive technologies. Leptin reflects the amount of body fat and could act as a modulator of oocyte quality through activation of specific transcription factors. The aim of this work was to establish whether: 1) leptin influences meiotic and cytoplasmic oocyte maturation; 2) STAT3 and MAPK mediate the effects of leptin and 3) leptin modulates steroid secretion by cumulus–oocyte complexes (COC) duringin vitromaturation (IVM). We confirmed immunolocalisation of leptin receptor in oocytes, cumulus/granulosa cells during the peri-ovulatory period. The confocal study showed that COC supplemented with 1, 10 and 100 ng/ml leptin had a significantly higher metaphase II (MII) percentage than those IVM without leptin (P<0.05) and a similar MII index compared to the group supplemented with 10% FCS. Leptin did not increase the percentage of cytoplasmically matured oocytes in terms of cortical granule migration rate, whereas a significantly higher index was found in the FCS group (P<0.001). Oestradiol concentrations in spent media were higher in the FCS group compared to other treatments (P<0.001). Leptin-stimulated nuclear oocyte maturation was significantly impaired when leptin-induced JAK2/STAT3 and MEK 1/2 activation was suppressed by the inhibitors (P<0.001). Steroid secretion of COC was not affected by leptin activation of JAK2/STAT3 or MEK 1/2 pathways. In conclusion, JAK2/STAT3 and MEK 1/2 pathways mediate the enhancement of nuclear oocyte maturation by leptin; however, neither cytoplasmic oocyte maturation nor steroidogenic response of COC were improved in the present rabbit model.
APA, Harvard, Vancouver, ISO, and other styles
44

Park, Hyo-Jin, Bong-Seok Song, Jin-Woo Kim, Seul-Gi Yang, Sun-Uk Kim, and Deog-Bon Koo. "Exposure of Triclosan in Porcine Oocyte Leads to Superoxide Production and Mitochondrial-Mediated Apoptosis during In Vitro Maturation." International Journal of Molecular Sciences 21, no. 9 (April 26, 2020): 3050. http://dx.doi.org/10.3390/ijms21093050.

Full text
Abstract:
While triclosan (TCS) exerts detrimental effects on female reproduction, the effect of TCS-derived toxins on porcine oocytes during in vitro maturation (IVM) is unclear. This study investigated the effects of TCS on mitochondrion-derived reactive oxygen species (ROS) production and apoptosis pathways during porcine oocyte maturation. Porcine oocytes were treated with TCS (1, 10, and 100 μM) and triphenylphosphonium chloride (Mito-TEMPO; 0.1 μM), and matured cumulus oocyte complexes (COCs) were stained with orcein, dichlorofluorescein diacetate (DCF-DA), and Mito-SOX. Proteins and mRNA levels of factors related to cumulus expansion and mitochondrion-mediated apoptosis and antioxidant enzymes were analyzed by western blotting and reverse-transcription polymerase chain reaction (RT-PCR), respectively. Meiotic maturation and cumulus cell expansion significantly decreased for COCs after TCS treatment along with an increase in mitochondrial superoxide levels at 44 h of IVM. Further, mitochondrion-related antioxidant enzymes and apoptosis markers were significantly elevated in porcine COCs following TCS-mediated oxidative damage. The protective effect of Mito-TEMPO as a specific superoxide scavenger from TCS toxin improved the maturation capacity of porcine COCs. Mito-TEMPO downregulated the mitochondrial apoptosis of TCS-exposed porcine COCs by reducing superoxide level. In conclusion, our data demonstrate that TCS mediates toxicity during porcine oocyte maturation through superoxide production and mitochondrion-mediated apoptosis.
APA, Harvard, Vancouver, ISO, and other styles
45

Naito, Kunihiko, Yukio Nishimura, Tadashi Yamamuro, Takuma Shimaoka, Wataru Fujii, Mari Suzuki, Takanori Nishimura, and Kiyoshi Kano. "Upstream Factors Regulating Maturation/M-Phase Promoting Factor Activity During Oocyte Maturation." Journal of Mammalian Ova Research 27, no. 1 (April 2010): 27–34. http://dx.doi.org/10.1274/jmor.27.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Moncrieff, Lisa, Ievgeniia Kocherova, Artur Bryja, Wiesława Kranc, Joanna Perek, Piotr Celichowski, Magdalena Kulus, Bartosz Kempisty, Paul Mozdziak, and Michal Jeseta. "New molecular markers involved in immune system homeostasis and hemopoietic organ development are differentially regulated during oocytes in vitro maturation." Medical Journal of Cell Biology 8, no. 1 (April 29, 2020): 35–43. http://dx.doi.org/10.2478/acb-2020-0004.

Full text
Abstract:
AbstractThe growth and maturation of the oocyte is a dynamic process which requires a variable supply of hormones, growth factors and energy. These needs are met partially by the surrounding somatic cells and the cumulus-oocyte complex, which communicate bi-directionally via gap junctions. Identifying and analyzing protein expression in the oocyte can provide insight in its development and growth. Further, like bone marrow stem cells, if relevant marker genes are found in oocytes, there is a potential for the oocyte to be manipulated into becoming hemopoietic stem cells. In this study, porcine oocytes were isolated and subjected to microarray analysis to compare the oocyte gene expression in vivo and in vitro maturation (IVM). Genes identified belonged to both ‘hemopoietic or lymphoid organ development’(GO:0048534) and ‘immune system development’ (GO:0002520), and the markers can be used to identify several activities such as cell migration, neurogenesis and proliferation. The following are the identified genes and all were downregulated after IVM to varying degrees: ID2, VEGFA, TGFBR3, INHBA, CDK6, BCL11A, MYO1E, ITGB1, EGR1, NOTCH2, SPTA1, KIT and TPD52. Our results should provide new markers to further investigate oocyte development and growth regulation.Running title: Markers of hemopoietic organ development
APA, Harvard, Vancouver, ISO, and other styles
47

Cajas, Yulia N., Karina Cañón-Beltrán, Magdalena Ladrón de Guevara, María G. Millán de la Blanca, Priscila Ramos-Ibeas, Alfonso Gutiérrez-Adán, Dimitrios Rizos, and Encina M. González. "Antioxidant Nobiletin Enhances Oocyte Maturation and Subsequent Embryo Development and Quality." International Journal of Molecular Sciences 21, no. 15 (July 27, 2020): 5340. http://dx.doi.org/10.3390/ijms21155340.

Full text
Abstract:
Nobiletin is a polymethoxylated flavonoid isolated from citrus fruits with wide biological effects, including inhibition of reactive oxygen species (ROS) production and cell cycle regulation, important factors for oocyte in vitro maturation (IVM). Therefore, the objective of the present study was to evaluate the antioxidant activity of nobiletin during IVM on matured bovine oocyte quality (nuclear and cytoplasmic maturation; oocyte mitochondrial activity; intracellular ROS and glutathione (GSH) levels) and their developmental competence, steroidogenesis of granulosa cells after maturation, as well as quantitative changes of gene expression in matured oocytes, their cumulus cells, and resulting blastocysts. Bovine cumulus-oocyte complexes were in vitro matured in TCM-199 +10% fetal calf serum (FCS) and 10 ng/mL epidermal growth factor (EGF) (Control) supplemented with 10, 25, 50, or 100 μM of nobiletin (Nob10, Nob25, Nob50, and Nob100, respectively) or 0.1% dimethyl sulfoxide (CDMSO: vehicle for nobiletin dilution). A significantly higher percentage of matured oocytes in metaphase II was observed in Nob25 and Nob50 compared to other groups. Similarly, cleavage rate and cumulative blastocyst yield on Days 7 and 8 were significantly higher for Nob25 and Nob50 groups. Oocytes matured with 25 and 50 μM nobiletin showed a higher rate of migration of cortical granules and mitochondrial activity and a reduction in the ROS and GSH content in comparison with all other groups. This was linked to a modulation in the expression of genes related to metabolism (CYP51A1), communication (GJA1), apoptosis (BCL2), maturation (BMP15 and MAPK1), and oxidative stress (SOD2 and CLIC1). In conclusion, nobiletin offers a novel alternative for counteracting the effects of the increase in the production of ROS during IVM, improves oocyte nuclear and cytoplasmic maturation, and subsequent embryo development and quality in cattle.
APA, Harvard, Vancouver, ISO, and other styles
48

Alm, H., H. Torner, W. Kanitz, and K. Roschlau. "Influence of oocyte recovery method, in vitro fertilization method and serum source on embryonic development of in vitro matured bovine oocytes." Archives Animal Breeding 51, no. 3 (October 10, 2008): 224–34. http://dx.doi.org/10.5194/aab-51-224-2008.

Full text
Abstract:
Abstract. The objective of this study was to investigate the influence of various factors on blastocyst development in a bovine in vitro embryo production system. Two production systems were originally compared: Protocol 1, which utilized oocyte recovery by slicing, 20 % fetal bovine serum with FSH (FBS+) for oocyte maturation, and sperm preparation system 1 (F1), and Protocol 2, which utilized oocyte recovery by aspiration, 5 % estrous cow serum with FSH, HCG and estradiol (ECS+) for oocyte maturation, and sperm preparation system 2 (F2). Because a significantly higher blastocyst development rate was found for Protocol 2, the different factors of oocyte recovery technique (slicing vs. aspiration), sperm preparation technique (F1 vs. F2) and serum and hormone supplementation during maturation (FBS+ vs. ECS+) were evaluated. Recovering oocytes using the alternative technique (slicing vs. aspiration) did not significantly alter blastocyst rate on Day 8 within either production system 1 (FBS+/F1) or production system 2 (ECS+/F2). Although investigations of influence of the type of fertilization method revealed no effect, a significant effect of the type of serum was observed on the blastocyst rates with ECS+ proving better as compared to the use of FBS+ (P<0.03). When embryos produced from these investigations were evaluated by differential staining, the number of ICM cells did not differ among treatment, but the number of TE cells, and thus the total cell number, and the ICM : TCN ratio, was significantly increased when oocytes were matured in ECS+ supplemented medium, regardless of sperm preparation method. In conclusion, serum supplementation, but not oocyte recovery method or sperm preparation method, was responsible for the difference in blastocyst rate between the two original IVP protocols.
APA, Harvard, Vancouver, ISO, and other styles
49

Valleh, Mehdi Vafaye, Mikkel Aabech Rasmussen, and Poul Hyttel. "Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes." Zygote 24, no. 3 (September 9, 2015): 465–76. http://dx.doi.org/10.1017/s0967199415000416.

Full text
Abstract:
SummaryThe developmental potential of in vitro matured porcine oocytes is still lower than that of oocytes matured and fertilized in vivo. Major problems that account for the lower efficiency of in vitro production include the improper nuclear and cytoplasmic maturation of oocytes. With the aim of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10 or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for mRNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P < 0.05), and also simultaneously induced the expression of BCL-xL and TERT and suppressed the expression of caspase-3 in resulting blastocysts (P < 0.05). These results suggest that both GDNF and EGF may play an important role in the regulation of porcine in vitro oocyte maturation and the combination of these growth factors could promote oocyte competency and blastocyst quality.
APA, Harvard, Vancouver, ISO, and other styles
50

Kuzmina, T. I., S. I. Kovtun, E. C. Usenbekov, O. A. Epishko, and V. N. Stefanova. "ANALYSIS OF INDICATORS OF FERTILITY OF PORCINE OOCYTES THAT HAVE FINISHED GROWTH PHASE IN VIVO ASPIRATED FROM THE FOLLICLES OF DIFFERENT DIAMETERS." Animal Breeding and Genetics 51 (March 28, 2018): 240–47. http://dx.doi.org/10.31073/abg.51.32.

Full text
Abstract:
The selection of competent oocytes to completion of meiosis in vitro, fertilization or reconstructing (cloning, transgenesis) is the initial stage of cell reproductive technologies in animal husbandry. The development of effective methods of early prediction prospective potencies for extracorporeal maturation and fertilization of oocyte is the actual problem of rapidly developing embryo technologies. Numerous factors determined developmental competence of the oocytes. Brilliant cresyl blue (BCB) staining has been used for selection of oocytes from several mammalian species, including pigs (Ericsson S. et al, Theriogenology, 39(1): p.214, 1993). BCB determines the intracellular activity of glucose-6-phosphate dehydrogenase, which plays an important role in cell growth, as a key enzyme in the pentose phosphate cycle. The enzyme activity in the growing oocyte increases, opposite in the oocytes that have finished growth phase it decreases (Alm et al., 2005). BCB - diagnostics of the initial population of oocytes based on staining with vital dye brilliant cresyl blue have proposed as an effective indicator of completion of oocyte growth phase. The aim of the present study was to evaluate the developmental competence of porcine oocytes that have finished growth phase (BCB+) in vivo depending on diameter (d) of follicles (d <3 mm, 3 –5 mm, <6 mm). Before in vitro maturation compact cumulus oocyte complexes were incubated in BCB solution (13 μM) for 90 minutes. Treated oocytes were divided into BCB­-­ (colourless cytoplasm) and BCB+ (coloured cytoplasm). We have found that different diameter follicles contain both growing oocytes and oocytes that have finished growth phase in vivo (follicles d <3 mm – 71%; follicles d 3 - 5 mm – 86%; follicles d 6 – 8mm – 86%). Only BCB+ oocytes were used in the experiments. The medium used for oocyte maturation was NCSU 23 supplemented with 10% follicular fluid, 0.1 mg/ml cysteine,10 IU/ml eCG and 10 IU/ml hCG. Follicular fluid was collected from follicles with 3 - 6 mm in diameter. Oocyte cumulus complexes were cultured in maturation medium with pieces of wall (600 – 900 µmin length) from non athretic healthy follicles (d 3 – 6mm). After 20 – 22 h of culture, oocyte cumulus complexes and pieces of wall were washed and transferred into the same maturation medium but without hormonal supplements for another 20-22 h of culture. After in vitro maturation, oocytes were fertilized in vitro and embryos were cultured by standard protocols (Kuzmina et al., 2008). We have estimated oocyte maturation, quality of early embryos including status of chromatin (Tarkowsky, 1966). All chemicals used in this study were purchased from Sigma-Aldrich. Data were analyzed by Chi2 – test. Oocytes that have finished their growth phase of examined species have shown high potency to maturation in all groups of experiment (follicles d <3 mm – 78%; follicles d 3 –5mm – 79%; follicles d 6 – 8 mm– 85%). Level of oocyte with degenerative chromatin had not significant differences in all groups of experiments. We did not find significant differences between the level of cleavage and blastocyst in all groups of experiments. Percentages of cleavage and blastocyst in the groups were: follicles d <3 mm– 43% (27/63) and 29% (18/63); follicles d 3 – 5 mm– 46% (45/98) and 35% (34/98); follicles d < 6 – 8 mm–48% (28/58) and 28% (16/58) (χ² test). Analysis of morphology and chromatin abnormalities in embryos has not shown significant differences between the groups of experiment. Developmental competence of Sus Scrofa Domesticus oocytes that have finished growth phase in vivo, isolated from the follicles of various diameters (<3 mm, 3 – 5mm and 6 – 8mm) was analyzed. There were no significant differences in the level of cleavage and embryos on the blastocyst stage and their morphological characteristics. The findings suggest the equal potency to the maturation and fertilization of oocytes that have finished growth phase in vivo, independently of diameter of follicles.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography