Academic literature on the topic 'OpenFOAM Methodology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'OpenFOAM Methodology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "OpenFOAM Methodology"

1

Segui, M., F. R. Abel, R. M. Botez, and A. Ceruti. "High-fidelity aerodynamic modeling of an aircraft using OpenFoam – application on the CRJ700." Aeronautical Journal 126, no. 1298 (October 7, 2021): 585–606. http://dx.doi.org/10.1017/aer.2021.86.

Full text
Abstract:
AbstractThis study is focused on the development of longitudinal aerodynamic models for steady flight conditions. While several commercial solvers are available for this type of work, we seek to evaluate the accuracy of an open source software. This study aims to verify and demonstrate the accuracy of the OpenFoam solver when it is used on basic computers (32–64GB of RAM and eight cores). A new methodology was developed to show how an aerodynamic model of an aircraft could be designed using OpenFoam software. The mesh and the simulations were designed only using OpenFoam utilities, such as blockMesh, snappyHexMesh, simpleFoam and rhoSimpleFoam. For the methodology illustration, the process was applied to the Bombardier CRJ700 aircraft and simulations were performed for its flight envelope, up to M0.79. Forces and moments obtained with the OpenFoam model were compared with an accurate flight data source (level D flight simulator). Excellent results in data agreement were obtained with a maximum absolute error of 0.0026 for the drag coefficient, thus validating a high-fidelity aerodynamic model for the Bombardier CRJ-700 aircraft.
APA, Harvard, Vancouver, ISO, and other styles
2

RODRIGUEZ LUZARDO, SIMON ANTONIO, and Philip Cardiff. "A General Approach for Running Python Codes in OpenFOAM Using an Embedded PYBIND11 Python Interpreter." OpenFOAM® Journal 2 (December 15, 2022): 166–82. http://dx.doi.org/10.51560/ofj.v2.79.

Full text
Abstract:
As the overlap between traditional computational mechanics and machine learning grows, there is an increasing demand for straight-forward approaches to interface Python-based procedures with C++-based OpenFOAM. This article introduces one such general methodology, allowing the execution of Python code directly within an OpenFOAM solver without the need for Python code translation. The proposed approach is based on the lightweight library pybind11, where OpenFOAM data is transferred to an embedded Python interpreter for manipulation, and results are returned as needed. Following a review of related approaches, the article describes the approach, with a particular focus on data transfer between Python and OpenFOAM, executing Python scripts and functions, and practical details about the implementation in OpenFOAM. Three complementary test cases are presented to highlight the functionality and demonstrate the effect of different data transfer approaches: a Python-based velocity profile boundary condition; a Python-based solver for prototyping; and a machine learning mechanical constitutive law class for solids4foam which performs field calculations.
APA, Harvard, Vancouver, ISO, and other styles
3

Venier, Cesar Martin, Andrés Reyes Urrutia, Juan Pablo Capossio, Jan Baeyens, and Germán Mazza. "Comparing ANSYS Fluent® and OpenFOAM® simulations of Geldart A, B and D bubbling fluidized bed hydrodynamics." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 1 (September 12, 2019): 93–118. http://dx.doi.org/10.1108/hff-04-2019-0298.

Full text
Abstract:
Purpose The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB) characteristics with Geldart A, B and D particles. Design/methodology/approach For typical Geldart B and D particles, both a three-dimensional cylindrical and a pseudo-two-dimensional arrangement were used to measure the bed pressure drop and solids volume fraction, the latter by digital image analysis techniques. For a typical Geldart A particle, specifically to examine bubbling and slugging phenomena, a 2 m high three-dimensional cylindrical arrangement of small internal diameter was used. The hydrodynamics of the experimentally investigated BFB cases were also simulated for identical geometries and operating conditions using OpenFOAM® v6.0 and ANSYS Fluent® v19.2 at identical mesh and numerical setups. Findings The comparison between experimental and simulated results showed that both ANSYS Fluent® and OpenFOAM® provide a fair qualitative prediction of the bubble sizes and solids fraction for freely-bubbling Geldart B and D particles. For Geldart A particles, operated in a slugging mode, the qualitative predictions are again quite fair, but numerical values of relevant slug characteristics (length, velocity and frequency) slightly favor the use of OpenFOAM®, despite some deviations of predicted slug velocities. Originality/value A useful comparison of computational fluid dynamics (CFD) software performance for different fluidized regimes is presented. The results are discussed and recommendations are formulated for the selection of the CFD software and models involved.
APA, Harvard, Vancouver, ISO, and other styles
4

Lavesson, Nils, Jonathan Jogenfors, and Ola Widlund. "Modeling of streamers in transformer oil using OpenFOAM." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33, no. 4 (July 1, 2014): 1272–81. http://dx.doi.org/10.1108/compel-12-2012-0361.

Full text
Abstract:
Purpose – A model for streamers based on charge transport has been developed by MIT and ABB. The purpose of this paper is to investigate the consequences of changing numerical method from the finite element method (FEM) to the finite volume method (FVM) for simulations using the streamer model. The new solver is also used to extend the simulations to 3D. Design/methodology/approach – The equations from the MIT-ABB streamer model are implemented in OpenFOAM which uses the FVM. Checks of the results are performed including verification of convergence. The solver is then applied to some of the key simulations from the FEM model and results presented. Findings – The results for second mode streamers are confirmed, whereas the results for third mode streamers differ significantly leading to questioning of one hypothesis proposed based on the FEM results. The 3D simulations give consistent results and show a way forward for future simulations. Originality/value – The FVM has not been applied to the model before and led to more confidence in second mode result and revising of third mode results. In addition the new simulation method makes it possible to extend the results to 3D.
APA, Harvard, Vancouver, ISO, and other styles
5

Kamliya Jawahar, Hasan, Yujing Lin, and Mark Savill. "Large eddy simulation of airfoil self-noise using OpenFOAM." Aircraft Engineering and Aerospace Technology 90, no. 1 (January 2, 2018): 126–33. http://dx.doi.org/10.1108/aeat-05-2015-0130.

Full text
Abstract:
Purpose The purpose of this paper is to investigate airfoil self-noise generation and propagation by using a hybrid method based on the large-eddy simulation (LES) approach and Curle’s acoustic analogy as implemented in OpenFOAM. Design/methodology/approach Large-eddy simulation of near-field flow over a NACA6512-63 airfoil at zero angle of attack with a boundary layer trip at Rec = 1.9 × 105 has been carried out using the OpenFOAM® computational fluid dynamics (CFD) code. Calculated flow results are compared with published experimental data. The LES includes the wind tunnel installation effects by using appropriate inflow boundary conditions obtained from a RANS κ – ω SST model computation of the whole wind tunnel domain. Far-field noise prediction was achieved by an integral method based on Curle’s acoustic analogy. The predicted sound pressure levels are validated against the experimental data at various frequency ranges. Findings The numerical results presented in this paper show that the flow features around a NACA6512-63 airfoil have been correctly captured in OpenFOAM LES calculations. The mean surface pressure distributions and the local pressure peaks for the step trip setup agree very well with the experimental measurements. Aeroacoustic prediction using Curle’s analogy shows an overall agreement with the experimental data. The sound pressure level-frequency spectral analysis produces very similar data at low to medium frequency, whereas the experimentally observed levels are slightly over predicted at a higher frequency range. Practical implications This study has achieved and evaluated an alternative aeroacoustic simulation method based on the combination of LES with a simple Smagorinsky SGS model and Curle’s analogy, as implemented in the OpenFOAM CFD code. The unsteady velocity/pressure source data produced can be used for any simpler analytically based far-field noise prediction scheme. Originality/value A complete integration of the LES and Curle’s acoustic analogy for aeroacoustic simulations has been achieved in OpenFOAM. The capability and accuracy of the hybrid method are fully evaluated for high-camber airfoil self-noise predictions. Wind tunnel installation effects have been incorporated properly into the LES.
APA, Harvard, Vancouver, ISO, and other styles
6

Masoomi, Mobin, Mahdi Yousefifard, and Amir Mosavi. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM." Sustainability 13, no. 10 (May 18, 2021): 5633. http://dx.doi.org/10.3390/su13105633.

Full text
Abstract:
Oscillating water column (OWC) is an advanced form of wave energy converter (WEC). This study aims at improving the efficiency of an amended OWC through a novel methodology for simulating several vertical plates within the chamber. This paper provides a numerical investigation considering one, two, three, and four vertical plates. The open field operation and manipulation (OpenFOAM) solver is verified based on the Reynolds-Averaged Navier–Stokes (RANS) equation. Results show the number and the position of plates where the convertor’s efficiency improves. The work undertaken here also revealed a reduction in the net force imposed on the convertor’s structure, especially the front wall. Consequently, adding plates acquires more efficiency with lower force on the system.
APA, Harvard, Vancouver, ISO, and other styles
7

Plua, Frank A., Francisco-Javier Sánchez-Romero, Victor Hidalgo, Petra Amparo López-Jiménez, and Modesto Pérez-Sánchez. "Variable Speed Control in PATs: Theoretical, Experimental and Numerical Modelling." Water 15, no. 10 (May 19, 2023): 1928. http://dx.doi.org/10.3390/w15101928.

Full text
Abstract:
The selection of pumps as turbines (PATs) for their respective use in energy optimisation systems is a complicated task, because manufacturers do not provide the characteristic curves. For this reason, some research has been carried out to predict them with computational fluid dynamics (CFD) and mathematical models. The purpose of this study is to validate these two prediction methodologies of flow (Q) vs. head (H) curves through numerical modelling using the computational package OpenFOAM, together with a comparison with the experimental data obtained from a PAT for the case in which the nominal rotation speed of the machine varies. Depending on the configuration and working conditions of the PAT, the simulation performed with OpenFOAM was validated by calibrating it with the nominal curve of the pump and with another simulation performed with CFD workbench SOLIDWORKS FloEFD. Subsequently, the second methodology related to the analyses and mathematical models proposed to predict the Q vs. H curves were also validated with new models in OpenFOAM and the experimental data. The results show that these prediction methods are effective when a machine’s operating point is close to the BEP (best efficient point). The absolute error ranges obtained with these two prediction methodologies for rotation speeds of 880 rpm, 1020 rpm, 1200 rpm, and 1500 rpm are between 5 and 24%, 2 and 17%, 0 and 12%, and 1 and 24%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

St-Onge, Gabriel, and Mathieu Olivier. "Modular Framework for the Solution of Boundary-coupled Multiphysics Problems." OpenFOAM® Journal 3 (July 31, 2023): 120–45. http://dx.doi.org/10.51560/ofj.v3.64.

Full text
Abstract:
This paper presents a modular multiphysics framework developed for OpenFOAM. The framework is built around an iterative implicit coupling scheme based on a multi-region partitioned approach. This scheme allows the implementation of formal implicit time-marching schemes, which improves the stability of strongly interacting coupled problems. This methodology allows physical interactions to be handled through specifically designed interface boundary conditions. It also allows region-specific solvers to be implemented as modular class solvers. The coupling methodology is handled with a main program that manages solver-specific actions. The aim of this framework is to facilitate the implementation and testing of new multiphysics coupling problems in an integrated code structure. To show the capabilities of the framework to integrate new physics, solvers and boundary conditions requirements are discussed. Also, three validated examples involving fluid-structure interactions, conjugate heat transfer, and fluid-structure-thermal interactions are presented. Although all these problems are boundary-coupled multiphysics problems, the framework is conceptually not limited to this kind of problems. The benefit of this work to the OpenFOAM community is a general and modular framework that facilitates the setup and solution of diversified multiphysics problems, and that illustrates the implementation of modular interface boundary conditions between physics regions.
APA, Harvard, Vancouver, ISO, and other styles
9

Saroha, Sagar, Sawan S. Sinha, and Sunil Lakshmipathy. "Evaluation of PANS method in conjunction with non-linear eddy viscosity closure using OpenFOAM." International Journal of Numerical Methods for Heat & Fluid Flow 29, no. 3 (March 4, 2019): 949–80. http://dx.doi.org/10.1108/hff-09-2018-0529.

Full text
Abstract:
Purpose In recent years, the partially averaged Navier–Stokes (PANS) methodology has earned acceptability as a viable scale-resolving bridging method of turbulence. To further enhance its capabilities, especially for simulating separated flows past bluff bodies, this paper aims to combine PANS with a non-linear eddy viscosity model (NLEVM). Design/methodology/approach The authors first extract a PANS closure model using the Shih’s quadratic eddy viscosity closure model [originally proposed for Reynolds-averaged Navier–Stokes (RANS) paradigm (Shih et al., 1993)]. Subsequently, they perform an extensive evaluation of the combination (PANS + NLEVM). Findings The NLEVM + PANS combination shows promising result in terms of reduction of the anisotropy tensor when the filter parameter (fk) is reduced. Further, the influence of PANS filter parameter f on the magnitude and orientation of the non-linear part of the stress tensor is closely scrutinized. Evaluation of the NLEVM + PANS combination is subsequently performed for flow past a square cylinder at Reynolds number of 22,000. The results show that for the same level of reduction in fk, the PANS + NLEVM methodology releases significantly more scales of motion and unsteadiness as compared to the traditional linear eddy viscosity model (LEVM) of Boussinesq (PANS + LEVM). The authors further demonstrate that with this enhanced ability the NLEVM + PANS combination shows much-improved predictions of almost all the mean quantities compared to those observed in simulations using LEVM + PANS. Research limitations/implications Based on these results, the authors propose the NLEVM + PANS combination as a more potent methodology for reliable prediction of highly separated flow fields. Originality/value Combination of a quadratic eddy viscosity closure model with PANS framework for simulating flow past bluff bodies.
APA, Harvard, Vancouver, ISO, and other styles
10

Cremades Rey, Luis F., Denis F. Hinz, and Mahdi Abkar. "Reynolds Stress Perturbation for Epistemic Uncertainty Quantification of RANS Models Implemented in OpenFOAM." Fluids 4, no. 2 (June 22, 2019): 113. http://dx.doi.org/10.3390/fluids4020113.

Full text
Abstract:
Reynolds-averaged Navier-Stokes (RANS) models are widely used for the simulation of engineering problems. The turbulent-viscosity hypothesis is a central assumption to achieve closures in this class of models. This assumption introduces structural or so-called epistemic uncertainty. Estimating that epistemic uncertainty is a promising approach towards improving the reliability of RANS simulations. In this study, we adopt a methodology to estimate the epistemic uncertainty by perturbing the Reynolds stress tensor. We focus on the perturbation of the turbulent kinetic energy and the eigenvalues separately. We first implement this methodology in the open source package OpenFOAM. Then, we apply this framework to the backward-facing step benchmark case and compare the results with the unperturbed RANS model, available direct numerical simulation data and available experimental data. It is shown that the perturbation of both parameters successfully estimate the region bounding the most accurate results.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "OpenFOAM Methodology"

1

Porcarelli, Alessandro. "Development of a CFD model and methodology for the internal flow simulation in a hydrogen-powered UAV." Thesis, KTH, Flygdynamik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302784.

Full text
Abstract:
In the context of an aviation industry whose top priority is to face the sustainability challenge, the growing civil UAV branch is not an exception. Hydrogen-powered UAVs equipped with PEM (Polymer Electrolyte Membrane) fuel cells are more and more frequently identified as the most convincing and promising technology, particularly for long-endurance mission requirements. However, the onboard carriage of a hydrogen fuel cell leads to unexplored internal flow characteristics, including the introduction of water vapour. The purpose of this master thesis is to develop a valid CFD model and methodology for the internal flow simulation of hydrogen-powered UAVs. Given the strict environmental operational requirements of PEM fuel cells, the intended application of the model is to effectively assess the evolution of the internal bay flow temperature and humidity fields. An explicit-time fourth-order Runge-Kutta projection method is tested successfully on a sample 2D case setup. The case geometry and flow conditions are inspired by the Green Raven UAV project conceived by the Department of Aeronautical and Vehicle Engineering at KTH.
I samband med en flygindustri vars högsta prioritet är att bemöta hållbarhetsutma- ningen är den växande civila UAV-sektorn inget undantag. Vätgasdrivna UAV:er utrustade med PEM (Polymer Electrolyte Membrane) bränsleceller betecknas allt oftare som den mest övertygande och lovande teknologin, särskilt för att de ska kunna utföra långvariga uppdrag. Den ombordgående transporten av en vätebränslecell leder emellertid till outforskade inre flödesfenomen, inklusive alstrad vattenånga. Syftet med detta examensarbete är att utveckla en lämplig CFD-modell och metodik för intern flödesimulering av vätgasdrivna UAV. Med tanke på de strikta miljökraven för PEM-bränsleceller är modellens avsedda tillämpning att eektivt utvärdera utvecklingen av de inre flödestemperaturerna och luftfuktighetsfälten. En tidsexplicit Runge-Kutta-projektionsmetod av fjärde ordningen testas framgångsrikt på ett 2D-exempel. Fallets geometri och flödesförhållanden är inspirerade av Green Raven UAV-projektet som utförts på Farkost och Flyg avdelningen på KTH.
APA, Harvard, Vancouver, ISO, and other styles
2

Belmar, Gil Mario. "Computational study on the non-reacting flow in Lean Direct Injection gas turbine combustors through Eulerian-Lagrangian Large-Eddy Simulations." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/159882.

Full text
Abstract:
[ES] El principal desafío en los motores turbina de gas empleados en aviación reside en aumentar la eficiencia del ciclo termodinámico manteniendo las emisiones contaminantes por debajo de las rigurosas restricciones. Ésto ha conllevado la necesidad de diseñar nuevas estrategias de inyección/combustión que operan en puntos de operación peligrosos por su cercanía al límite inferior de apagado de llama. En este contexto, el concepto Lean Direct Injection (LDI) ha emergido como una tecnología prometedora a la hora de reducir los óxidos de nitrógeno (NOx) emitidos por las plantas propulsoras de los aviones de nueva generación. En este contexto, la presente tesis tiene como objetivos contribuir al conocimiento de los mecanismos físicos que rigen el comportamiento de un quemador LDI y proporcionar herramientas de análisis para una profunda caracterización de las complejas estructuras de flujo de turbulento generadas en el interior de la cámara de combustión. Para ello, se ha desarrollado una metodología numérica basada en CFD capaz de modelar el flujo bifásico no reactivo en el interior de un quemador LDI académico mediante enfoques de turbulencia U-RANS y LES en un marco Euleriano-Lagrangiano. La resolución numérica de este problema multi-escala se aborda mediante la descripción completa del flujo a lo largo de todos los elementos que constituyen la maqueta experimental, incluyendo su paso por el swirler y entrada a la cámara de combustión. Ésto se lleva a cabo través de dos códigos CFD que involucran dos estrategias de mallado diferentes: una basada en algoritmos de generación y refinamiento automático de la malla (AMR) a través de CONVERGE y otra técnica de mallado estático más tradicional mediante OpenFOAM. Por un lado, se ha definido una metodología para obtener una estrategia de mallado óptima mediante el uso del AMR y se han explotado sus beneficios frente a los enfoques tradicionales de malla estática. De esta forma, se ha demostrado que la aplicabilidad de las herramientas de control de malla disponibles en CONVERGE como el refinamiento fijo (fixed embedding) y el AMR son una opción muy interesante para afrontar este tipo de problemas multi-escala. Los resultados destacan una optimización del uso de los recursos computacionales y una mayor precisión en las simulaciones realizadas con la metodología presentada. Por otro lado, el uso de herramientas CFD se ha combinado con la aplicación de técnicas de descomposición modal avanzadas (Proper Orthogonal Decomposition and Dynamic Mode Decomposition). La identificación numérica de los principales modos acústicos en la cámara de combustión ha demostrado el potencial de estas herramientas al permitir caracterizar las estructuras de flujo coherentes generadas como consecuencia de la rotura de los vórtices (VBB) y de los chorros fuertemente torbellinados presentes en el quemador LDI. Además, la implementación de estos procedimientos matemáticos ha permitido tanto recuperar información sobre las características de la dinámica de flujo como proporcionar un enfoque sistemático para identificar los principales mecanismos que sustentan las inestabilidades en la cámara de combustión. Finalmente, la metodología validada ha sido explotada a través de un Diseño de Experimentos (DoE) para cuantificar la influencia de los factores críticos de diseño en el flujo no reactivo. De esta manera, se ha evaluado la contribución individual de algunos parámetros funcionales (el número de palas del swirler, el ángulo de dichas palas, el ancho de la cámara de combustión y la posición axial del orificio del inyector) en los patrones del campo fluido, la distribución del tamaño de gotas del combustible líquido y la aparición de inestabilidades en la cámara de combustión a través de una matriz ortogonal L9 de Taguchi. Este estudio estadístico supone un punto de partida para posteriores estudios de inyección, atomización y combus
[CA] El principal desafiament als motors turbina de gas utilitzats a la aviació resideix en augmentar l'eficiència del cicle termodinàmic mantenint les emissions contaminants per davall de les rigoroses restriccions. Aquest fet comporta la necessitat de dissenyar noves estratègies d'injecció/combustió que radiquen en punts d'operació perillosos per la seva aproximació al límit inferior d'apagat de flama. En aquest context, el concepte Lean Direct Injection (LDI) sorgeix com a eina innovadora a l'hora de reduir els òxids de nitrogen (NOx) emesos per les plantes propulsores dels avions de nova generació. Sota aquest context, aquesta tesis té com a objectius contribuir al coneixement dels mecanismes físics que regeixen el comportament d'un cremador LDI i proporcionar ferramentes d'anàlisi per a una profunda caracterització de les complexes estructures de flux turbulent generades a l'interior de la càmera de combustió. Per tal de dur-ho a terme s'ha desenvolupat una metodología numèrica basada en CFD capaç de modelar el flux bifàsic no reactiu a l'interior d'un cremador LDI acadèmic mitjançant els enfocaments de turbulència U-RANS i LES en un marc Eulerià-Lagrangià. La resolució numèrica d'aquest problema multiescala s'aborda mitjançant la resolució completa del flux al llarg de tots els elements que constitueixen la maqueta experimental, incloent el seu pas pel swirler i l'entrada a la càmera de combustió. Açò es duu a terme a través de dos codis CFD que involucren estratègies de mallat diferents: una basada en la generación automàtica de la malla i en l'algoritme de refinament adaptatiu (AMR) amb CONVERGE i l'altra que es basa en una tècnica de mallat estàtic més tradicional amb OpenFOAM. D'una banda, s'ha definit una metodologia per tal d'obtindre una estrategia de mallat òptima mitjançant l'ús de l'AMR i s'han explotat els seus beneficis front als enfocaments tradicionals de malla estàtica. D'aquesta forma, s'ha demostrat que l'aplicabilitat de les ferramente de control de malla disponibles en CONVERGE com el refinament fixe (fixed embedding) i l'AMR són una opció molt interessant per tal d'afrontar aquest tipus de problemes multiescala. Els resultats destaquen una optimització de l'ús dels recursos computacionals i una major precisió en les simulacions realitzades amb la metodologia presentada. D'altra banda, l'ús d'eines CFD s'ha combinat amb l'aplicació de tècniques de descomposició modal avançades (Proper Orthogonal Decomposition and Dynamic Mode Decomposition). La identificació numèrica dels principals modes acústics a la càmera de combustió ha demostrat el potencial d'aquestes ferramentes al permetre caracteritzar les estructures de flux coherents generades com a conseqüència del trencament dels vòrtex (VBB) i dels raigs fortament arremolinats presents al cremador LDI. A més, la implantació d'estos procediments matemàtics ha permès recuperar informació sobre les característiques de la dinàmica del flux i proporcionar un enfocament sistemàtic per tal d'identificar els principals mecanismes que sustenten les inestabilitats a la càmera de combustió. Finalment, la metodologia validada ha sigut explotada a traves d'un Diseny d'Experiments (DoE) per tal de quantificar la influència dels factors crítics de disseny en el flux no reactiu. D'aquesta manera, s'ha avaluat la contribución individual d'alguns paràmetres funcionals (el nombre de pales del swirler, l'angle de les pales, l'amplada de la càmera de combustió i la posició axial de l'orifici de l'injector) en els patrons del camp fluid, la distribució de la mida de gotes del combustible líquid i l'aparició d'inestabilitats en la càmera de combustió mitjançant una matriu ortogonal L9 de Taguchi. Aquest estudi estadístic és un bon punt de partida per a futurs estudis de injecció, atomització i combustió en cremadors LDI.
[EN] Aeronautical gas turbine engines present the main challenge of increasing the efficiency of the cycle while keeping the pollutant emissions below stringent restrictions. This has led to the design of new injection-combustion strategies working on more risky and problematic operating points such as those close to the lean extinction limit. In this context, the Lean Direct Injection (LDI) concept has emerged as a promising technology to reduce oxides of nitrogen (NOx) for next-generation aircraft power plants In this context, this thesis aims at contributing to the knowledge of the governing physical mechanisms within an LDI burner and to provide analysis tools for a deep characterisation of such complex flows. In order to do so, a numerical CFD methodology capable of reliably modelling the 2-phase nonreacting flow in an academic LDI burner has been developed in an Eulerian-Lagrangian framework, using the U-RANS and LES turbulence approaches. The LDI combustor taken as a reference to carry out the investigation is the laboratory-scale swirled-stabilised CORIA Spray Burner. The multi-scale problem is addressed by solving the complete inlet flow path through the swirl vanes and the combustor through two different CFD codes involving two different meshing strategies: an automatic mesh generation with adaptive mesh refinement (AMR) algorithm through CONVERGE and a more traditional static meshing technique in OpenFOAM. On the one hand, a methodology to obtain an optimal mesh strategy using AMR has been defined, and its benefits against traditional fixed mesh approaches have been exploited. In this way, the applicability of grid control tools available in CONVERGE such as fixed embedding and AMR has been demonstrated to be an interesting option to face this type of multi-scale problem. The results highlight an optimisation of the use of the computational resources and better accuracy in the simulations carried out with the presented methodology. On the other hand, the use of CFD tools has been combined with the application of systematic advanced modal decomposition techniques (i.e., Proper Orthogonal Decomposition and Dynamic Mode Decomposition). The numerical identification of the main acoustic modes in the chamber have proved their potential when studying the characteristics of the most powerful coherent flow structures of strongly swirled jets in a LDI burner undergoing vortex breakdown (VBB). Besides, the implementation of these mathematical procedures has allowed both retrieving information about the flow dynamics features and providing a systematic approach to identify the main mechanisms that sustain instabilities in the combustor. Last, this analysis has also allowed identifying some key features of swirl spray systems such as the complex pulsating, intermittent and cyclical spatial patterns related to the Precessing Vortex Core (PVC). Finally, the validated methodology is exploited through a Design of Experiments (DoE) to quantify the influence of critical design factors on the non-reacting flow. In this way, the individual contribution of some functional parameters (namely the number of swirler vanes, the swirler vane angle, the combustion chamber width and the axial position of the nozzle tip) into both the flow field pattern, the spray size distribution and the occurrence of instabilities in the combustion chamber are evaluated throughout a Taguchi's orthogonal array L9. Such a statistical study has supposed a good starting point for subsequent studies of injection, atomisation and combustion on LDI burners.
Belmar Gil, M. (2020). Computational study on the non-reacting flow in Lean Direct Injection gas turbine combustors through Eulerian-Lagrangian Large-Eddy Simulations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159882
TESIS
APA, Harvard, Vancouver, ISO, and other styles
3

Hajitaheri, Sina. "Design Optimization and Combustion Simulation of Two Gaseous and Liquid-Fired Combustors." Thesis, 2012. http://hdl.handle.net/10012/6730.

Full text
Abstract:
The growing effect of combustion pollutant emission on the environment and increasing petroleum prices are driving development of design methodologies for clean and efficient industrial combustion technologies. The design optimization methodology employs numerical algorithms to find the optimal solution of a design problem by converting it into a multivariate minimization problem. This is done by defining a vector of design parameters that specifies the design configuration, and an objective function that quantifies the performance of the design, usually so the optimal design outcome minimizes the objective function. A numerical algorithm is then employed to find the design parameters that minimize the objective function; these parameters thus specify the optimal design. However this technique is used in several other fields of research, its application to industrial combustion is fairly new. In the present study, a statistical optimization method called response surface methodology is connected to a CFD solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace. OpenFOAM is used to model the steady-state combustion of natural gas in the 300 KW BERL combustor. The main barrier to applying optimization in the design of industrial combustion equipment is the substantial computational effort needed to carry out the CFD simulation every time the objective function needs to be evaluated. This is intensified by the stiffness of the coupled governing partial differential equations, which can cause instability and divergent simulations. The present study addresses both of these issues by initializing the flow field for each objective function evaluation with the numerical results of the previously converged point. This modification dramatically reduced computation time. The combustion of diesel spray in the GenTex 50M process heater is investigated in the next part of this thesis. Experimental and numerical studies were carried out for both the cold spray and the diesel combustion where the numerical results satisfactorily predicted the observations. The simulation results show that, when carrying out a parametric design of a liquid fuel-fired combustor it is necessary to consider the effect of design parameters on the spray aerodynamic characteristics and size distribution, the air/spray interactions, and the size of the recirculation zones.
APA, Harvard, Vancouver, ISO, and other styles
4

Javed, Afroz. "Compressible Mixing of Dissimilar Gases." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3295.

Full text
Abstract:
This thesis is concerned with the study of parallel mixing of two dissimilar gases under compressible conditions in the confined environment. A number of numerical studies are reported in the literature for the compressible mixing of two streams of gases where (1) both the streams are of similar gases at the same temperatures, (2) both the streams are at different temperatures with similar gases, and (3) dissimilar gases are with nearly equal temperatures. The combination of dissimilar gases at large temperature difference, mixing under compressible conditions, as in the case of scramjet propulsion, has not been adequately addressed numerically. Also many of the earlier studies have used two dimensional numerical simulation and showed good match with the experimental results on mixing layers that are inherently three dimensional in nature. In the present study, both two-dimensional (2-d) and three dimensional (3-d) studies are reported and in particular the effect of side wall on the three dimensionality of the flow field is analyzed, and the reasons of the good match of two dimensional simulations with experimental results have been discussed. Both two dimensional and three dimensional model free simulations have been conducted for a flow configuration on which experimental results are available. In this flow configuration, the mixing duct has a rectangular cross section with height to width ratio of 0.5. In the upper part of the duct hydrogen gas at a temperature of 103 K is injected through a single manifold of two Ludweig tubes and in the lower part of the duct nitrogen gas at a temperature of 2436 K is supplied through an expansion tube, both the gases are at Mach numbers of 3.1 and 4.0 respectively. Measurements in the experiment are limited to wall pressures and heat flux. The choice of this experimental condition gives an opportunity to study the effect of large temperature difference on the mixing of two dissimilar gases with large molecular weights under compressible conditions. Both two dimensional and three dimensional model free simulations are carried out using higher order numerical scheme (4th order spatial and 2nd order temporal) to understand the structure and evolution of supersonic confined mixing layer of similar and dissimilar gases. Two dimensional simulations are carried out by both SPARK (finite difference method) and OpenFOAM (finite volume method based open source software that was specially picked out and put together), while 3D model free simulations are carried out by OpenFOAM. A fine grid structure with higher grid resolution near the walls and shear layer is chosen. The effect of forcing of fluctuations on the inlet velocity shows no appreciable change in the fully developed turbulent region of the flow. The flow variables are averaged after the attainment of statistical steady state established through monitoring the concentration of inert species introduced in the initial guess. The effect of side wall on the flow structure on the mixing layer is studied by comparing the simulation results with and without side wall. Two dimensional simulations show a good match for the growth rate of shear layer and experimental wall pressures. Three dimensional simulations without side wall shows 14% higher growth rate of shear layer than that of two dimensional simulations. The wall pressures predicted by these three dimensional simulations are also lower than that predicted using two dimensional simulations (6%) and experimental (9%) results in the downstream direction of the mixing duct. Three dimensionality of the flow is thought of as a cause for these differences. Simulations with the presence of side wall show that there is no remarkable difference of three dimensionality of the flow in terms of the variables and turbulence statistics compared to the case without side walls. However, the growth rate of shear layer and wall surface pressures matches well with that predicted using two dimensional simulations. It has been argued that this good match in shear layer growth rate occurs due to formation of oblique disturbances in presence of side walls that are considered responsible for the decrease in growth rate in 3-d mixing layers. The wall pressure match is argued to be good because of hindrance from side wall in the distribution of momentum in third direction results in higher wall pressure. The effect of dissimilar gases at large temperature difference on the growth rate reduction in compressible conditions is studied. Taking experimental conditions as baseline case, simulations are carried out for a range of convective Mach numbers. Simulations are also carried out for the same range of convective Mach numbers considering the mixing of similar gases at the same temperature. The normalized growth rates with incompressible counterpart for both the cases show that the dissimilar gas combination with large temperature difference shows higher growth rate. This result confirms earlier stability analysis that predicts increased growth rate for such cases. The growth rate reduction of a compressible mixing layer is argued to occur due to reduced pressure strain term in the Reynolds stress equation. This reduction also requires the pressure and density fluctuation correlation to be very near to unity. This holds good for a mixing layer formed between two similar gases at same temperature. For dissimilar gases at different temperatures this assumption does not hold well, and pressure-density correlation coefficient shows departure from unity. Further analysis of temperature density correlation factor, and temperature fluctuations shows that the changes in density occur predominantly due to temperature effects, than due to pressure effects. The mechanism of density variations is found to be different for similar and dissimilar gases, while for similar gases the density variations are due to pressure variations. For dissimilar gases density variation is also affected by temperature variations in addition to pressure variations. It has been observed that the traditional k-ε turbulence model within the RANS (Reynolds Averaged Navier Stokes) framework fails to capture the growth rate reduction for compressible shear layers. The performance of k-ε turbulence model is tested for the mixing of dissimilar gases at large temperature difference. For the experimental test case the shear layer growth rate and wall pressures show good match with other model free simulations. Simulations are further carried out for a range of convective Mach numbers keeping the mixing gases and their temperatures same. It has been observed that a drop in the growth rate is well predicted by RANS simulations. Further, the compressibility option has been removed and it has been observed that for the density and temperature difference, even for incompressible case, the drop in growth rate exists. This behaviour shows that the decrease in growth rate is mainly due to the interaction of temperature and species mass fraction on density. Also it can be inferred that RANS with k-ε turbulence model is able to capture the compressible shear layer growth rate for dissimilar gases at high temperature difference. The mixing of heat and species is governed by the values of turbulent Prandtl and Schmidt numbers respectively. These numbers have been observed to vary for different flow conditions, while affecting the flow field considerable in the form of temperature and species distribution. Model free simulations are carried out on an incompressible convective Mach number mixing layer, and the results are compared with that of a compressible mixing layer to study the effect of compressibility on the values of turbulent Prandtl / Schmidt numbers. It has been observed that both turbulent Prandtl and Schmidt numbers show an almost constant value in the mixing layer region for incompressible case. While, for a compressible case, both turbulent Prandtl and Schmidt numbers show a continuous variation within the mixing layer. However, the turbulent Lewis number is observed to be near unity for both incompressible and compressible cases. The thesis is composed of 8 chapters. An introduction of the subject with critical and relevant literature survey is presented in chapter 1. Chapter 2 describes the mathematical formulation and assumptions along with solution methodology needed for the simulations. Chapter 3 deals with the two and three dimensional model free simulations of the non reacting mixing layer. The effect of the presence of side wall is studied in chapter 4. Chapter 5 deals with the effect of compressibility on the mixing of two dissimilar gases at largely different temperatures. The performance of k-ε turbulence model is checked for dissimilar gases in Chapter 6. Chapter 7 is concerned with the effect of compressibility on turbulent Prandtl and Schmidt numbers. Finally concluding remarks are presented in chapter 8. The main aim of this thesis is the exploration of parallel mixing of dissimilar gases under compressible conditions for both two and three dimensional cases. The outcome of the thesis is (a) a finding that the presence of sidewall in a mixing duct does not make flow field two dimensional, instead it causes the formation of oblique disturbances and the shear layer growth rate is reduced, (b) that it has been shown that the growth rates of dissimilar gases are affected far more by large temperature difference than by compressibility as in case of similar gases, (c) that the growth rates of compressible shear layers formed between dissimilar gases are better predicted using k-εturbulence model and (d) that for compressible mixing conditions the turbulent Prandtl and Schmidt numbers vary continuously in the mixing layer region necessitating the use of some kind of model instead of assuming constant values.
APA, Harvard, Vancouver, ISO, and other styles
5

Javed, Afroz. "Compressible Mixing of Dissimilar Gases." Thesis, 2013. http://etd.iisc.ernet.in/2005/3295.

Full text
Abstract:
This thesis is concerned with the study of parallel mixing of two dissimilar gases under compressible conditions in the confined environment. A number of numerical studies are reported in the literature for the compressible mixing of two streams of gases where (1) both the streams are of similar gases at the same temperatures, (2) both the streams are at different temperatures with similar gases, and (3) dissimilar gases are with nearly equal temperatures. The combination of dissimilar gases at large temperature difference, mixing under compressible conditions, as in the case of scramjet propulsion, has not been adequately addressed numerically. Also many of the earlier studies have used two dimensional numerical simulation and showed good match with the experimental results on mixing layers that are inherently three dimensional in nature. In the present study, both two-dimensional (2-d) and three dimensional (3-d) studies are reported and in particular the effect of side wall on the three dimensionality of the flow field is analyzed, and the reasons of the good match of two dimensional simulations with experimental results have been discussed. Both two dimensional and three dimensional model free simulations have been conducted for a flow configuration on which experimental results are available. In this flow configuration, the mixing duct has a rectangular cross section with height to width ratio of 0.5. In the upper part of the duct hydrogen gas at a temperature of 103 K is injected through a single manifold of two Ludweig tubes and in the lower part of the duct nitrogen gas at a temperature of 2436 K is supplied through an expansion tube, both the gases are at Mach numbers of 3.1 and 4.0 respectively. Measurements in the experiment are limited to wall pressures and heat flux. The choice of this experimental condition gives an opportunity to study the effect of large temperature difference on the mixing of two dissimilar gases with large molecular weights under compressible conditions. Both two dimensional and three dimensional model free simulations are carried out using higher order numerical scheme (4th order spatial and 2nd order temporal) to understand the structure and evolution of supersonic confined mixing layer of similar and dissimilar gases. Two dimensional simulations are carried out by both SPARK (finite difference method) and OpenFOAM (finite volume method based open source software that was specially picked out and put together), while 3D model free simulations are carried out by OpenFOAM. A fine grid structure with higher grid resolution near the walls and shear layer is chosen. The effect of forcing of fluctuations on the inlet velocity shows no appreciable change in the fully developed turbulent region of the flow. The flow variables are averaged after the attainment of statistical steady state established through monitoring the concentration of inert species introduced in the initial guess. The effect of side wall on the flow structure on the mixing layer is studied by comparing the simulation results with and without side wall. Two dimensional simulations show a good match for the growth rate of shear layer and experimental wall pressures. Three dimensional simulations without side wall shows 14% higher growth rate of shear layer than that of two dimensional simulations. The wall pressures predicted by these three dimensional simulations are also lower than that predicted using two dimensional simulations (6%) and experimental (9%) results in the downstream direction of the mixing duct. Three dimensionality of the flow is thought of as a cause for these differences. Simulations with the presence of side wall show that there is no remarkable difference of three dimensionality of the flow in terms of the variables and turbulence statistics compared to the case without side walls. However, the growth rate of shear layer and wall surface pressures matches well with that predicted using two dimensional simulations. It has been argued that this good match in shear layer growth rate occurs due to formation of oblique disturbances in presence of side walls that are considered responsible for the decrease in growth rate in 3-d mixing layers. The wall pressure match is argued to be good because of hindrance from side wall in the distribution of momentum in third direction results in higher wall pressure. The effect of dissimilar gases at large temperature difference on the growth rate reduction in compressible conditions is studied. Taking experimental conditions as baseline case, simulations are carried out for a range of convective Mach numbers. Simulations are also carried out for the same range of convective Mach numbers considering the mixing of similar gases at the same temperature. The normalized growth rates with incompressible counterpart for both the cases show that the dissimilar gas combination with large temperature difference shows higher growth rate. This result confirms earlier stability analysis that predicts increased growth rate for such cases. The growth rate reduction of a compressible mixing layer is argued to occur due to reduced pressure strain term in the Reynolds stress equation. This reduction also requires the pressure and density fluctuation correlation to be very near to unity. This holds good for a mixing layer formed between two similar gases at same temperature. For dissimilar gases at different temperatures this assumption does not hold well, and pressure-density correlation coefficient shows departure from unity. Further analysis of temperature density correlation factor, and temperature fluctuations shows that the changes in density occur predominantly due to temperature effects, than due to pressure effects. The mechanism of density variations is found to be different for similar and dissimilar gases, while for similar gases the density variations are due to pressure variations. For dissimilar gases density variation is also affected by temperature variations in addition to pressure variations. It has been observed that the traditional k-ε turbulence model within the RANS (Reynolds Averaged Navier Stokes) framework fails to capture the growth rate reduction for compressible shear layers. The performance of k-ε turbulence model is tested for the mixing of dissimilar gases at large temperature difference. For the experimental test case the shear layer growth rate and wall pressures show good match with other model free simulations. Simulations are further carried out for a range of convective Mach numbers keeping the mixing gases and their temperatures same. It has been observed that a drop in the growth rate is well predicted by RANS simulations. Further, the compressibility option has been removed and it has been observed that for the density and temperature difference, even for incompressible case, the drop in growth rate exists. This behaviour shows that the decrease in growth rate is mainly due to the interaction of temperature and species mass fraction on density. Also it can be inferred that RANS with k-ε turbulence model is able to capture the compressible shear layer growth rate for dissimilar gases at high temperature difference. The mixing of heat and species is governed by the values of turbulent Prandtl and Schmidt numbers respectively. These numbers have been observed to vary for different flow conditions, while affecting the flow field considerable in the form of temperature and species distribution. Model free simulations are carried out on an incompressible convective Mach number mixing layer, and the results are compared with that of a compressible mixing layer to study the effect of compressibility on the values of turbulent Prandtl / Schmidt numbers. It has been observed that both turbulent Prandtl and Schmidt numbers show an almost constant value in the mixing layer region for incompressible case. While, for a compressible case, both turbulent Prandtl and Schmidt numbers show a continuous variation within the mixing layer. However, the turbulent Lewis number is observed to be near unity for both incompressible and compressible cases. The thesis is composed of 8 chapters. An introduction of the subject with critical and relevant literature survey is presented in chapter 1. Chapter 2 describes the mathematical formulation and assumptions along with solution methodology needed for the simulations. Chapter 3 deals with the two and three dimensional model free simulations of the non reacting mixing layer. The effect of the presence of side wall is studied in chapter 4. Chapter 5 deals with the effect of compressibility on the mixing of two dissimilar gases at largely different temperatures. The performance of k-ε turbulence model is checked for dissimilar gases in Chapter 6. Chapter 7 is concerned with the effect of compressibility on turbulent Prandtl and Schmidt numbers. Finally concluding remarks are presented in chapter 8. The main aim of this thesis is the exploration of parallel mixing of dissimilar gases under compressible conditions for both two and three dimensional cases. The outcome of the thesis is (a) a finding that the presence of sidewall in a mixing duct does not make flow field two dimensional, instead it causes the formation of oblique disturbances and the shear layer growth rate is reduced, (b) that it has been shown that the growth rates of dissimilar gases are affected far more by large temperature difference than by compressibility as in case of similar gases, (c) that the growth rates of compressible shear layers formed between dissimilar gases are better predicted using k-εturbulence model and (d) that for compressible mixing conditions the turbulent Prandtl and Schmidt numbers vary continuously in the mixing layer region necessitating the use of some kind of model instead of assuming constant values.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "OpenFOAM Methodology"

1

Caccia, Claudio G., Giovanni Bailardi, Joel Guerrero, and Davide Marini. "Fluid Structure Interaction in Marine Applications Using Open-Source Tools." In Progress in Marine Science and Technology. IOS Press, 2022. http://dx.doi.org/10.3233/pmst220058.

Full text
Abstract:
The current paper describes the successful attempt to simulate coupled fluid structure interaction of a 3D solid object using open source software. Often the design of hydrodynamic appendages is performed separately by CFD and FEM simulations. The coupling of structural deformation with fluid dynamic pressure is generally done explicitly with a loose coupling implementation between engineers of different departments. In the present work we propose a tight coupling CFD+FEM solver solution where the FSI simulation is run in one environment only. First, a validation with surface piercing hydrofoil [7] is performed and then the derived methodology/setup between MBDyn, preCICE and OpenFOAM is applied to a typical hydrofoil case.
APA, Harvard, Vancouver, ISO, and other styles
2

Favero, Jovani L., Argimiro R. Secchi, Nilo Sérgio M. Cardozo, and Hrvoje Jasak. "Viscoelastic Flow Simulation: Development of a Methodology of Analysis Using the Software OpenFOAM and Differential Constitutive Equations." In Computer Aided Chemical Engineering, 915–20. Elsevier, 2009. http://dx.doi.org/10.1016/s1570-7946(09)70373-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "OpenFOAM Methodology"

1

Zheng, Pengde, Chang Liu, Zhenzhong Li, Deqi Chen, and Haochuang Wu. "Numerical Simulations of CHF in a Single Rod Channel Using OpenFOAM." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-93147.

Full text
Abstract:
Abstract This study aims to develop an experimental verification calculation model based on the open source CFD platform OpenFOAM to simulate boiling flow in single rod channel. Two-fluid model coupled with improved RPI wall boiling model (i.e. CHF model) was employed to investigate the departure from nuclear boiling (DNB) phenomena in a single rod under extremely high heat flux. The corrected wall heat flux partitioning model was implemented in the OpenFOAM to simulate two-phase boiling. A good agreement between the predicted CHF and experimental results was observed. On this basis, the effects of coolant mass flow and inlet subcooling on CHF were numerically studied. The results shown that two-fluid model coupled with CHF model was qualified to predict CHF accurately. This work can be referred when one predicts CHF in complicated geometry by CFD methodology.
APA, Harvard, Vancouver, ISO, and other styles
2

Lietz, Christopher, Pratik Donde, Venkat Raman, and Scott Martin. "Large Eddy Simulation/Eulerian Probability Density Function Approach for Simulating Hydrogen-Enriched Gas Turbine Combustors." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68369.

Full text
Abstract:
To describe partially-premixed combustion inside hydrogen-rich combustors, a novel quadrature-based probability density function (PDF) approach is studied here. The PDF approach is comprehensive in describing multiple combustion regimes, and multiple inlet streams. The methodology is implemented in the context of the large eddy simulation (LES) approach. The main bottleneck in utilizing the PDF approach is that the PDF transport equation, which needs to be evolved along with the LES equations, is high-dimensional and intractable using conventional discretization techniques. In order to ensure that the PDF approach is easily transferred to existing industrial flow solvers, a quadrature-based Eulerian method for solving the PDF transport equation is considered here. The corresponding Eulerian equations are implemented in the open source OpenFOAM code using an unstructured grid system. Simulations of an experimental high-pressure combustor demonstrate that the PDF approach significantly changes the reaction structure compared to laminar chemistry assumption.
APA, Harvard, Vancouver, ISO, and other styles
3

Ducasse, Marie-Laure, Damiano Soulat, and Florent Vertallier. "Investigation of Hydrodynamic Behaviour of Wind Turbine GBS During Offshore Installation and Engineering Design Outcomes." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77619.

Full text
Abstract:
Gravity Based Structure (GBS) is one of the main structural foundation concept planned to be used to accommodate offshore wind turbines in shallow water depth areas. Large scale deployment of such massive foundations raises technical issues regarding transport and installation of the GBS. This paper aims at presenting major outcomes of hydrodynamic analyses carried out to assess dynamic behaviour of the GBS during offshore installation. This study focuses on the last critical step of the installation process when the foundation is almost completely ballasted and close to the seabed grading layer. CFD analyses are conducted with OpenFOAM to estimate viscous damping of the GBS and to investigate the impact of seabed proximity and bedding layer porosity on hydrodynamic parameters. Based on damping coefficients derived from CFD, motion analyses are performed with Diodore™ to assess dynamic behaviour of the GBS in irregular waves. Results are benchmarked against responses obtained from different damping parameters and computation methods. This study allows providing some recommendations regarding hydrodynamics design methodology for this type of GBS installation analysis.
APA, Harvard, Vancouver, ISO, and other styles
4

Greiciunas, Evaldas, Duncan Borman, and Jonathan Summers. "Unsteady Flow Modelling in Plate-Fin Heat Exchanger Channels." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4957.

Full text
Abstract:
A methodology using Computational Fluid Dynamics (CFD) was developed to predict the flow and heat transfer performance of a single two dimensional sinusoidal channel of a Heat Exchanger (HE) at a Reynolds number (Re) range of 5 ≤ Re ≤ 500. The impact of different modelling assumptions was thoroughly evaluated which has not has been done in detail before. Two computational domains were used: a single period sinusoidal channel for fully periodic flow predictions and finite length channel consisting of 6 sinusoidal channel periods. Mesh and time independence was achieved for both domains whilst results with periodic domain were compared to numerical results in the literature. Laminar, k-ε and k-ω SST predictions were assessed throughout the Reynolds range with unsteady flow onset detected at Re ≈ 200 using laminar and k-ω SST models. The impact of different accuracy numerical discretisation schemes is assessed throughout the Re range and it was found that second order accuracy schemes should be used to fully capture the unsteady flow. Comparison between open-source CFD package OpenFOAM and Ansys was Fluent was performed and agreement was ‘ found.
APA, Harvard, Vancouver, ISO, and other styles
5

Lillberg, Eric. "Predicting Thermal Mixing and Fatigue Inside Control Rod Guide Tubes." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16632.

Full text
Abstract:
The cracked control rods shafts found in two Swedish NPPs were subjected to thermal fatigue due to mixing of cold purge flow with hot bypass water in the upper part of the top tube on which the control rod guide tubes rests. The interaction between the jets formed at the bypass water inlets is the main source of oscillation resulting in low frequency downward motion of hot bypass water into the cold purge flow. This ultimately causes thermal fatigue in the control rod shaft in the region below the four lower bypass water inlets. The transient analyses shown in this report were done to further investigate this oscillating phenomenon and compare to experimental measurements of water temperatures inside the control rod guide tube. The simulated results show good agreement with experimental data regarding all important variables for the estimation of thermal fatigue such as peak-to-peak temperature range, frequency of oscillation and duration of the temperature peaks. The results presented in this report show that CFD using LES methodology and the open source toolbox OpenFOAM is a viable tool for predicting complex turbulent mixing flows and thermal loads.
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Hui-li, Marilena Greco, and Claudio Lugni. "2D Numerical Study on Wake Scenarios for a Flapping Foil." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-63738.

Full text
Abstract:
Abstract Fishes are talented swimmers. Depending on the propulsion mechanisms many fishes can use flapping tails and/or fins to generate thrust, which seems to be connected to the formation of a reverse von Kármán wake. In the present work, the flow past a 2D flapping foil is simulated by solving the incompressible Navier-Stokes equations in the open-source OpenFOAM platform. A systematic study by varying the oscillating frequency, peak-to-peak amplitude and Reynolds number has been performed to analyze the transition of vorticity types in the wake as well as drag-thrust transition. The overset grid method is used herein to allow the pitching foil to move without restrictions. Spatial convergence tests have been carried out with respect to grid resolution and the size of overset mesh domain. Numerical results are compared with available experimental data and discussed. The results show that the adopted methodology can be well applied to simulate large amplitude motions of the flapping foil. The transitions in the types of wake are consistent with the benchmark experimental data, and the drag-thrust transition of the pitching foil does not coincide with von Kármán (vK)-reverse von Kármán (reverse-vK) wake transition and it is highly dependent on the Reynolds number.
APA, Harvard, Vancouver, ISO, and other styles
7

Xie, Qiuxia, Xiaojing Liu, and Xiang Chai. "Three-Dimensional Fine-Mesh Coupled Neutronics and Thermal-Hydraulics Calculation for PWR Fuel Pins." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-93140.

Full text
Abstract:
Abstract With the great improvement of computer performance, multi-physics and high-fidelity reactor numerical simulation has attracted widespread attention. The development of a three-dimensional fine-mesh coupled neutronics and thermal-hydraulics procedure mainly using the free open source C++ library OpenFOAM is presented in this research. The coupling codes are allowed to solve the coupled neutronic and thermal-hydraulic problem within the same one procedure for both steady-state and transient conditions, avoiding the data transmission between different programs. The coupling strategy among two physical fields is implemented in the same fully three-dimensional and fine mesh system, which eliminates numerical errors caused by the mapping of the grid. For the thermal-hydraulics, the built-in solid-fluid coupling conjugate heat transfer solver is applied for the calculation of the fluid mass, momentum, and energy equations, together with the solid energy equation to obtain the temperature distribution. The neutron diffusion equation is solved iteratively via the developed three-dimensional multi-group multi-region neutron diffusion solver to get the power distribution. The macroscopic cross-sections are pre-generated by the Monte Carlo code OpenMC and fitted as functions of temperature added in the neutron diffusion solver. The temperature distribution obtained by thermal-hydraulics calculation will change the macroscopic cross-sections and then impact the neutron diffusion calculation, while the power distribution gained from the neutronic calculation is transferred to the thermal-hydraulics calculation and is used as the heat source term. This coupling methodology are tested on a 3 × 3 PWR fuel pins model. The results show that all physical fields conform correct distribution regularity, illustrating the feasibility of the coupling methodology.
APA, Harvard, Vancouver, ISO, and other styles
8

Verstraete, Tom, Filippo Coletti, Je´re´my Bulle, Timothe´e Vanderwielen, and Tony Arts. "Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels: Part I—Numerical Method." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46541.

Full text
Abstract:
This two-parts paper addresses the design of a U-bend for serpentine internal cooling channels optimized for minimal pressure loss. The total pressure loss for the flow in a U-bend is a critical design parameter as it augments the pressure required at the inlet of the cooling system, resulting in a lower global efficiency. In this first part of the paper the design methodology of the cooling channel is presented. The minimization of the total pressure loss is achieved by means of a numerical optimization method that uses a metamodel assisted differential evolution algorithm in combination with an incompressible Navier-Stokes solver. The profiles of the internal and external side of the bend are parameterized using piece-wise Bezier curves. This allows for a wide variety of shapes, respecting the manufacturability constraints of the design. The pressure loss is computed by the Navier-Stokes solver, which is based on a two-equation turbulence model and is available from the open source software OpenFOAM. The numerical method predicts an improvement of 36% in total pressure drop with respect to a circular U-bend, mainly due to the reduction of the separated flow region along the internal side of the bend. The resulting design is subjected to experimental validation, presented in Part II of the paper.
APA, Harvard, Vancouver, ISO, and other styles
9

Hosaka, Tomoyuki, Taisuke Sugii, Eiji Ishii, Kazuhiro Oryoji, and Yoshihiro Sukegawa. "Application of Hyperbolic Tangent Approximation Model to Gasoline Direct Injection Engine Simulation." In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3538.

Full text
Abstract:
The improved fuel economy and low pollutant emissions are highly demanded for internal combustion engines. Gasoline Direct Injection (GDI) engine is the one of promising devices for highly efficient engine. However, GDI engines generally tend to emit more Particulate Matter (PM) than Port Fuel Injection (PFI) engine because the fuel sprayed from the injector can easily attach to the wall, which is the major origin of PM. Therefore, the precise analysis of the fuel/air mixture formation and the prediction of emissions are required. From the view of industrial use, Computational Fluid Dynamics (CFD) becomes a necessary tool for the various analyses including the fuel/air mixture formation, spray attachment on the cylinder wall, the in-cylinder turbulence formation, the combustion and emission etc. In our previous study, the flow and spray simulation in internal combustion engine has been conducted using OpenFOAM®, the open-source CFD toolbox. Since the engine involves the dynamic motion such as valve and piston, the morphing and mapping approach was employed. Furthermore, by virtue of open-source code, we have developed the methodology of the hybrid simulation from the internal nozzle flow to the fuel/air mixture in order to take into account detailed breakup process nearby injector nozzle. We expand the above research to the combustion simulation. For the combustion model, the Hyperbolic Tangent Approximation (HTA) model is adopted. The HTA model has a simple form of equation and one can easily implement; moreover, the HTA model has the following features: 1. capability of both laminar and turbulent flow, 2. the clearness of analytical derivation based on the functional approximation of the reaction progress variable distribution in a one-dimensional laminar flame. In the current study, the premixed flame is studied on a gasoline combustion engine. The simulations for in-cylinder engine are conducted with different Air/Fuel (A/F) ratio conditions, and the results are compared with the experimental results. The in-cylinder pressure agrees well with experimental results and the validity of the current methodology is confirmed.
APA, Harvard, Vancouver, ISO, and other styles
10

Corsini, Alessandro, Giovanni Delibra, Franco Rispoli, Anthony G. Sheard, and Paolo Venturini. "Aerodynamic Simulation of a High-Pressure Centrifugal Fan for Process Industries." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94982.

Full text
Abstract:
Large centrifugal fans in cement factories operate in an aggressive environment, as the cement particles dispersed in the flow are responsible for strong blade surface erosion that leads to performance degradation. This paper reports on the simulation of the flow field in a large centrifugal fan designed for process industry applications. The aerodynamic investigation, at a preliminary level, highlights the critical regions inside the device and suggests possible modification to increase its duty life. This paper reports on the simulation of the flow field in a large centrifugal fan designed for process industry applications. The aerodynamic investigation, at a preliminary level, serves the aim of highlighting the critical regions inside the device and suggest possible modification to increase its duty life. In the paper we show the results of numerical computations carried out with the finite volume open-source code OpenFOAM using Multiple Reference Frame methodology. Reynolds Averaged Navier-Stokes equations for incompressible flow were solved with standard eddy-viscosity k-ε model in order to explore the aerodynamic behaviour of the fan in near-design operations. The incompressible flow hypothesis was adopted even if locally Mach number can exceed 0.5. In fact in this case the pressure-rise does not lead to a variation of the density able to affect the velocity field divergence. Given the high performance of the investigated impeller, the present work has a twofold objective. First, we seek to define an accurate numerical methodology to investigate high-pressure radial fans. Second, we provide detailed analysis of the inlet ring-impeller-volute assembly inner workings under realistic distorted inflow conditions. The results provide the evolution of the pressure field in order to validate the accuracy of the simulation in reproducing the motion inside the fan that was fundamental for credible particle dispersion reproduction. We then investigate the three-dimensional flow field through the impeller in order to provide details about the secondary flow structures that develop within the blade vanes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography