Journal articles on the topic 'OpenFOAM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'OpenFOAM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Курбаналиев, Абдикерим Ырысбаевич, Бурулгул Рахманбердиевна Ойчуева, Анипа Ташбаевна Калмурзаева, Аманбек Жайнакович Жайнаков, and Топчубай Чокоевич Култаев. "Critical comparison of the different versions of the OpenFOAM on the simulation of spillway." Вычислительные технологии, no. 2 (June 22, 2021): 44–57. http://dx.doi.org/10.25743/ict.2021.26.2.004.
Full textGerlero, Gabriel S., and Pablo A. Kler. "foamlib: A modern Python interface for interacting with OpenFOAM." Resúmenes de Mecánica Computacional 1, no. 13 (2024): 139. https://doi.org/10.70567/rmc.v1i13.194.
Full textGärtner, Jan Wilhelm, Gregor Olenik, Mohammed Elwardi Fadeli, et al. "Testing Strategies for OpenFOAM Projects." OpenFOAM® Journal 5 (April 26, 2025): 115–30. https://doi.org/10.51560/ofj.v5.134.
Full textChourdakis, Gerasimos, David Schneider, and Benjamin Uekermann. "OpenFOAM-preCICE: Coupling OpenFOAM with External Solvers for Multi-Physics Simulations." OpenFOAM® Journal 3 (February 27, 2023): 1–25. http://dx.doi.org/10.51560/ofj.v3.88.
Full textBarbosa, D. V. E., J. A. Souza, E. D. dos Santos, L. A. Isoldi, and J. C. Martins. "NUMERICAL ANALYSES OF OPENFOAM'S OVERTOPPING DEVICE SOLUTION." Revista de Engenharia Térmica 16, no. 1 (2017): 96. http://dx.doi.org/10.5380/reterm.v16i1.62198.
Full textKuzmenko, I. "Creating and Using Solvers in the Openfoam Package for Modeling the Temperature Field." Èlektronnoe modelirovanie 45, no. 2 (2023): 108–14. http://dx.doi.org/10.15407/emodel.45.02.108.
Full textCavar, Dalibor, Pierre-Elouan Réthoré, Andreas Bechmann, et al. "Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain." Wind Energy Science 1, no. 1 (2016): 55–70. http://dx.doi.org/10.5194/wes-1-55-2016.
Full textNóbrega, J. Miguel, and József Nagy. "Editorial." OpenFOAM® Journal 1 (January 1, 2021): 1. http://dx.doi.org/10.51560/ofj.v1.11.
Full textRODRIGUEZ LUZARDO, SIMON ANTONIO, and Philip Cardiff. "A General Approach for Running Python Codes in OpenFOAM Using an Embedded PYBIND11 Python Interpreter." OpenFOAM® Journal 2 (December 15, 2022): 166–82. http://dx.doi.org/10.51560/ofj.v2.79.
Full textOno, Akira, Makoto Chitose, Hiroki Suzuki, and Toshinori Kouchi. "Assessing OpenFOAM-based Large-eddy Simulation Using Decay Characteristics of An Isotropic Taylor-green Vortex." Journal of Physics: Conference Series 2694, no. 1 (2024): 012004. http://dx.doi.org/10.1088/1742-6596/2694/1/012004.
Full textYang, Xiao Guang, Hong Xing Dong, and Xing Hua Zhang. "Simulating Pipe Reactor of Biological Growth in Single-Phase Laminar Flow Based on Computational Fluid Dynamics and Reaction Dynamics by OpenFOAM." Advanced Materials Research 557-559 (July 2012): 2279–82. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.2279.
Full textBor, Aslı, Marcell Szabo-Meszaros, Kaspar Vereide, and Leif Lia. "Application of Three-Dimensional CFD Model to Determination of the Capacity of Existing Tyrolean Intake." Water 16, no. 5 (2024): 737. http://dx.doi.org/10.3390/w16050737.
Full textYang, Xiao Guang, Hong Xing Dong, and Xing Hua Zhang. "Computational Mass Transfer Based on CFD with OpenFOAM in Single-Phase Flow." Applied Mechanics and Materials 145 (December 2011): 134–37. http://dx.doi.org/10.4028/www.scientific.net/amm.145.134.
Full textOno, Akira, Hiroki Suzuki, and Toshinori Kouchi. "Non-linear response of kinetic energy in an inviscid Taylor-Green flow obtained by OpenFOAM-LES with respect to time increments." Journal of Physics: Conference Series 2701, no. 1 (2024): 012054. http://dx.doi.org/10.1088/1742-6596/2701/1/012054.
Full textNAGAWA, Yasumasa. "Internal flow analysis using OpenFOAM." Proceedings of the Fluids engineering conference 2021 (2021): OS04–15. http://dx.doi.org/10.1299/jsmefed.2021.os04-15.
Full textSalehi, Saeed, and Håkan Nilsson. "OpenFOAM for Francis Turbine Transients." OpenFOAM® Journal 1 (November 17, 2021): 47–61. http://dx.doi.org/10.51560/ofj.v1.26.
Full textChen, Goong, Qingang Xiong, Phillip J. Morris, Eric G. Paterson, Alexey Sergeev, and Yi-Ching Wang. "OpenFOAM for Computational Fluid Dynamics." Notices of the American Mathematical Society 61, no. 4 (2014): 354. http://dx.doi.org/10.1090/noti1095.
Full textMonakov, A. "On Optimizing OpenFOAM GPU Solvers." Proceedings of the Institute for System Programming of RAS 22 (2012): 223–32. http://dx.doi.org/10.15514/ispras-2012-22-14.
Full textTowara, Markus, Michel Schanen, and Uwe Naumann. "MPI-Parallel Discrete Adjoint OpenFOAM." Procedia Computer Science 51 (2015): 19–28. http://dx.doi.org/10.1016/j.procs.2015.05.181.
Full textGärtner, Jan Wilhelm, Andreas Kronenburg, and Tobias Martin. "Efficient WENO library for OpenFOAM." SoftwareX 12 (July 2020): 100611. http://dx.doi.org/10.1016/j.softx.2020.100611.
Full textCvijetić, Gregor, Inno Gatin, Vuko Vukčević, and Hrvoje Jasak. "Harmonic Balance developments in OpenFOAM." Computers & Fluids 172 (August 2018): 632–43. http://dx.doi.org/10.1016/j.compfluid.2018.02.023.
Full textSchmalfuß, Silvio, Ralph Säuberlich, and Martin Sommerfeld. "Verbesserung des Fluidphasenresonanzmischens mit OpenFOAM." Chemie Ingenieur Technik 85, no. 12 (2013): 1934–40. http://dx.doi.org/10.1002/cite.201200191.
Full textLara Pérez, Mónica Yineth, Elías Daniel David Nova Burgos, Martha Patricia Montenegro Carrillo, and Angélica María Tibidor Jara. "OpenFOAM reduced channel modeling análisis." Ingenieria Solidaria 19, no. 2 (2023): 1–21. http://dx.doi.org/10.16925/2357-6014.2023.02.01.
Full textSegui, M., F. R. Abel, R. M. Botez, and A. Ceruti. "High-fidelity aerodynamic modeling of an aircraft using OpenFoam – application on the CRJ700." Aeronautical Journal 126, no. 1298 (2021): 585–606. http://dx.doi.org/10.1017/aer.2021.86.
Full textHuang, Si, Yifeng Wei, Chenguang Guo, and Wenming Kang. "Numerical Simulation and Performance Prediction of Centrifugal Pump’s Full Flow Field Based on OpenFOAM." Processes 7, no. 9 (2019): 605. http://dx.doi.org/10.3390/pr7090605.
Full textSilva, Mónica F., João B. L. M. Campos, João M. Miranda, and José D. P. Araújo. "Numerical Study of Single Taylor Bubble Movement Through a Microchannel Using Different CFD Packages." Processes 8, no. 11 (2020): 1418. http://dx.doi.org/10.3390/pr8111418.
Full textKurbanaliev, A. Y., A. B. Turganbaeva, K. T. Berdibekova, and K. A. Bokoev. "Simulation of turbulent flow over the hill." Journal of Physics: Conference Series 2094, no. 2 (2021): 022045. http://dx.doi.org/10.1088/1742-6596/2094/2/022045.
Full textShu, Zhiyong, Fuping Qian, Jinjing Zhu, and Jinli Lu. "Numerical simulation of gas-solid flow characteristic of particles in fibrous media using OpenFOAM." Indoor and Built Environment 29, no. 7 (2019): 921–30. http://dx.doi.org/10.1177/1420326x19862016.
Full textKhodadadi, Azadboni, Mohammad Malekbala, and Azadboni Khodadadi. "Evaluate shock capturing capability with the numerical methods in OpenFOAM." Thermal Science 17, no. 4 (2013): 1255–60. http://dx.doi.org/10.2298/tsci130425048k.
Full textKlyuyev, A. S., Y. I. Chernyshev, E. A. Ivanov, and I. O. Borshchev. "Comparison of Jet Pump Numerical Calculation Results in ANSYS and Openfoam CFD Packages." E3S Web of Conferences 320 (2021): 04017. http://dx.doi.org/10.1051/e3sconf/202132004017.
Full textRamoa, Bruno, Ricardo Costa, Francisco Chinesta, and João Miguel Nóbrega. "Open-Source Framework for Modeling the Evolution of Fiber Orientation." OpenFOAM® Journal 5 (January 20, 2025): 17–37. https://doi.org/10.51560/ofj.v5.131.
Full textWei, Ying, and Feng Sha. "Running OpenFOAM in High Performance Computer." Applied Mechanics and Materials 380-384 (August 2013): 1924–26. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.1924.
Full textChitalov, D. I. "On the Development of a Module for the Modification of Computational Meshes by the dsmcInitialise Utility." Programmnaya Ingeneria 12, no. 4 (2021): 209–15. http://dx.doi.org/10.17587/prin.12.209-215.
Full textRauter, Matthias, Andreas Kofler, Andreas Huber, and Wolfgang Fellin. "faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM." Geoscientific Model Development 11, no. 7 (2018): 2923–39. http://dx.doi.org/10.5194/gmd-11-2923-2018.
Full textKrishnamoorthy, Gautham, and Nasim Gholizadeh. "Blood Damage Analysis within the FDA Benchmark Nozzle Geometry at Laminar Conditions: Prediction Sensitivities to Software and Non-Newtonian Viscosity Models." Symmetry 16, no. 9 (2024): 1165. http://dx.doi.org/10.3390/sym16091165.
Full textRen, Xiao Guang. "Optimize OpenFOAM from the Compiler Perspective." Applied Mechanics and Materials 687-691 (November 2014): 3183–86. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.3183.
Full textLee, S. W. "VEHICLE AIR FLOW SIMULATION USING OPENFOAM." Journal of Computational Fluids Engineering 23, no. 3 (2018): 79–85. http://dx.doi.org/10.6112/kscfe.2018.23.3.079.
Full textRyakhovskiy, A. I., and A. A. Schmidt. "MHD supersonic flow control: OpenFOAM simulation." Proceedings of the Institute for System Programming of the RAS 28, no. 1 (2016): 197–206. http://dx.doi.org/10.15514/ispras-2016-28(1)-11.
Full textRomanova, D. I. "3D avalanche flow modeling using OpenFOAM." Proceedings of the Institute for System Programming of the RAS 29, no. 1 (2017): 85–100. http://dx.doi.org/10.15514/ispras-2017-29(1)-6.
Full textCoe, Michael, and Daniel Holland. "Cyclic Heat Transfer Solver for OpenFOAM." OpenFOAM® Journal 3 (December 8, 2023): 225–51. http://dx.doi.org/10.51560/ofj.v3.113.
Full textTowara, M., and U. Naumann. "A Discrete Adjoint Model for OpenFOAM." Procedia Computer Science 18 (2013): 429–38. http://dx.doi.org/10.1016/j.procs.2013.05.206.
Full textEscarti-Guillem, Mara S., Sergio Hoyas, and Luis M. García-Raffi. "Rocket plume URANS simulation using OpenFOAM." Results in Engineering 4 (December 2019): 100056. http://dx.doi.org/10.1016/j.rineng.2019.100056.
Full textLongshaw, S. M., M. K. Borg, S. B. Ramisetti, et al. "mdFoam+: Advanced molecular dynamics in OpenFOAM." Computer Physics Communications 224 (March 2018): 1–21. http://dx.doi.org/10.1016/j.cpc.2017.09.029.
Full textFadiga, Ettore, Nicola Casari, Alessio Suman, and Michele Pinelli. "CoolFOAM: The CoolProp wrapper for OpenFOAM." Computer Physics Communications 250 (May 2020): 107047. http://dx.doi.org/10.1016/j.cpc.2019.107047.
Full textMacchi, Marco, Jennifer X. Wen, Konstantin Volkov, Ali Heidari, and Yongmann M. Chung. "Modeling liquid fuel cascades with OpenFOAM." Process Safety Progress 35, no. 2 (2015): 179–84. http://dx.doi.org/10.1002/prs.11777.
Full textChitalov, D. "Developing a module to convert OpenFOAM computational meshes to the msh format." Journal of Physics: Conference Series 2094, no. 3 (2021): 032022. http://dx.doi.org/10.1088/1742-6596/2094/3/032022.
Full textPapi, Ali, Amir Jahanbakhsh, and Mercedes M. Maroto-Valer. "A New Straightforward Darcy-Scale Compositional Solver in OpenFOAM for CO2/Water Mutual Solubility in CO2 Storage Processes in Aquifers." Energies 17, no. 14 (2024): 3401. http://dx.doi.org/10.3390/en17143401.
Full textRogovyi, Andrii, Andrii Azarov, Oleksandr Shudryk, Olga Panamariova, and Denys Lebedynets. "VALIDATION OF THE HYDRAULIC TURBINE OPENFOAM LIBRARY FOR A HIGH-PRESSURE CENTRIFUGAL COMPRESSOR." Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units, no. 2 (January 24, 2024): 62–66. http://dx.doi.org/10.20998/2411-3441.2023.2.09.
Full textLiu, Yangyang, Ziying Zhang, Hua Zhang, and Yaguang Liu. "Implementation and Validation of Explicit Immersed Boundary Method and Lattice Boltzmann Flux Solver in OpenFOAM." Dynamics 4, no. 1 (2024): 14–39. http://dx.doi.org/10.3390/dynamics4010002.
Full textSahranavardfard, Nasrin, Damien Aubagnac-Karkar, Gabriele Costante, Faniry N. Z. Rahantamialisoa, Chaouki Habchi, and Michele Battistoni. "Computation of Real-Fluid Thermophysical Properties Using a Neural Network Approach Implemented in OpenFOAM." Fluids 9, no. 3 (2024): 56. http://dx.doi.org/10.3390/fluids9030056.
Full text