Academic literature on the topic 'Opérateur Laplace'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Opérateur Laplace.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Opérateur Laplace"

1

Duval, Art M., Caroline J. Klivans, and Jeremy L. Martin. "Critical Groups of Simplicial Complexes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (January 1, 2011). http://dx.doi.org/10.46298/dmtcs.2909.

Full text
Abstract:
International audience We generalize the theory of critical groups from graphs to simplicial complexes. Specifically, given a simplicial complex, we define a family of abelian groups in terms of combinatorial Laplacian operators, generalizing the construction of the critical group of a graph. We show how to realize these critical groups explicitly as cokernels of reduced Laplacians, and prove that they are finite, with orders given by weighted enumerators of simplicial spanning trees. We describe how the critical groups of a complex represent flow along its faces, and sketch another potential interpretation as analogues of Chow groups. Nous généralisons la théorie des groupes critiques des graphes aux complexes simpliciaux. Plus précisément, pour un complexe simplicial, nous définissons une famille de groupes abéliens en termes d'opérateurs de Laplace combinatoires, qui généralise la construction du groupe critique d'un graphe. Nous montrons comment réaliser ces groupes critiques explicitement comme conoyaux des opérateurs de Laplace réduits combinatoires, et montrons qu'ils sont finis. Leurs ordres sont obtenus en comptant (avec des poids) des arbres simpliciaux couvrants. Nous décrivons comment les groupes critiques d'un complexe représentent le flux le long de ses faces, et esquissons une autre interprétation potentielle comme analogues des groupes de Chow.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Opérateur Laplace"

1

Caissard, Thomas. "Opérateur de Laplace–Beltrami discret sur les surfaces digitales." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1326/document.

Full text
Abstract:
La problématique centrale de cette thèse est l'élaboration d'un opérateur de Laplace--Beltrami discret sur les surfaces digitales. Ces surfaces proviennent de la théorie de la géométrie discrète, c’est-à-dire la géométrie qui s'intéresse à des sous-ensembles des entiers relatifs. Nous nous plaçons ici dans un cadre théorique où les surfaces digitales sont le résultat d'une approximation, ou processus de discrétisation, d'une surface continue sous-jacente. Cette méthode permet à la fois de prouver des théorèmes de convergence des quantités discrètes vers les quantités continues, mais aussi, par des analyses numériques, de confirmer expérimentalement ces résultats. Pour la discrétisation de l’opérateur, nous faisons face à deux problèmes : d'un côté, notre surface n'est qu'une approximation de la surface continue sous-jacente, et de l'autre côté, l'estimation triviale de quantités géométriques sur la surface digitale ne nous apporte pas en général une bonne estimation de cette quantité. Nous possédons déjà des réponses au second problème : ces dernières années, de nombreux articles se sont attachés à développer des méthodes pour approximer certaines quantités géométriques sur les surfaces digitales (comme par exemple les normales ou bien la courbure), méthodes que nous décrirons dans cette thèse. Ces nouvelles techniques d'approximation nous permettent d'injecter des informations de mesure sur les éléments de notre surface. Nous utilisons donc l'estimation de normales pour répondre au premier problème, qui nous permet en fait d'approximer de façon précise le plan tangent en un point de la surface et, via une méthode d'intégration, palier à des problèmes topologiques liées à la surface discrète. Nous présentons un résultat théorique de convergence du nouvel opérateur discrétisé, puis nous illustrons ensuite ses propriétés à l’aide d’une analyse numérique de l’opérateur. Nous effectuons une comparaison détaillée du nouvel opérateur par rapport à ceux de la littérature adaptés sur les surfaces digitales, ce qui nous permet, au moins pour la convergence, de montrer que seul notre opérateur possède cette propriété. Nous illustrons également l’opérateur via quelques unes de ces applications comme sa décomposition spectrale ou bien encore le flot de courbure moyenne
The central issue of this thesis is the development of a discrete Laplace--Beltrami operator on digital surfaces. These surfaces come from the theory of discrete geometry, i.e. geometry that focuses on subsets of relative integers. We place ourselves here in a theoretical framework where digital surfaces are the result of an approximation, or discretization process, of an underlying smooth surface. This method makes it possible both to prove theorems of convergence of discrete quantities towards continuous quantities, but also, through numerical analyses, to experimentally confirm these results. For the discretization of the operator, we face two problems: on the one hand, our surface is only an approximation of the underlying continuous surface, and on the other hand, the trivial estimation of geometric quantities on the digital surface does not generally give us a good estimate of this quantity. We already have answers to the second problem: in recent years, many articles have focused on developing methods to approximate certain geometric quantities on digital surfaces (such as normals or curvature), methods that we will describe in this thesis. These new approximation techniques allow us to inject measurement information into the elements of our surface. We therefore use the estimation of normals to answer the first problem, which in fact allows us to accurately approximate the tangent plane at a point on the surface and, through an integration method, to overcome topological problems related to the discrete surface. We present a theoretical convergence result of the discretized new operator, then we illustrate its properties using a numerical analysis of it. We carry out a detailed comparison of the new operator with those in the literature adapted on digital surfaces, which allows, at least for convergence, to show that only our operator has this property. We also illustrate the operator via some of these applications such as its spectral decomposition or the mean curvature flow
APA, Harvard, Vancouver, ISO, and other styles
2

Mriss, Zakaria. "Opérateurs de Laplace sur des variétés tressées non-quasiclassiques." Valenciennes, 2000. https://ged.uphf.fr/nuxeo/site/esupversions/ad03f008-0453-4bb3-93ce-563042dac66b.

Full text
Abstract:
Cette thèse est consacrée à l'étude de certains aspects algébriques et géométriques de quelques variétés associées aux solutions involutives non-quasiclassique (c'est-à-dire celles qui ne sont pas des déformations de la volte classique) de l'équation de Yang-Baxter quantique. Les solutions de ce type sont appelées symétries. D’abord, nous définissons une catégorie dite de Schur-Weyl associée à telle symétries et nous calculons les dimensions des objets de cette catégorie. Ensuite, nous introduisons certaines variétés tressées associées, qui sont analogues aux orbites de type CPn dans sl(n)*. L’exemple de l'hyperboloïde tresse est étudié plus en détail. Nous définissons l'opérateur de Laplace sur ces variétés et nous étudions la conduite asymptotique de la fonction de Weyl n(λ) qui mesure la distribution des valeurs propres de cet opérateur. Notre résultat principal montre que, contrairement au cas classique, cette fonction a une conduite exponentielle.
APA, Harvard, Vancouver, ISO, and other styles
3

Rieux, Frédéric. "Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20201/document.

Full text
Abstract:
Le contexte est la géométrie discrète dans Zn. Il s'agit de décrire les courbes et surfaces discrètes composées de voxels: les définitions usuelles de droites et plans discrets épais se comportent mal quand on passe à des ensembles courbes. Comment garantir un bon comportement topologique, les connexités requises, dans une situation qui généralise les droites et plans discrets?Le calcul de données sur ces courbes, normales, tangentes, courbure, ou des fonctions plus générales, fait appel à des moyennes utilisant des masques. Une question est la pertinence théorique et pratique de ces masques. Une voie explorée, est le calcul de masques fondés sur la marche aléatoire. Une marche aléatoire partant d'un centre donné sur une courbe ou une surface discrète, permet d'affecter à chaque autre voxel un poids, le temps moyen de visite. Ce noyau permet de calculer des moyennes et par là, des dérivées. L'étude du comportement de ce processus de diffusion, a permis de retrouver des outils classiques de géométrie sur des surfaces maillées, et de fournir des estimateurs de tangente et de courbure performants. La diversité du champs d'applications de ce processus de diffusion a été mise en avant, retrouvant ainsi des méthodes classiques mais avec une base théorique identique.} motsclefs{Processus Markovien, Géométrie discrète, Estimateur tangentes, normales, courbure, Noyau de diffusion, Analyse d'images
The context of discrete geometry is in Zn. We propose to discribe discrete curves and surfaces composed of voxels: how to compute classical notions of analysis as tangent and normals ? Computation of data on discrete curves use average mask. A large amount of works proposed to study the pertinence of those masks. We propose to compute an average mask based on random walk. A random walk starting from a point of a curve or a surface, allow to give a weight, the time passed on each point. This kernel allow us to compute average and derivative. The studied of this digital process allow us to recover classical notions of geometry on meshes surfaces, and give accuracy estimator of tangent and curvature. We propose a large field of applications of this approach recovering classical tools using in transversal communauty of discrete geometry, with a same theorical base
APA, Harvard, Vancouver, ISO, and other styles
4

Hassannezhad, Asma. "Bornes supérieures pour les valeurs propres des opérateurs naturels sur des variétés Riemanniennes compactes." Phd thesis, Université François Rabelais - Tours, 2012. http://tel.archives-ouvertes.fr/tel-00708829.

Full text
Abstract:
Le but de cette thèse est de trouver des bornes supérieures pour les valeurs propres des opérateurs naturels agissant sur les fonctions d'une variété compacte $(M,g)$. Nous étudions l'opérateur de Laplace-Beltrami et des opérateurs du type laplacien. Dans le cas de l'opérateur de Laplace-Beltrami, deux aspects sont étudiés. Le premier aspect est d'étudier les relations entre la géométrie intrinsèque et les valeurs propres du laplacien. Nous obtenons des bornes supérieures ne dépendant que de la dimension et d'un invariant conforme qui s'appelle le volume conforme minimal. Asymptotiquement, ces bornes sont en cohérence avec la loi de Weyl. Elles améliorent également les résultats de Korevaar et de Yang et Yau. La preuve repose sur la construction d'une famille convenable de domaines disjoints fournissant des supports pour une famille de fonctions tests. Cette méthode est puissante et intéressante en soi. Le deuxième aspect est d'étudier la relation entre la géométrie extrinsèque et les valeurs propres du laplacien agissant sur des sous-variétés compactes de l'espace euclidien $R^N$ ou de l'espace projectif complexe $CP^N$. Nous étudions un invariant extrinsèque qui s'appelle l'indice d'intersection étudié par Colbois, Dryden et El Soufi. Pour des sous-variétés compactes de $R^N$, nous généralisons leurs résultats et obtenons des bornes supérieures qui sont stables l'effet de petites perturbations. Pour des sous-variétés de $CP^N$, nous obtenons une borne supérieure ne dépendant que du degré des sous-variétés et qui est optimale pour la première valeur propre non nulle. Comme autre application de la méthode introduite, nous obtenons une borne supérieure pour des valeurs propres du problème de Steklov sur des sous-domaines à bord $C^1$ d'une variété riemannienne complète, en termes du rapport isopérimétrique du domaine, et du volume conforme minimal. Une modification de notre méthode donne des bornes supérieures pour les valeurs propres des opérateurs de Schrödinger en termes du volume conforme minimal et de l'intégrale du potentiel. Nous obtenons également les bornes supérieures pour les valeurs propres du laplacien de Bakry-Emery dépendant d'invariants conformes.
APA, Harvard, Vancouver, ISO, and other styles
5

Sicbaldi, Pieralberto. "Domaines extrémaux pour la première valeur propre de l'opérateur de Laplace-Beltrami." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00480301.

Full text
Abstract:
Dans tout ce qui suit, nous considérons une variété riemannienne compacte de dimension au moins égale à 2. A tout domaine (suffisamment régulier) $\Omega$, on peut associer la première valeur propre $\lambda_\Omega$ de l'opérateur de Laplace-Beltrami avec condition de Dirichlet au bord. Nous dirons qu'un domaine $\Omega$ est extrémal (sous entendu, pour la première valeur propre de l'opérateur de Laplace-Beltrami) si $\Omega$ est un point critique de la fonctionnelle $\Omega \rightarrow \lambda_\Omega$ sous une contrainte de volume $Vol (\Omega) = c_0$. Autrement dit, $\Omega$ est extrémal si, pour toute famille régulière $\{\Omega_t\}_{t \in (-t_0,t_0)}$ de domaines de volume constant, telle que $\Omega_0 = \Omega$, la dérivée de la fonction $t \rightarrow \lambda_{\Omega_t}$ en $0$ est nulle. Rappelons que les domaines extrémaux sont caractérisés par le fait que la fonction propre, associée à la première valeur propre sur le domaine avec condition de Dirichlet au bord, a une donnée de Neumann constante au bord. Ce résultat a été démontré par A. El Soufi et S. Ilias en 2007. Les domaines extrémaux sont donc des domaines sur lesquels peut être résolu un problème elliptique surdéterminé. L'objectif principal de cette thèse est la construction de domaines extrémaux pour la première valeur propre de l'opérateur de Laplace-Beltrami avec condition de Dirichlet au bord. Nous donnons des résultats d'existence de domaines extrémaux dans le cas de petits volumes ou bien dans le cas de volumes proches du volume de la variété. Nos résultats permettent ainsi de donner de nouveaux exemples non triviaux de domaines extrémaux. Le premier résultat que nous avons obtenu affirme que si une variété admet un point critique non dégénéré de la courbure scalaire, alors pour tout volume petit il existe un domaine extrémal qui peut être construit en perturbant une boule géodésique centrée en ce point critique non dégénéré de la courbure scalaire. La méthode que nous utilisons pour construire ces domaines extrémaux revient à étudier l'opérateur (non linéaire) qui à un domaine associe la donnée de Neumann de la première fonction propre de l'opérateur de Laplace-Beltrami sur le domaine. Il s'agit d'un opérateur (hautement non linéaire), nonlocal, elliptique d'ordre 1. Dans $\mathbb R^n \times \mathbb{R}/\, \mathbb{Z}$, le domaine cylindrique $B_r \times \mathbb{R}/\, \mathbb{Z}$, où $B_r$ est la boule de rayon $r >0$ dans $\mathbb{R}^{n}$, est un domaine extrémal. En étudiant le linéarisé de l'opérateur elliptique du premier ordre défini par le problème précédent et en utilisant un résultat de bifurcation, nous avons démontré l'existence de domaines extrémaux nontriviaux dans $\mathbb R^{n}\times \mathbb{R}/\, \mathbb{Z}$. Ces nouveaux domaines extrémaux sont proches de domaines cylindriques $B_r \times \mathbb{R}/ \mathbb{Z}$. S'ils sont invariants par rotation autour de l'axe vertical, ces domaines ne sont plus invariants par translations verticales. Ce deuxième résultat donne un contre-exemple à une conjecture de Berestycki, Caffarelli et Nirenberg énoncée en 1997. Pour de grands volumes la construction de domaines extrémaux est techniquement plus difficile et fait apparaître des phénomènes nouveaux. Dans ce cadre, nous avons dû distinguer deux cas selon que la première fonction propre $\phi_0$ de l'opérateur de Laplace-Beltrami sur la variété est constante ou non. Les résultats que nous avons obtenus sont les suivants : $\phi_0$ a des points critiques non dégénérés (donc en particulier n'est pas constante), alors pour tout volume assez proche du volume de la variété, il existe un domaine extrémal obtenu en perturbant le complément d'une boule géodésique centrée en un des points critiques non dégénérés de $\phi_0$. Si $\phi_0$ est constante et la variété admet des points critiques non dégénérés de la courbure scalaire, alors pour tout volume assez proche du volume de la variété il existe un domaine extrémal obtenu en perturbant le complément d'une boule géodésique centrée en un des points critiques non dégénérés de la courbure scalaire.
APA, Harvard, Vancouver, ISO, and other styles
6

Vareschi, Thomas. "Estimation non-paramétrique dans les problèmes inverses à opérateur bruité." Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00957985.

Full text
Abstract:
Cette thèse étudie l'effet de l'imprécision sur un opérateur intervenant dans la résolution d'un problème inverse. La problématique habituelle des problèmes inverses est l'approximation d'un signal d'entrée à partir de son image par un opérateur régularisant. A l'incertitude habituelle contaminant l'observation du signal de sortie, on ajoute cette erreur commise sur l'opérateur que l'on modélise par un processus Gaussien d'une certaine amplitude, potentiellement différente de la précédente. Nous nous intéressons plus particulièrement au cas où l'opérateur en question est un opérateur à noyau, lorsque ce dernier est lui même bruité. Ce modèle recouvre par exemple les cas de la convolution de Fourier périodique, de Laplace/Volterra, ou bien la convolution sphérique. \\Nous développons des procédures statistiques d'estimation dans chacun de ces cas, en traitant de manière adéquate la nouvelle erreur commise sur le noyau selon la forme de la matrice associée à un schéma de Galerkin. Plus précisément, nous étudions le risque quadratique dans le cas où cette dernière est diagonale, diagonale par blocs ou bien triangulaire inférieure et de Toeplitz. Dans chacun de ces cas, nous mettons en évidence de nouvelles vitesses de convergence faisant intervenir de manière explicite les deux paramètres d'incertitude (sur le signal de sortie et sur le noyau) et dont nous prouvons l'optimalité au sens minimax. Enfin, nous étudions spécifiquement le cas de la déconvolution sphérique en mettant à profit les needlets sphériques, sorte d'équivalent d'ondelettes sur la sphère, dans la construction d'une procédure qui traite ce même problème pour un risque en norme Lp.
APA, Harvard, Vancouver, ISO, and other styles
7

Sicbaldi, Pieralberto. "Domaines extrémaux pour la première valeur propre de l’opérateur de Laplace-Beltrami." Thesis, Paris Est, 2009. http://www.theses.fr/2009PEST0014.

Full text
Abstract:
Dans tout ce qui suit, nous considérons une variété riemannienne compacte de dimension au moins égale à 2. A tout domaine (suffisamment régulier) , on peut associer la première valeur propre ?Ù de l’opérateur de Laplace-Beltrami avec condition de Dirichlet au bord. Nous dirons qu’un domaine est extrémal (sous entendu, pour la première valeur propre de l’opérateur de Laplace-Beltrami) si est un point critique de la fonctionnelle Ù? ?O sous une contrainte de volume V ol(Ù) = c0. Autrement dit, est extrémal si, pour toute famille régulière {Ot}te (-t0,t0) de domaines de volume constant, telle que Ù 0 = Ù, la dérivée de la fonction t ? ?Ot en 0 est nulle. Rappelons que les domaines extrémaux sont caractérisés par le fait que la fonction propre, associée à la première valeur propre sur le domaine avec condition de Dirichlet au bord, a une donnée de Neumann constante au bord. Ce résultat a été démontré par A. El Soufi et S. Ilias en 2007. Les domaines extrémaux sont donc des domaines sur lesquels peut être résolu un problème elliptique surdéterminé. L’objectif principal de cette thèse est la construction de domaines extrémaux pour la première valeur propre de l’opérateur de Laplace-Beltrami avec condition de Dirichlet au bord. Nous donnons des résultats d’existence de domaines extrémaux dans le cas de petits volumes ou bien dans le cas de volumes proches du volume de la variété. Nos résultats permettent ainsi de donner de nouveaux exemples non triviaux de domaines extrémaux. Le premier résultat que nous avons obtenu affirme que si une variété admet un point critique non dégénéré de la courbure scalaire, alors pour tout volume petit il existe un domaine extrémal qui peut être construit en perturbant une boule géodésique centrée en ce point critique non dégénéré de la courbure scalaire. La méthode que nous utilisons pour construire ces domaines extrémaux revient à étudier l’opérateur (non linéaire) qui à un domaine associe la donnée de Neumann de la première fonction propre de l’opérateur de Laplace-Beltrami sur le domaine. Il s’agit d’un opérateur (hautement non linéaire), nonlocal, elliptique d’ordre 1. Dans Rn × R/Z, le domaine cylindrique Br × R/Z, o`u Br est la boule de rayon r > 0 dans Rn, est un domaine extrémal. En étudiant le linéarisé de l’opérateur elliptique du premier ordre défini par le problème précédent et en utilisant un résultat de bifurcation, nous avons démontré l’existence de domaines extrémaux nontriviaux dans Rn × R/Z. Ces nouveaux domaines extrémaux sont proches de domaines cylindriques Br × R/Z. S’ils sont invariants par rotation autour de l’axe vertical, ces domaines ne sont plus invariants par translations verticales. Ce deuxi`eme r´esultat donne un contre-exemple à une conjecture de Berestycki, Caffarelli et Nirenberg énoncée en 1997. Pour de grands volumes la construction de domaines extrémaux est techniquement plus difficile et fait apparaître des phénomènes nouveaux. Dans ce cadre, nous avons dû distinguer deux cas selon que la première fonction propre Ø0 de l’opérateur de Laplace-Beltrami sur la variété est constante ou non. Les résultats que nous avons obtenus sont les suivants : 1. Si Ø0 a des points critiques non dégénérés (donc en particulier n’est pas constante), alors pour tout volume assez proche du volume de la variété, il existe un domaine extrémal obtenu en perturbant le complément d’une boule géodésique centrée en un des points critiques non dégénérés de Ø0. 2. Si Ø0 est constante et la variété admet des points critiques non dégénérés de la courbure scalaire, alors pour tout volume assez proche du volume de la variété il existe un domaine extrémal obtenu en perturbant le complément d’une boule géodésique centrée en un des points critiques non dégénérés de la courbure scalaire
In what follows, we will consider a compact Riemannian manifold whose dimension is at least 2. Let Ù be a (smooth enough) domain and ?O the first eigenvalue of the Laplace-Beltrami operator on Ù with 0 Dirichlet boundary condition. We say that Ù is extremal (for the first eigenvalue of the Laplace-Beltrami operator) if is a critical point for the functional Ù? ?O with respect to variations of the domain which preserve its volume. In other words, Ù is extremal if, for all smooth family of domains { Ù t}te(-t0,t0) whose volume is equal to a constant c0, and Ù 0 = Ù, the derivative of the function t ? ?Ot computed at t = 0 is equal to 0. We recall that an extremal domain is characterized by the fact that the eigenfunction associated to the first eigenvalue of the Laplace-Beltrami operator over the domain with 0 Dirichlet boundary condition, has constant Neumann data at the boundary. This result has been proved by A. El Soufi and S. Ilias in 2007. Extremal domains are then domains over which can be solved an elliptic overdeterminated problem. The main aim of this thesis is the construction of extremal domains for the first eigenvalue of the Laplace-Beltrami operator with 0 Dirichlet boundary condition. We give some existence results of extremal domains in the cases of small volume or volume closed to the volume of the manifold. Our results allow also to construct some new nontrivial exemples of extremal domains. The first result we obtained states that if the manifold has a nondegenerate critical point of the scalar curvature, then, given a fixed volume small enough, there exists an extremal domain that can be constructed by perturbation of a geodesic ball centered in that nondegenerated critical point of the scalar curvature. The methode used is based on the study of the operator that to a given domain associes the Neumann data of the first eigenfunction of the Laplace-Beltrami operator over the domain. It is a highly nonlinear, non local, elliptic first order operator. In Rn × R/Z, the circular-cylinder-type domain Br × R/Z, where Br is the ball of radius r > 0 in Rn, is an extremal domain. By studying the linearized of the elliptic first order operator defined in the previous problem, and using some bifurcation results, we prove the existence of nontrivial extremal domains in Rn × R/Z. Such extremal domains are closed to the circular-cylinder-type domains Br × R/Z. If they are invariant by rotation with respect to the vertical axe, they are not invariant by vertical translations. This second result gives a counterexemple to a conjecture of Berestycki, Caffarelli and Nirenberg stated in 1997. For big volumes the construction of extremal domains is technically more difficult and shows some new phenomena. In this context, we had to distinguish two cases, according to the fact that the first eigenfunction Ø0 of the Laplace-Beltrami operator over the manifold is constant or not. The results obtained are the following : 1. If Ø0 has a nondegenerated critical point (in particular it is not constant), then, given a fixed volume closed to the volume of the manifold, there exists an extremal domain obtained by perturbation of the complement of a geodesic ball centered in a nondegenerated critical point of Ø0. 2. If Ø0 is constant and the manifold has some nondegenerate critical points of the scalar curvature, then, for a given fixed volume closed to the volume of the manifold, there exists an extremal domain obtained by perturbation of the complement of a geodesic ball centered in a nondegenerate critical point of the scalar curvature
APA, Harvard, Vancouver, ISO, and other styles
8

Baydoun, Ibrahim. "Transport laplacien, problème inverse et opérateurs de Dirichlet-Neumann." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22094.

Full text
Abstract:
Le travail de ma thèse est basé sur ces 4 points :i) Transport laplacien d'une cellule absorbante :Soit un certain espèce (cellule) de concentration C(x), qui diffuse dans un milieu homogène et isotrope à partir d'une lointaine source localisée sur la frontière fermée $partial Omega_{0}$ vers une interface compact semi-perméable $partial Omega$ (membrane de la "cellule") à laquelle elle disparaisse àun taux d'absorption donné : W>=0. La concentration C (transport laplacien avec un coefficient de diffusion D) satisfaite le problème (P1) (voir la thèse). On s'intéresse à résoudre le problème (P1) en dimension dim = 2; 3 et à calculer les courants local et total à travers les frontières des $partial Omega$ et $partial Omega_{0}$ qui seront utiles pour résoudre le problèmeinverse de localisation. Pour faciliter les calculs et les rendre explicites, on prend $partial Omega$ et $partial Omega_{0}$ avec des formes géométriquement régulières, précisément des boules, en distinguant les deux cas : $Omega$ et $Omega_{0}$ sont concentriques ou non-concentriques. Pour le cas non-concentriques , on utilise la technique de transformation conforme et le développement orthogonal en série de Fourier pour résoudre le problème (P1) en cas bidimensionnel. Tandis que en cas tridimensionnel, on résout le problème (P1) en utilisant le développement orthogonal suivant les fonctions sphériques harmoniques.ii) Problème inverse de localisationOn s'intéresse dans cette partie à résoudre le problème inverse de localisation associé au problème (P1) où les domaines $Omega$ et $Omega_{0}$ sont considérés avec des formes géométriques régulières (précisément des boules) . Ce problème consiste à trouver les conditions de Dirichlet-Neumann sur $partial Omega_{0}$ (courant local, courant total) suffisantes pour déterminer la position de la cellule $partial$ (par rapport à $Omega_{0}$), dont ces conditions sont disponibles par une suite des mesures expérimentales.iii) Problème invesre géomètrique :Dans cette partie on traite un autre type de problème inverse qui consiste à trouver la forme géométrique de la cellule en sachant les conditions de Dirichlet-Neumann au bord extérieur(partial Omega_{0}) qui sont mésurables par une suite d'expérience. Ce type du problème, on l'appelle le problème inverse géométrique. On résout ce problème en utilisant des techniques concernant les fonctions harmoniques et les transformations conformes.iv) Opérateur de Dirichlet-NeumannOn étudie l'opérateur de Dirichlet-Neumann relatif au problème (P1) dans les dimension deux et trois en distinguant les deux cas concentriques et non-concentriques. Ensuite, on montre que cet opérateur de Dirichlet-Neumann engendre certain semi-groupe qu'on l'appelle semi-groupe de Lax. Enfin, on construit ce semi-groupe de Lax associé à cet opérateur en cas tridimensionnel concentriques afin de vérifier que ce semi-groupe admet les mêmes propriétés que celui dans le cas général
The outline of my thesisi) Let some "species" of concentration C(p), x 2 Rd, diuse stationary in the isotropic bulk from a (distant) source localised on the closed boundary $partial Omega_{0}$ towards a semipermeable compact interface $partial Omega$ of the cell $Omega in Omega_{0}$ where they disappear at a given rate $W >= 0$. Then the steady field of concentrations C satisfy the problem $(P1)$. (see the Thesis). We interest to solve (P1) in Twodimensional and Tridimensional cases and to calculate the local and total flux in order to solving the localisation inverse problem. In order to make easy the calculations, we take $Omega$ and $Omega_{0}$ with a regularly geometricals forms by distinguishing the two cases : Concentrics and non-concentrics case. For the non-cncentrics case, we use the conformal mapping technique for resolving the problem (P1) in the twodimensional case. whereas in the tridimensional case, we use the development according to the spherical harmonics functions.ii) Localisation inverse problemThe aim of the localisation inverse problem is to find the necessary Dirichlet-to-Neumann conditions in order to determine the position of thecell $Omega$, where these conditions are measurable.iii) Geometrical inverse problemOur main results concerns a formal solution of the geometrical inverse problem for the form of absorbing domains. We restrict this study to two dimensions and we study it by the conformal mapping technique and harmonic functions.iv) Dirichlet-to-Neumann operatorWe study the Dirichlet-to-Neumann operatot relative to problem (P1) in the twodimensional and tridimensionnal cases by distinguishing the two cases : Concentrics and non-concentrics case. We prove that the Dirichlet-to-Neumann operator generates some semi-group, we call it the Lax semi-group. Finally we construct this semi group and verify that this demi-group satisfies the generals properties of a operator
APA, Harvard, Vancouver, ISO, and other styles
9

Tesser, Federico. "Solveur parallèle pour l’équation de Poisson sur mailles superposées et hiérarchiques, dans le cadre du langage Python." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0129/document.

Full text
Abstract:
Les discrétisations adaptatives sont importantes dans les problèmes de fluxcompressible/incompressible puisqu'il est souvent nécessaire de résoudre desdétails sur plusieurs niveaux, en permettant de modéliser de grandes régionsd'espace en utilisant un nombre réduit de degrés de liberté (et en réduisant letemps de calcul).Il existe une grande variété de méthodes de discrétisation adaptative, maisles grilles cartésiennes sont les plus efficaces, grâce à leurs stencilsnumériques simples et précis et à leurs performances parallèles supérieures.Et telles performance et simplicité sont généralement obtenues en appliquant unschéma de différences finies pour la résolution des problèmes, mais cetteapproche de discrétisation ne présente pas, au contraire, un chemin faciled'adaptation.Dans un schéma de volumes finis, en revanche, nous pouvons incorporer différentstypes de maillages, plus appropriées aux raffinements adaptatifs, en augmentantla complexité sur les stencils et en obtenant une plus grande flexibilité.L'opérateur de Laplace est un élément essentiel des équations de Navier-Stokes,un modèle qui gouverne les écoulements de fluides, mais il se produit égalementdans des équations différentielles qui décrivent de nombreux autres phénomènesphysiques, tels que les potentiels électriques et gravitationnels. Il s'agitdonc d'un opérateur différentiel très important, et toutes les études qui ontété effectuées sur celui-ci, prouvent sa pertinence.Dans ce travail seront présentés des approches de différences finies et devolumes finis 2D pour résoudre l'opérateur laplacien, en appliquant des patchsde grilles superposées où un niveau plus fin est nécessaire, en laissant desmaillages plus grossiers dans le reste du domaine de calcul.Ces grilles superposées auront des formes quadrilatérales génériques.Plus précisément, les sujets abordés seront les suivants:1) introduction à la méthode des différences finies, méthode des volumes finis,partitionnement des domaines, approximation de la solution;2) récapitulatif des différents types de maillages pour représenter de façondiscrète la géométrie impliquée dans un problème, avec un focussur la structure de données octree, présentant PABLO et PABLitO. Le premier estune bibliothèque externe utilisée pour gérer la création de chaque grille,l'équilibrage de charge et les communications internes, tandis que la secondeest l'API Python de cette bibliothèque, écrite ad hoc pour le projet en cours;3) la présentation de l'algorithme utilisé pour communiquer les données entreles maillages (en ignorant chacune l'existence de l'autre) en utilisant lesintercommunicateurs MPI et la clarification de l'approche monolithique appliquéeà la construction finale de la matrice pour résoudre le système, en tenantcompte des blocs diagonaux, de restriction et de prolongement;4) la présentation de certains résultats; conclusions, références.Il est important de souligner que tout est fait sous Python comme framework deprogrammation, en utilisant Cython pour l'écriture de PABLitO, MPI4Py pour lescommunications entre grilles, PETSc4py pour les parties assemblage et résolutiondu système d'inconnues, NumPy pour les objets à mémoire continue.Le choix de ce langage de programmation a été fait car Python, facile àapprendre et à comprendre, est aujourd'hui un concurrent significatif pourl'informatique numérique et l'écosystème HPC, grâce à son style épuré, sespackages, ses compilateurs et pourquoi pas ses versions optimisées pour desarchitectures spécifiques
Adaptive discretizations are important in compressible/incompressible flow problems since it is often necessary to resolve details on multiple levels,allowing large regions of space to be modeled using a reduced number of degrees of freedom (reducing the computational time).There are a wide variety of methods for adaptively discretizing space, but Cartesian grids have often outperformed them even at high resolutions due totheir simple and accurate numerical stencils and their superior parallel performances.Such performance and simplicity are in general obtained applying afinite-difference scheme for the resolution of the problems involved, but this discretization approach does not present, by contrast, an easy adapting path.In a finite-volume scheme, instead, we can incorporate different types of grids,more suitable for adaptive refinements, increasing the complexity on thestencils and getting a greater flexibility.The Laplace operator is an essential building block of the Navier-Stokes equations, a model that governs fluid flows, but it occurs also in differential equations that describe many other physical phenomena, such as electric and gravitational potentials, and quantum mechanics. So, it is a very importantdifferential operator, and all the studies carried out on it, prove itsrelevance.In this work will be presented 2D finite-difference and finite-volume approaches to solve the Laplacian operator, applying patches of overlapping grids where amore fined level is needed, leaving coarser meshes in the rest of the computational domain.These overlapping grids will have generic quadrilateral shapes.Specifically, the topics covered will be:1) introduction to the finite difference method, finite volume method, domainpartitioning, solution approximation;2) overview of different types of meshes to represent in a discrete way thegeometry involved in a problem, with a focuson the octree data structure, presenting PABLO and PABLitO. The first one is anexternal library used to manage each single grid’s creation, load balancing and internal communications, while the second one is the Python API ofthat library written ad hoc for the current project;3) presentation of the algorithm used to communicate data between meshes (beingall of them unaware of each other’s existence) using MPI inter-communicators and clarification of the monolithic approach applied building the finalmatrix for the system to solve, taking into account diagonal, restriction and prolongation blocks;4) presentation of some results; conclusions, references.It is important to underline that everything is done under Python as programmingframework, using Cython for the writing of PABLitO, MPI4Py for the communications between grids, PETSc4py for the assembling and resolution partsof the system of unknowns, NumPy for contiguous memory buffer objects.The choice of this programming language has been made because Python, easy to learn and understand, is today a significant contender for the numerical computing and HPC ecosystem, thanks to its clean style, its packages, its compilers and, why not, its specific architecture optimized versions
APA, Harvard, Vancouver, ISO, and other styles
10

Hauer, Daniel. "Problèmes d'évolution associés au p-laplacien : comportement asymptotique et non-existence." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0269.

Full text
Abstract:
Cette thèse s'inscrit dans le cadre de l'étude de deux sujets concernant les problèmes d'évolution liés au p-laplacien. Le premier sujet concerne l'étude du comportement asymptotique des solutions bornées lorsque le temps $t\to+\infty$. Quant au deuxième sujet, il porte sur l'étude de la non existence des solutions positives non triviales. Cette thèse se répartit en trois chapitres. Le premier chapitre est consacré à une introduction générale. Le deuxième chapitre porte sur l'étude de la convergence, lorsque $t\to+\infty$, des solutions bornées d'une équation parabolique associée au p-laplacien dans un intervalle borné avec des conditions aux limites du type soit Dirichlet, Neumann ou Robin. Ce travail était l'objet d'un article \cite{hauer-convergence-2012} accepté pour publication dans « Nonlinear Differential Equations and Applications NoDea ». Le dernier chapitre concerne l'étude de la non existence des solutions positives des équations paraboliques associées au p-laplacien avec un terme de convection et un potentiel singulier. La deuxième et quatrième section du Chapitre 3 reprennent un article \cite{Hauer:2012fk} accepté pour publication dans le journal « Archiv der Mathematik ». La deuxième sous-section de la Section 4 du Chapitre 3 contient un résultat qui améliore le travail \cite{Goldstein-Rhandi-weighted-hardy-11} de G. Goldstein, J. Goldstein et A. Rhandi et le travail \cite{MR1616905} de J. P. García Azorero et I. Peral Alonso concernant la non existence des solutions positives. Ce résultat n'est pas encore publié
This thesis is dedicated to the study of two subjects in the field of evolution problems associated with the $p$-Laplace operator. The first subject is concerned with the study of long time behavior of bounded solutions and the second subject is devoted to the study of nonexistence of positive nontrivial solutions. The first chapter of this thesis is devoted to a general introduction to the p-Laplace operator and a résumé of this thesis. The first chapter is written in French. Chapter 2 is dedicated to the study of convergence as the time $t\to+\infty$ of bounded solutions of evolution problems associated with the p-Laplace operator on a bounded interval with homogeneous Dirichlet, Neumann, or Robin boundary conditions converges. The results of Chapter 2 are contained in article \cite{hauer-convergence-2012}, which was published in the journal « Nonlinear Differential Equations and Applications NoDea ». Chapter 3 is devoted to the study of nonexistence of positive nontrivial weak solutions of parabolic equations associated to the p-Laplace operator with a convection term and a singular potential. The results of Section 3.2 and Section 3.4.1 of Chapter 3 are contained in article \cite{Hauer:2012fk}, which was accepted for publication in the journal « Archiv der Mathematik ». The results of Section 3.4.2 of Chapter 3 are not yet published
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Opérateur Laplace"

1

White noise: An infinite dimensional calculus. Dordrecht: Kluwer Academic Publishers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Acta Numerica 1997 (Acta Numerica). Cambridge University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography