Contents
Academic literature on the topic 'Opérateur Laplace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Opérateur Laplace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Opérateur Laplace"
Duval, Art M., Caroline J. Klivans, and Jeremy L. Martin. "Critical Groups of Simplicial Complexes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (January 1, 2011). http://dx.doi.org/10.46298/dmtcs.2909.
Full textDissertations / Theses on the topic "Opérateur Laplace"
Caissard, Thomas. "Opérateur de Laplace–Beltrami discret sur les surfaces digitales." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1326/document.
Full textThe central issue of this thesis is the development of a discrete Laplace--Beltrami operator on digital surfaces. These surfaces come from the theory of discrete geometry, i.e. geometry that focuses on subsets of relative integers. We place ourselves here in a theoretical framework where digital surfaces are the result of an approximation, or discretization process, of an underlying smooth surface. This method makes it possible both to prove theorems of convergence of discrete quantities towards continuous quantities, but also, through numerical analyses, to experimentally confirm these results. For the discretization of the operator, we face two problems: on the one hand, our surface is only an approximation of the underlying continuous surface, and on the other hand, the trivial estimation of geometric quantities on the digital surface does not generally give us a good estimate of this quantity. We already have answers to the second problem: in recent years, many articles have focused on developing methods to approximate certain geometric quantities on digital surfaces (such as normals or curvature), methods that we will describe in this thesis. These new approximation techniques allow us to inject measurement information into the elements of our surface. We therefore use the estimation of normals to answer the first problem, which in fact allows us to accurately approximate the tangent plane at a point on the surface and, through an integration method, to overcome topological problems related to the discrete surface. We present a theoretical convergence result of the discretized new operator, then we illustrate its properties using a numerical analysis of it. We carry out a detailed comparison of the new operator with those in the literature adapted on digital surfaces, which allows, at least for convergence, to show that only our operator has this property. We also illustrate the operator via some of these applications such as its spectral decomposition or the mean curvature flow
Mriss, Zakaria. "Opérateurs de Laplace sur des variétés tressées non-quasiclassiques." Valenciennes, 2000. https://ged.uphf.fr/nuxeo/site/esupversions/ad03f008-0453-4bb3-93ce-563042dac66b.
Full textRieux, Frédéric. "Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20201/document.
Full textThe context of discrete geometry is in Zn. We propose to discribe discrete curves and surfaces composed of voxels: how to compute classical notions of analysis as tangent and normals ? Computation of data on discrete curves use average mask. A large amount of works proposed to study the pertinence of those masks. We propose to compute an average mask based on random walk. A random walk starting from a point of a curve or a surface, allow to give a weight, the time passed on each point. This kernel allow us to compute average and derivative. The studied of this digital process allow us to recover classical notions of geometry on meshes surfaces, and give accuracy estimator of tangent and curvature. We propose a large field of applications of this approach recovering classical tools using in transversal communauty of discrete geometry, with a same theorical base
Hassannezhad, Asma. "Bornes supérieures pour les valeurs propres des opérateurs naturels sur des variétés Riemanniennes compactes." Phd thesis, Université François Rabelais - Tours, 2012. http://tel.archives-ouvertes.fr/tel-00708829.
Full textSicbaldi, Pieralberto. "Domaines extrémaux pour la première valeur propre de l'opérateur de Laplace-Beltrami." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00480301.
Full textVareschi, Thomas. "Estimation non-paramétrique dans les problèmes inverses à opérateur bruité." Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00957985.
Full textSicbaldi, Pieralberto. "Domaines extrémaux pour la première valeur propre de l’opérateur de Laplace-Beltrami." Thesis, Paris Est, 2009. http://www.theses.fr/2009PEST0014.
Full textIn what follows, we will consider a compact Riemannian manifold whose dimension is at least 2. Let Ù be a (smooth enough) domain and ?O the first eigenvalue of the Laplace-Beltrami operator on Ù with 0 Dirichlet boundary condition. We say that Ù is extremal (for the first eigenvalue of the Laplace-Beltrami operator) if is a critical point for the functional Ù? ?O with respect to variations of the domain which preserve its volume. In other words, Ù is extremal if, for all smooth family of domains { Ù t}te(-t0,t0) whose volume is equal to a constant c0, and Ù 0 = Ù, the derivative of the function t ? ?Ot computed at t = 0 is equal to 0. We recall that an extremal domain is characterized by the fact that the eigenfunction associated to the first eigenvalue of the Laplace-Beltrami operator over the domain with 0 Dirichlet boundary condition, has constant Neumann data at the boundary. This result has been proved by A. El Soufi and S. Ilias in 2007. Extremal domains are then domains over which can be solved an elliptic overdeterminated problem. The main aim of this thesis is the construction of extremal domains for the first eigenvalue of the Laplace-Beltrami operator with 0 Dirichlet boundary condition. We give some existence results of extremal domains in the cases of small volume or volume closed to the volume of the manifold. Our results allow also to construct some new nontrivial exemples of extremal domains. The first result we obtained states that if the manifold has a nondegenerate critical point of the scalar curvature, then, given a fixed volume small enough, there exists an extremal domain that can be constructed by perturbation of a geodesic ball centered in that nondegenerated critical point of the scalar curvature. The methode used is based on the study of the operator that to a given domain associes the Neumann data of the first eigenfunction of the Laplace-Beltrami operator over the domain. It is a highly nonlinear, non local, elliptic first order operator. In Rn × R/Z, the circular-cylinder-type domain Br × R/Z, where Br is the ball of radius r > 0 in Rn, is an extremal domain. By studying the linearized of the elliptic first order operator defined in the previous problem, and using some bifurcation results, we prove the existence of nontrivial extremal domains in Rn × R/Z. Such extremal domains are closed to the circular-cylinder-type domains Br × R/Z. If they are invariant by rotation with respect to the vertical axe, they are not invariant by vertical translations. This second result gives a counterexemple to a conjecture of Berestycki, Caffarelli and Nirenberg stated in 1997. For big volumes the construction of extremal domains is technically more difficult and shows some new phenomena. In this context, we had to distinguish two cases, according to the fact that the first eigenfunction Ø0 of the Laplace-Beltrami operator over the manifold is constant or not. The results obtained are the following : 1. If Ø0 has a nondegenerated critical point (in particular it is not constant), then, given a fixed volume closed to the volume of the manifold, there exists an extremal domain obtained by perturbation of the complement of a geodesic ball centered in a nondegenerated critical point of Ø0. 2. If Ø0 is constant and the manifold has some nondegenerate critical points of the scalar curvature, then, for a given fixed volume closed to the volume of the manifold, there exists an extremal domain obtained by perturbation of the complement of a geodesic ball centered in a nondegenerate critical point of the scalar curvature
Baydoun, Ibrahim. "Transport laplacien, problème inverse et opérateurs de Dirichlet-Neumann." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22094.
Full textThe outline of my thesisi) Let some "species" of concentration C(p), x 2 Rd, diuse stationary in the isotropic bulk from a (distant) source localised on the closed boundary $partial Omega_{0}$ towards a semipermeable compact interface $partial Omega$ of the cell $Omega in Omega_{0}$ where they disappear at a given rate $W >= 0$. Then the steady field of concentrations C satisfy the problem $(P1)$. (see the Thesis). We interest to solve (P1) in Twodimensional and Tridimensional cases and to calculate the local and total flux in order to solving the localisation inverse problem. In order to make easy the calculations, we take $Omega$ and $Omega_{0}$ with a regularly geometricals forms by distinguishing the two cases : Concentrics and non-concentrics case. For the non-cncentrics case, we use the conformal mapping technique for resolving the problem (P1) in the twodimensional case. whereas in the tridimensional case, we use the development according to the spherical harmonics functions.ii) Localisation inverse problemThe aim of the localisation inverse problem is to find the necessary Dirichlet-to-Neumann conditions in order to determine the position of thecell $Omega$, where these conditions are measurable.iii) Geometrical inverse problemOur main results concerns a formal solution of the geometrical inverse problem for the form of absorbing domains. We restrict this study to two dimensions and we study it by the conformal mapping technique and harmonic functions.iv) Dirichlet-to-Neumann operatorWe study the Dirichlet-to-Neumann operatot relative to problem (P1) in the twodimensional and tridimensionnal cases by distinguishing the two cases : Concentrics and non-concentrics case. We prove that the Dirichlet-to-Neumann operator generates some semi-group, we call it the Lax semi-group. Finally we construct this semi group and verify that this demi-group satisfies the generals properties of a operator
Tesser, Federico. "Solveur parallèle pour l’équation de Poisson sur mailles superposées et hiérarchiques, dans le cadre du langage Python." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0129/document.
Full textAdaptive discretizations are important in compressible/incompressible flow problems since it is often necessary to resolve details on multiple levels,allowing large regions of space to be modeled using a reduced number of degrees of freedom (reducing the computational time).There are a wide variety of methods for adaptively discretizing space, but Cartesian grids have often outperformed them even at high resolutions due totheir simple and accurate numerical stencils and their superior parallel performances.Such performance and simplicity are in general obtained applying afinite-difference scheme for the resolution of the problems involved, but this discretization approach does not present, by contrast, an easy adapting path.In a finite-volume scheme, instead, we can incorporate different types of grids,more suitable for adaptive refinements, increasing the complexity on thestencils and getting a greater flexibility.The Laplace operator is an essential building block of the Navier-Stokes equations, a model that governs fluid flows, but it occurs also in differential equations that describe many other physical phenomena, such as electric and gravitational potentials, and quantum mechanics. So, it is a very importantdifferential operator, and all the studies carried out on it, prove itsrelevance.In this work will be presented 2D finite-difference and finite-volume approaches to solve the Laplacian operator, applying patches of overlapping grids where amore fined level is needed, leaving coarser meshes in the rest of the computational domain.These overlapping grids will have generic quadrilateral shapes.Specifically, the topics covered will be:1) introduction to the finite difference method, finite volume method, domainpartitioning, solution approximation;2) overview of different types of meshes to represent in a discrete way thegeometry involved in a problem, with a focuson the octree data structure, presenting PABLO and PABLitO. The first one is anexternal library used to manage each single grid’s creation, load balancing and internal communications, while the second one is the Python API ofthat library written ad hoc for the current project;3) presentation of the algorithm used to communicate data between meshes (beingall of them unaware of each other’s existence) using MPI inter-communicators and clarification of the monolithic approach applied building the finalmatrix for the system to solve, taking into account diagonal, restriction and prolongation blocks;4) presentation of some results; conclusions, references.It is important to underline that everything is done under Python as programmingframework, using Cython for the writing of PABLitO, MPI4Py for the communications between grids, PETSc4py for the assembling and resolution partsof the system of unknowns, NumPy for contiguous memory buffer objects.The choice of this programming language has been made because Python, easy to learn and understand, is today a significant contender for the numerical computing and HPC ecosystem, thanks to its clean style, its packages, its compilers and, why not, its specific architecture optimized versions
Hauer, Daniel. "Problèmes d'évolution associés au p-laplacien : comportement asymptotique et non-existence." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0269.
Full textThis thesis is dedicated to the study of two subjects in the field of evolution problems associated with the $p$-Laplace operator. The first subject is concerned with the study of long time behavior of bounded solutions and the second subject is devoted to the study of nonexistence of positive nontrivial solutions. The first chapter of this thesis is devoted to a general introduction to the p-Laplace operator and a résumé of this thesis. The first chapter is written in French. Chapter 2 is dedicated to the study of convergence as the time $t\to+\infty$ of bounded solutions of evolution problems associated with the p-Laplace operator on a bounded interval with homogeneous Dirichlet, Neumann, or Robin boundary conditions converges. The results of Chapter 2 are contained in article \cite{hauer-convergence-2012}, which was published in the journal « Nonlinear Differential Equations and Applications NoDea ». Chapter 3 is devoted to the study of nonexistence of positive nontrivial weak solutions of parabolic equations associated to the p-Laplace operator with a convection term and a singular potential. The results of Section 3.2 and Section 3.4.1 of Chapter 3 are contained in article \cite{Hauer:2012fk}, which was accepted for publication in the journal « Archiv der Mathematik ». The results of Section 3.4.2 of Chapter 3 are not yet published
Books on the topic "Opérateur Laplace"
White noise: An infinite dimensional calculus. Dordrecht: Kluwer Academic Publishers, 1993.
Find full text