Dissertations / Theses on the topic 'Opérateurs de Cauchy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 23 dissertations / theses for your research on the topic 'Opérateurs de Cauchy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
David, Guy. "Noyau de Cauchy et opérateurs de Calderon-Zygmund." Paris 11, 1986. http://www.theses.fr/1986PA112121.
Full textIn this work we study the L2-boundedness of certain singular integral operators. We give an "elementary" proof of Coifman, McIntosh and Meyer's theorem on the L2-boundedness of the operator defined by the Cauchy kernel on a Lipschitz graph. We characterize the rectifiable curves of the complex plane for which the Cauchy kernel defines a L2-bounded operator, in terms of a simple geometric property (called regularity). Two characterizations of the singular integral operators that are bounded on L2(IRn) are given. These criteria apply in particular to the Chauchy kernel on a Lipschitz graph
Tran-Oberlé, Chantal. "Analyticité en dimension infinie et théorie des opérateurs." Paris 11, 1987. http://www.theses.fr/1987PA112013.
Full textCrétois, Rémi. "Automorphismes réels d'un fibré, opérateurs de Cauchy-Riemann et orientabilité d'espaces de modules." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00656631.
Full textMeril, Alex. "Contribution à l'étude des opérateurs de convolution dans le champ complexe." Bordeaux 1, 1986. http://www.theses.fr/1986BOR10598.
Full textAlexandre, William. "Régularité des équations de Cauchy-Riemann et Cauchy-Riemann tangentielles sur les domaines convexes de type fini de Cn." Lille 1, 2003. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2003/50376-2003-103-104.pdf.
Full textMaati, Abderrabi. "Réalisabilité locale des structures de Cauchy-Riemann rigides de R3, dans les classes Hölderiennes." Lille 1, 1997. http://www.theses.fr/1997LIL10163.
Full textSaint-Raymond, Xavier. "Unicité de Cauchy pour des équations aux dérivées partielles analytiques ou C∞ : conditions nécessaires et conditions suffisantes." Paris 11, 1986. http://www.theses.fr/1986PA112207.
Full textNecessary conditions and sufficient conditions for the uniqueness in the Cauchy problem are given here in the case of analytic or C∞ partial differential equations. For an equation (E) near xO ε Rn and a time function, we attempt to characterize the following property : for any pair u1, u2 of solutions of (E), u1=u2 in the past implies u1=u2 in the future (locally: u1 and u2 are germs at xO). We bring up a detailed study of first order linear equations where structure conditions, suggested by the definition of Hörmander’s principally normal operators, are discussed, and results extending Hörmander’s notion of pseudo-convexity for different classes of linear equations: characteristic analytic equations (in that framework, nonlinear first-order equations are also treated), first order (C∞) equations, second order equations of real principal type, principally normal equations of biprincipal type. In the proofs, our tools are traditional Carleman inequalities and geometrical optics mixed with analytic Cauchy problem techniques and ideas from other domains of analysis
Kadri, Hamid. "Résultats d'unicité de la solution du problème de Cauchy non caractéristique C(infini) pour une classe d'opérateurs différentiels matriciels à caractéristiques multiples." Lille 1, 1985. http://www.theses.fr/1985LIL10017.
Full textPoupaud, César. "Régularité maximale Lp du problème de Cauchy non-autonome et Théorie spectrale des opérateurs de Schrödinger sur les variétés Riemanniennes." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2005. http://tel.archives-ouvertes.fr/tel-00011972.
Full textLahcene, Mohamed Tewfik. "Sur les produits tensoriels de bases et application à l'étude de la somme d'opérateurs diagonaux." Lyon 1, 1994. http://www.theses.fr/1994LYO10194.
Full textCumenge, Anne. "Valeurs au bord pour la solution canonique de l'équation de Cauchy-Riemann dans les domaines strictement pseudo-convexes : extension et division holomorphes avec estimations." Toulouse 3, 1989. http://www.theses.fr/1989TOU30174.
Full textBahouri, Hajer. "Unicité, non unicité et continuité Hölder du problème de Cauchy pour des équations aux dérivées partielles : propagation du front d'onde C° pour des équations non linéaires." Paris 11, 1987. http://www.theses.fr/1987PA112250.
Full textThis thesis is in two parts : the first is concerned with the Cauchy problem and the second with CP propagation of non linear equations. The Cauchy problem Here we are interested essentially in uniquesess for the Cauchy problem: given an operator P, a hypersurface S, x0 є S, we say that P has the uniqueness property with respect to S near xo if the conditions Pu =0 and u zero on one side of S imply that u=0 in neighbourhood of xo. Besides giving uniqueness and non-uniqueness results in this context, we use the technique of patching together almost zero solutions to prove a result on non unique extensions. We adapt the method of Carleman’s inequalities to investigate incorrectly posed problems. Cp Propagation. We prove results on the propagation of the Cp wave front for a class of paradifferential operators. The proofs in the first part are based on the traditional methods of Carleman’s inequalities and geometric optics. Proofs in the second part use the paradifferential calculus of Bony and the paracomposition of Alinhac
Ngo, Duc Duy. "Optique non-linéaire et équation des ondes non-linéaire semi-classique." Nice, 2006. http://www.theses.fr/2006NICE4074.
Full textT'Joen, Laurent. "Effets régularisants et existence locale pour les équations non-linéaires de Schrödinger et des plaques à coefficients variables." Paris 11, 2001. http://www.theses.fr/2001PA112264.
Full textCasseli, Irène. "Eléments sur la transformée de Berezin et sur les opérateurs de Toeplitz dans des espaces de fonctions polyanalytiques." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0578.
Full textEntire polyanalytic functions generalize entire functions in that they are solutions of "Cauchy-Riemann equations of order n, of the form {\partial}^n f / \partial \overline{z}^n = 0, over the whole complex plane \mathbb{C}. Polyanalytic Fock space F^2_{\alpha,n} is, by analogy with the classical case, the closed subspace of the Hilbert space L^2(\mathbb{C},d\mu_\alpha), where \mu_\alpha is a Gaussian probability measure over \mathbb{C} with weight \alpha>0, of polyentire functions of order n. The aim of this PhD thesis is the study of classical objects of operator theory such that the Berezin transform and Toeplitz operators in the particular case of polyanalytic Fock spaces. In this written, it is shown among other results, that the L^p fixed points of the Berezin transform are constant functions. Concerning Toeplitz operators, the Sarason problem is studied. Given a function f, the Toeplitz operator with symbol f is formally defined by T^n_f(h)=P_{F^2_n}(f h), where P_{F^2_n} is the orthogonal projection from L^2(\mathbb{C},d\mu) on to F^2_n. The so-called Sarason's problem consists in finding necessary and sufficient conditions on the symbols f and g for the Toeplitz product with symbols f and \bar g to be bounded in the Fock space
Morisse, Baptiste. "Le problème de Cauchy pour les systèmes quasi-linéaires faiblement hyperboliques ou non-hyperboliques en régularité Gevrey." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC188/document.
Full textWe consider the Cauchy problem for first-order, quasilinear systems of PDEs. In the initially elliptic case, that is when the principal symbol of the system has nonreal spectrum at time t=0, we prove an instability result in the sense of Hadamard. The proof is based on the construction of a family of exact solutions which exhib an exponential growth, both in time and frequency. That family leads to a defect of Hölder regularity of the flow, starting from evrey spaces to L² space. We prove analogous results for some cases of transition from hyperbolicity to ellipticity, with a potential restriction on the Gevrey index for which we may observe the instability. In a second time, we consider weakly hyperbolic systems. Thanks to an energy estimate in Gevrey spaces and the construction of a suitable symetriser, we prove local well-posedness for such a system. In doing so we use and prove a result on actions of pseudo-differential operators whose symbols have Gevrey regularity in the spatial variable
Ben, Hadj Youssef Hasna. "Problème de Cauchy global régulier pour quelques équations d'évolution semi-linéaires." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00115478.
Full textDans la première partie, nous étudions les solutions régulières globales d'une équation particulière semi-linéaire faiblement
hyperbolique d'ordre quatre . Les linéarisés de cette équation
vérifient une hypothèse du type de Levi.
Dans la seconde patie, nous donnons des exemples d'opérateurs d'évolution notés L = partial_{tt}^2 - p(t, D_x), faisant intervenir des opérateurs singuliers p pour lesquels une perturbation
quasi-linéaire donne des équations admettant des solutions régulières et globales.
Rogeon, Philippe. "Autour de la théorie de scattering pour l'équation de Wigner." Poitiers, 2000. http://www.theses.fr/2000POIT2295.
Full textHilal, Mohammed Azeez. "Domain decomposition like methods for solving an electrocardiography inverse problem." Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4060.
Full textThe aim of the this thesis is to study an electrocardiography (ECG) problem, modeling the cardiac electrical activity by using the stationary bidomain model. Tow types of modeling are considered :The modeling based on direct mathematical model and the modeling based on an inverse Cauchy problem. In the first case, the direct problem is solved by using domain decomposition methods and the approximation by finite elements method. For the inverse Cauchy problem of ECG, it was reformulated into a fixed point problem. In the second case, the existence and uniqueness of fixed point based on the topological degree of Leray-Schauder is showed. Then, some regularizing and stable iterative algorithms based on the techniques of domain decomposition method was developed. Finally, the efficiency and the accurate of the obtained results was discussed
Dietrich, Gautier. "Nouveaux invariants en géométrie CR et de contact." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS016/document.
Full textCauchy-Riemann geometry, CR for short, is the natural geometry of real pseudoconvex hypersurfaces of $C^{n+1}$ for $ngeq 1$. We consider the generic case when CR manifolds are contact manifolds. CR geometry presents strong analogies with conformal geometry; hence, known invariants and techniques of conformal geometry can be transported to that context. We focus in this thesis on two such invariants. In a first part, using asymptotically complex hyperbolic geometry, we introduce a CR covariant differential operator on maps from a CR manifold to a Riemannian manifold, which coincides on functions with the CR Paneitz operator. In a second part, we propose a Yamabe invariant for contact manifolds which admit a CR structure, and we study its behaviour under connected sum
Bienaimé, Pierre-Yves. "Existence locale et effet régularisant précisés pour des équations de type Schrödinger." Nantes, 2014. https://archive.bu.univ-nantes.fr/pollux/show/show?id=2a707556-7e43-4293-a4ef-d92c9427fd70.
Full textIn this paper, we consider the Cauchy problem in the usual Sobolev spaces for some nonlinear equations of the form [Formule non transposable] : that is, equations which are of Schrödinger type. We study the local existence and the smoothing effect of the solutions, following C. E. Kenig, G. Ponce and L. Vega, and extend some of their results. The nonlinearity F is a smooth function which vanishes to the 3rd order at 0 and the operator L has the form [Formule non transposable] : It extends the Laplace operator but is not elliptic in general. We prove the local existence, the uniqueness and the smoothing effect given any [Formule non transposable] : The proof follows the same plan as that of C. E. Kenig, G. Ponce and L. Vega, Inventiones Matematicae, 1998. We improve the estimates by using the paradifferential calculus of J. -M. Bony
Kosad, Youssouf. "Analyse spectrale et comportement asymptotique des solutions de quelques modèles d’équations de transport." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC056/document.
Full textThis thesis is devoted to the spectral theory and the time asymptotic behavior of the solution to Cauchy problems governed by various transport operators. In the first part, we discussed the spectral properties of streaming and transport operators in finite bodies with general boundary conditions. After establishing a compactness result essential to our analysis, we gave a fine description of the asymptotic spectrum of the transport operator. We also derive the regularity and the asymptotic behavior of the solution to Cauchy problem governed by the transport operator supplemented by bounce-back boundary conditions plus a compact operator in the space L^1. In the second part, we discussed the well-posedness and the asymptotic behavior of the solution to Cauchy problem governed by a singular transport operator. Unlike the first part, the analysis of this problem requires the use of Miyadera-Voigt perturbation theory for unbounded operators. In the last part of this work, a Cauchy problem governed by a linear operator introduced by Lebowitz and Rubinow describing a proliferating cell population structured by age and the cycle length was considered. Here our analysis was devoted to the case where the maximum cycle length is infinite
Landry, Alexandre. "Les extensions bosoniques et fermioniques de l'équation Benjamin-Ono : supersymétriques et autres." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27192/27192.pdf.
Full text