Academic literature on the topic 'OPÉRATEURS DIFFÉRENTIELS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'OPÉRATEURS DIFFÉRENTIELS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "OPÉRATEURS DIFFÉRENTIELS"
Duval, Anne. "Opérateurs intégro-différentiels méromorphes et opérateurs aux différences." Annales de l’institut Fourier 37, no. 1 (1987): 45–80. http://dx.doi.org/10.5802/aif.1077.
Full textBass, Hyman. "Conjecture Jacobienne et opérateurs différentiels." Mémoires de la Société mathématique de France 1 (1989): 39–50. http://dx.doi.org/10.24033/msmf.340.
Full textIshimura, Ryuichi. "Opérateurs pseudo-différentiels définis en un point." Annales Polonici Mathematici 89, no. 1 (2006): 25–51. http://dx.doi.org/10.4064/ap89-1-3.
Full textSaloff-Coste, L. "Opérateurs pseudo-différentiels sur certains groupes totalement discontinus." Studia Mathematica 83, no. 3 (1986): 205–28. http://dx.doi.org/10.4064/sm-83-3-205-228.
Full textBouffet, Magali. "Un lemme de Hensel pour les opérateurs différentiels." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, no. 4 (August 2000): 277–80. http://dx.doi.org/10.1016/s0764-4442(00)01649-9.
Full textBenalili, Mohammed. "SUR L'ORDRE GLOBAL DES OPÉRATEURS DIFFÉRENTIELS LINÉAIRES-I'NATURELS." Demonstratio Mathematica 31, no. 1 (January 1, 1998): 33–42. http://dx.doi.org/10.1515/dema-1998-0106.
Full textBoussel, Katy. "Opérateurs hypergéométriques réductibles : décompositions et groupes de Galois différentiels." Annales de la faculté des sciences de Toulouse Mathématiques 5, no. 2 (1996): 299–362. http://dx.doi.org/10.5802/afst.830.
Full textISHIMURA, Ryuichi. "TRANSFORMATION DE FOURIER-SATO ET OPÉRATEURS PSEUDO-DIFFÉRENTIELS NON-LOCAUX." Kyushu Journal of Mathematics 61, no. 1 (2007): 95–107. http://dx.doi.org/10.2206/kyushujm.61.95.
Full textBerthelot, Pierre. "${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini." Annales scientifiques de l'École normale supérieure 29, no. 2 (1996): 185–272. http://dx.doi.org/10.24033/asens.1739.
Full textAbdi, R. El, and G. Gambart. "Sur les opérateurs différentiels symétrisants relatifs aux systèmes non-conservatifs." Canadian Journal of Physics 76, no. 5 (May 1, 1998): 403–20. http://dx.doi.org/10.1139/p98-008.
Full textDissertations / Theses on the topic "OPÉRATEURS DIFFÉRENTIELS"
Zielinski, Lech. "Valeurs propres d'opérateurs différentiels à coefficients irréguliers." Paris 7, 1990. http://www.theses.fr/1990PA077171.
Full textTorossian, Charles. "Opérateurs différentiels invariants sur les espaces symétriques." Paris 7, 1991. http://www.theses.fr/1991PA077205.
Full textPagès, Raphaël. "Factorisation des opérateurs différentiels en caractéristique positive." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0024.
Full textThe study of linear differential operators is an important part of the algebraic study of differentialequations. Rings of linear differential operators share many properties with rings of polynomials,but the noncommutative aspect of the multiplication makes the design of factorisation algorithmsharder. This thesis focuses mainly on developing an algorithm computing an irreducible rightfactor of a given linear differential operator with coefficients in an algebraic function field of positivecharacteristic p. The situation differs greatly from the same problem in characteristic 0 becausealgebraic function fields of characteristic p are finite dimensional over their field of constants. Thissimple fact provides the ring of differential operators in characteristic p with an additional structureof Azumaya algebra, which gives additional tools to attack our problem.A first step in this direction is the computation of the p-curvature, a classical invariant ofprimary importance attached to differential operations in characteristic p. The first importantresult of this thesis is an algorithm computing, for a given operator L in characteristic 0 and aninteger N , all the characteristic polynomials of the p-curvatures of its reduction modulo p, for allprimes p ⩽ N .The second part of the thesis is dedicated to the factorisation itself. We use the Azumayaalgebra structure to show that finding irreducible right irreducible factors reduces to solving thep-Riccati equationf^{ (p−1) } + f^p = a^pin K[a] where a is a suitable algebraic function over K. This observation leads to two importantalgorithms. The first one is an application of the global-local principle which eventually providesa polynomial time irreducibility test for differential operators. The second one is an actual reso-lution algorithm for the p-Riccati equation that uses tools of algebraic geometry for curves suchas Riemann-Roch spaces and Picard group. We do a complexity analysis of this algorithm, andshow that the p-Riccati equation always admit solution whose size is comparable to that of theparameter a. As a byproduct, this algorithm makes the factorisation of central operators possible(a situation which was often left aside) and lower the size of right factors of general operatorsby a factor p compared to previous works. We finally deduce a full factorisation algorithm fordifferential operators of positive characteristic
El, Hussein Kahar. "Opérateurs différentiels invariants sur les groupes de déplacements." Poitiers, 1988. http://www.theses.fr/1988POIT2300.
Full textNur, Cemile. "Sur les fonctions racines des opérateurs différentiels ordinaires." Nantes, 2014. http://www.theses.fr/2014NANT2099.
Full textWe obtain the asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville operators with general regular boundary conditions. Using these we find sufficient conditions on the potential q such that the root functions of these operators do not form a Riesz basis. Also we estimate the small eigenvalues of these operators by the numerical methods
Boulaamayel, Bennasser. "Sous-potentiels d'opérateurs différentiels non linéaires." Besançon, 1995. http://www.theses.fr/1995BESA2070.
Full textDozias, Sandrine. "Opérateurs h-pseudodifférentiels à flot périodique." Paris 13, 1994. http://www.theses.fr/1994PA132042.
Full textLatrémolière, Evelyne. "Théorie de la diffusion et résonances pour des métriques perturbées." Nantes, 1994. http://www.theses.fr/1994NANT2006.
Full textMarcel, Patrick. "Nouvelle série de supralgébres de Lie généralisant l'algébre de Virasoro et opérateurs différentiels de type Sturm-Liouville." Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11005.
Full textDejoncheere, Benoît. "Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1310/document.
Full textStarted independently by Beilinson and Bernstein, and by Brylinski and Kashiwara, the study of global differential operators on complete flag varieties has been very useful to answer a conjecture of Kazhdan and Lusztig. In their subsequent work, Borho and Brylinski have discovered many interesting properties on differential operators on flag varieties. But apart from the case of flag varieties, and the case of projective toric varieties, which has been investigated with combinatorial methods, differential operators on projective varieties are rather badly known.In this thesis, we will investigate the case of some wonderful compactifications Y of symmetric spaces G/H of small rank, and we will compare our results with what is known in the case of flag varieties. We will first construct a differential operator on Y which does not come from the infinitesimal action of G, which is different from the case of flag varieties.We will then look at three particular cases, which will be expressed as GIT quotients of some Grassmannian X. With this description, we will find some similarities with the case of flag varieties : we will show that the algebra of global differential operators is of finite type, and that for each invertible sheaf L on Y, the module of its global sections is simple as a module over the algebra of global differential operators of Y twisted by L. Finally, using arguments of local cohomology, we will show that it is still the case for higher cohomology groups
Books on the topic "OPÉRATEURS DIFFÉRENTIELS"
Sophie, Body-Gendrot, and Spierenburg Petrus Cornelis, eds. Violence in Europe: Historical and contemporary perspectives. New York, NY: Springer, 2008.
Find full textEdmunds, D. E. Spectral theory and differential operators. Oxford [England]: Clarendon Press, 1990.
Find full textDelort, Jean-Marc. F.B.I. transformation: Second microlocalization and semilinear caustics. Berlin: Springer-Verlag, 1992.
Find full textB, Gilkey Peter, ed. Invariance theory, the heat equation, and the Atiyah-Singer index theorem. 2nd ed. Boca Raton: CRC Press, 1995.
Find full textDudley, R. M. Differentiability of six operators on nonsmooth functions and p-variation. Berlin: Springer, 1999.
Find full textservice), SpringerLink (Online, ed. Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Basel: Springer Basel AG, 2011.
Find full textSociety, European Mathematical, ed. Lectures on the L2-Sobolev theory of the [d-bar]-Neumann problem. Zürich: European Mathematical Society, 2010.
Find full textRoe, John. Elliptic operators, topology, and asymptotic methods. Harlow, Essex, England: Longman Scientific & Technical, 1988.
Find full textFiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.
Find full textAlinhac, Serge, and Patrick Gérard. Opérateurs pseudo-différentiels et théorème de Nash-Moser. EDP Sciences, 1991. http://dx.doi.org/10.1051/978-2-7598-0282-1.
Full textBook chapters on the topic "OPÉRATEURS DIFFÉRENTIELS"
Malliavin, M. P. "Algèbre homologique et opérateurs différentiels." In Ring Theory, 173–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0100924.
Full textOhya, Yujiro. "Caractérisation des Opérateurs Différentiels Hyperboliques." In Jean Leray ’99 Conference Proceedings, 97–107. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2008-3_8.
Full textBottaro, Gianfranco. "Quelques résultats d'analyse spectrale pour des opérateurs différentiels à coefficients constants sur des domaines non bornés." In Spectral Analysis, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10955-3_1.
Full textSelmi, Mohamed. "Comparaison des semi-groupes et des résolvantes d’ordre α associés à des opérateurs différentiels de type divergence." In ICPT ’91, 15–45. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1118-8_2.
Full text"9 Opérateurs pseudo-différentiels." In Analyse fonctionnelle appliquée, 271–308. EDP Sciences, 2024. http://dx.doi.org/10.1051/978-2-7598-3446-4.c011.
Full text"9. Opérateurs pseudo-différentiels." In Analyse et équations aux dérivées partielles, 209–22. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3140-1.c010.
Full text"CHAPITRE I. OPÉRATEURS PSEUDO-DIFFÉRENTIELS." In Opérateurs pseudo-différentiels et théorème de Nash-Moser, 23–90. EDP Sciences, 1991. http://dx.doi.org/10.1051/978-2-7598-0282-1.c003.
Full text"C Opérateurs différentiels à une variable." In Physique et outils mathématiques, 309–12. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0323-1-011.
Full text"C Opérateurs différentiels à une variable." In Physique et outils mathématiques, 309–12. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0323-1.c011.
Full text"Chapitre 10 Algèbres de Lie et opérateurs différentiels." In Groupes de symétrie en physique, 97–106. EDP Sciences, 2022. http://dx.doi.org/10.1051/978-2-7598-2765-7.c012.
Full textConference papers on the topic "OPÉRATEURS DIFFÉRENTIELS"
Fontanille, Jacques. "Paysages." In Paysages & valeurs : de la représentation à la simulation. Limoges: Université de Limoges, 2008. http://dx.doi.org/10.25965/as.3498.
Full text