Dissertations / Theses on the topic 'OPÉRATEURS DIFFÉRENTIELS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'OPÉRATEURS DIFFÉRENTIELS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zielinski, Lech. "Valeurs propres d'opérateurs différentiels à coefficients irréguliers." Paris 7, 1990. http://www.theses.fr/1990PA077171.
Full textTorossian, Charles. "Opérateurs différentiels invariants sur les espaces symétriques." Paris 7, 1991. http://www.theses.fr/1991PA077205.
Full textPagès, Raphaël. "Factorisation des opérateurs différentiels en caractéristique positive." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0024.
Full textThe study of linear differential operators is an important part of the algebraic study of differentialequations. Rings of linear differential operators share many properties with rings of polynomials,but the noncommutative aspect of the multiplication makes the design of factorisation algorithmsharder. This thesis focuses mainly on developing an algorithm computing an irreducible rightfactor of a given linear differential operator with coefficients in an algebraic function field of positivecharacteristic p. The situation differs greatly from the same problem in characteristic 0 becausealgebraic function fields of characteristic p are finite dimensional over their field of constants. Thissimple fact provides the ring of differential operators in characteristic p with an additional structureof Azumaya algebra, which gives additional tools to attack our problem.A first step in this direction is the computation of the p-curvature, a classical invariant ofprimary importance attached to differential operations in characteristic p. The first importantresult of this thesis is an algorithm computing, for a given operator L in characteristic 0 and aninteger N , all the characteristic polynomials of the p-curvatures of its reduction modulo p, for allprimes p ⩽ N .The second part of the thesis is dedicated to the factorisation itself. We use the Azumayaalgebra structure to show that finding irreducible right irreducible factors reduces to solving thep-Riccati equationf^{ (p−1) } + f^p = a^pin K[a] where a is a suitable algebraic function over K. This observation leads to two importantalgorithms. The first one is an application of the global-local principle which eventually providesa polynomial time irreducibility test for differential operators. The second one is an actual reso-lution algorithm for the p-Riccati equation that uses tools of algebraic geometry for curves suchas Riemann-Roch spaces and Picard group. We do a complexity analysis of this algorithm, andshow that the p-Riccati equation always admit solution whose size is comparable to that of theparameter a. As a byproduct, this algorithm makes the factorisation of central operators possible(a situation which was often left aside) and lower the size of right factors of general operatorsby a factor p compared to previous works. We finally deduce a full factorisation algorithm fordifferential operators of positive characteristic
El, Hussein Kahar. "Opérateurs différentiels invariants sur les groupes de déplacements." Poitiers, 1988. http://www.theses.fr/1988POIT2300.
Full textNur, Cemile. "Sur les fonctions racines des opérateurs différentiels ordinaires." Nantes, 2014. http://www.theses.fr/2014NANT2099.
Full textWe obtain the asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville operators with general regular boundary conditions. Using these we find sufficient conditions on the potential q such that the root functions of these operators do not form a Riesz basis. Also we estimate the small eigenvalues of these operators by the numerical methods
Boulaamayel, Bennasser. "Sous-potentiels d'opérateurs différentiels non linéaires." Besançon, 1995. http://www.theses.fr/1995BESA2070.
Full textDozias, Sandrine. "Opérateurs h-pseudodifférentiels à flot périodique." Paris 13, 1994. http://www.theses.fr/1994PA132042.
Full textLatrémolière, Evelyne. "Théorie de la diffusion et résonances pour des métriques perturbées." Nantes, 1994. http://www.theses.fr/1994NANT2006.
Full textMarcel, Patrick. "Nouvelle série de supralgébres de Lie généralisant l'algébre de Virasoro et opérateurs différentiels de type Sturm-Liouville." Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11005.
Full textDejoncheere, Benoît. "Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1310/document.
Full textStarted independently by Beilinson and Bernstein, and by Brylinski and Kashiwara, the study of global differential operators on complete flag varieties has been very useful to answer a conjecture of Kazhdan and Lusztig. In their subsequent work, Borho and Brylinski have discovered many interesting properties on differential operators on flag varieties. But apart from the case of flag varieties, and the case of projective toric varieties, which has been investigated with combinatorial methods, differential operators on projective varieties are rather badly known.In this thesis, we will investigate the case of some wonderful compactifications Y of symmetric spaces G/H of small rank, and we will compare our results with what is known in the case of flag varieties. We will first construct a differential operator on Y which does not come from the infinitesimal action of G, which is different from the case of flag varieties.We will then look at three particular cases, which will be expressed as GIT quotients of some Grassmannian X. With this description, we will find some similarities with the case of flag varieties : we will show that the algebra of global differential operators is of finite type, and that for each invertible sheaf L on Y, the module of its global sections is simple as a module over the algebra of global differential operators of Y twisted by L. Finally, using arguments of local cohomology, we will show that it is still the case for higher cohomology groups
Loubon-Djounga, Sabin Emmanuel. "Modules des opérateurs différentiels d'ordre trois et la géométrie conforme." Aix-Marseille 1, 2001. http://www.theses.fr/2001AIX11044.
Full textAl, Jaabari Mohamed El Mokhtar. "Opérateurs différentiels quasi-invariants et représentation exceptionnelle de SL3(R)." Poitiers, 1993. http://www.theses.fr/1993POIT2273.
Full textMaruyama, Fumitsuna. "Questions de théorie spectrale pour des opérateurs différentiels et pseudodifférentiels." Paris 13, 1997. http://www.theses.fr/1997PA132025.
Full textDaher, Radouan. "Analyse sur un espace riemannien symétrique." Nice, 1989. http://www.theses.fr/1989NICE4263.
Full textRedou, Pascal. "Géométrie différentielle conforme et représentations dans l'espace des densités tensorielles." Aix-Marseille 1, 2002. http://www.theses.fr/2002AIX11053.
Full textHarrabi, Ali. "Pseudospectres d'opérateurs intégraux et différentiels : application à la physique mathématique." Toulouse 1, 1998. http://www.theses.fr/1998TOU10031.
Full textBordeaux, Montrieux William. "Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints." Phd thesis, Ecole Polytechnique X, 2008. http://pastel.archives-ouvertes.fr/pastel-00005367.
Full textRey, Alcantara Alexandre. "Théorie de l'indice et géométrie basique d'un feuilletage riemannien." Electronic Thesis or Diss., Metz, 2011. http://www.theses.fr/2011METZ022S.
Full textIn this paper we study the basic geometry of a Riemannian foliation. First we return on A. El Kacimi’s point of view on transversally elliptic basic differential operator. We study the particular case of fibration and foliation defined by suspension. We study some examples of computation of basic index and study invariance property for the basic signature. After, we study a Riemannian foliation with the action of a compact Lie group. We prove then that a basic differential operator which is transversally elliptic to the foliation and to the group action has a distributional basic index. We study the particular case of free action and prove the multiplicativity and excision property. We end by study the link with El Kacimi’s point of view
DESAINT, FABRICE. "Derivees par rapport au domaine en geometrie intrinseque. Application aux equations de coques." Nice, 1995. http://www.theses.fr/1995NICE4917.
Full textEl, Boufi Bouchaïb. "Anneaux d'opérateurs différentiels sur les courbes affines et algèbres non réduites." Lyon 1, 1994. http://www.theses.fr/1994LYO10227.
Full textNadir, Bouchaïd. "Opérateurs para différentiels et régularité dans les problèmes aux limites elliptiques non linéaires." Nice, 1985. http://www.theses.fr/1985NICE4025.
Full textGargoubi, Hichem. "Modules des opérateurs différentiels sur la droite : géométrie projective et cohomologie de Gelfand-Fuks." Aix-Marseille 1, 1997. http://www.theses.fr/1997AIX11079.
Full textBattesti, Françoise. "Résolubilité globale d'opérateurs différentiels invariants sur certains groupes de Lie." Nice, 1985. http://www.theses.fr/1985NICE4009.
Full textKouakou, Konan Mathias. "Isomorphismes entre algèbres d'opérateurs différentiels sur les courbes algébriques affines." Lyon 1, 1994. http://www.theses.fr/1994LYO10350.
Full textDamaville, Stéphane. "Opérateurs réguliers sur les modules de Hilbert associés au complexe de Rham." Paris 7, 2002. http://www.theses.fr/2002PA077230.
Full textFang, Xin. "Autour des algèbres de battages quantiques : idéaux de définition, spécialisation et cohomologie." Paris 7, 2012. http://www.theses.fr/2012PA077131.
Full textThe main part of this thesis is devoted to study some constructions and structures around quantum shuffle algebras: differential algebras and Kashiwara operators; defining ideals and specialization problem ; coHochschild homology and an analogue of Borel-Weil-Bott theorem. In the last chapter we prove a family of identities relating powers of Dedekind η-function and the trace of the Coxeter element in the Artin braid groups acting on quantum coordinate algebras
Rey, Alcantara Alexandre. "Théorie de l'indice et géométrie basique d'un feuilletage riemannien." Thesis, Metz, 2011. http://www.theses.fr/2011METZ022S/document.
Full textIn this paper we study the basic geometry of a Riemannian foliation. First we return on A. El Kacimi’s point of view on transversally elliptic basic differential operator. We study the particular case of fibration and foliation defined by suspension. We study some examples of computation of basic index and study invariance property for the basic signature. After, we study a Riemannian foliation with the action of a compact Lie group. We prove then that a basic differential operator which is transversally elliptic to the foliation and to the group action has a distributional basic index. We study the particular case of free action and prove the multiplicativity and excision property. We end by study the link with El Kacimi’s point of view
Deléaval, Luc. "Analyse harmonique associée à des systèmes de racines et aux opérateurs de Dunkl rationnels." Paris 6, 2010. http://www.theses.fr/2010PA066401.
Full textDelgado, Julio. "Bornitude Lp pour une classe d'opérateurs pseudo-différentiels dans le cadre du calcul de Weyl-Hörmander." Paris 6, 2005. http://www.theses.fr/2005PA066290.
Full textMeril, Alex. "Contribution à l'étude des opérateurs de convolution dans le champ complexe." Bordeaux 1, 1986. http://www.theses.fr/1986BOR10598.
Full textGrébert, Benoît. "Problèmes spectraux inversés pour les systèmes akns sur la droite réelle." Paris 13, 1990. http://www.theses.fr/1990PA132011.
Full textPravda-Starov, Karel. "Étude du pseudo-spectre d'opérateurs non auto-adjoints." Rennes 1, 2006. https://tel.archives-ouvertes.fr/tel-00109895.
Full textBen, Halima Majdi. "Opérateurs différentiels invariants sur des espaces homogènes : régles de branchement et applications géométriques et analytiques." Metz, 2006. http://www.theses.fr/2006METZ004S.
Full textIn the first part of this thesis, we study the branching rules from U(n+m) to U(n) x U(m), from SU(n+m) to S(U(n) x U(m)) and from SU(n+m) to SU(n) x SU(m). Then we give some applications of these rules to the computation of the spectra of certain invariant invariant differential operators on complex Grassmannians. More precisely, we determine the spectra of the Hodge-Laplacian, the Bochner-Laplacian and the Dirac operator on homogeneous vector bundles over these manifolds. In the second part, we study some aspects of the equivariant geometry of complex projective spaces and Grassmannians from the point of view of ''fuzzy approximations''. In particular, using the abovely mentioned branching rules, we easily derive that every complex Grassmannian can be approximated by ''fuzzy homogeneous manifolds''. The appendix A of this work is essentially devoted to analysing the problem of computing the spectra of certain invariant differential operators on homogeneous vector bundles. In the appendix B, we compute the zeta-regularized determinants of the Dirac operator and its square on odd-dimensional complex projective spaces
Alayoubi, Khalil. "Algèbre d'opérateurs différentiels sur la droite projective : algèbres d'endomorphismes des idèaux à gauche." Lyon 1, 1998. http://www.theses.fr/1998LYO10110.
Full textGinoux, Nicolas. "Opérateurs de Dirac sur les sous-variétés." Nancy 1, 2002. http://www.theses.fr/2002NAN10047.
Full textIn this thesis, we study the spectrum of two Dirac operators defined on a submanifold. First, we prove a lower bound for an operator which is canonically associated with the Dirac-Witten's operator. We then show that equality holds in these inequalities only if the submanifold admits a t̀̀wisted Killing'' spinor. On the other hand, we give extrinsic upper bounds for the smallest eigenvalues of the Dirac operator on the submanifold twisted with its normal bundle. Completing C. Bär's work for hypersurfaces of the hyperbolic space, we obtain new estimates for hypersurfaces of manifolds admitting twistor-spinors. We finally extend these results to submanifolds of some particular Kählerian manifolds. The existence of Kählerian Killing spinors on such manifolds yields new eigenvalue estimates for CR-submanifolds. As a consequence, we obtain a comparison theorem for the eigenvalues of Dirac operators between Kählerian submanifolds of the complex projective space
Prinzis, Raymond. "Traces résiduelles et asymptotique du spectre d'opérateurs pseudo-différentiels." Lyon 1, 1995. http://www.theses.fr/1995LYO19004.
Full textMaati, Abderrabi. "Réalisabilité locale des structures de Cauchy-Riemann rigides de R3, dans les classes Hölderiennes." Lille 1, 1997. http://www.theses.fr/1997LIL10163.
Full textSeref, Fulya. "Sur les propriétés spectrales des opérateurs générés par un système d’équations différentielles." Nantes, 2014. https://archive.bu.univ-nantes.fr/pollux/show/show?id=c25edc54-7c24-48fe-9d30-8ae7cf789697.
Full textWe consider non-self-adjoint operator Lm(Q) generated in Lm2 [0; 1] by the Sturm-Liouville equation with m _ m matrix potential and the boundary conditions, whose scalar case (m = 1) are strongly regular. First we obtain asymptotic formulas for the eigenvalues and eigenfunctions of Lm(Q) and then find a condition on the potential for which the root functions of the operator form a Riesz basis. We also study the approximation of eigenvalues of Lm(Q) by finite difference method
Lévy, Cyril. "Action spectrale en géométrie non commutative et calcul pseudodifférentiel global." Aix-Marseille 1, 2009. http://www.theses.fr/2009AIX11018.
Full textXia, Runlian. "Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD084/document.
Full textThis thesis is devoted to the study of the analysis on the spaces hpc(Rd,M), the local version of operator-valued Hardy spaces studied by Tao Mei. The operator-valued local Hardy spaces are defined by the truncated Littlewood-Paley g-functions and the truncated Lusin square functions associated to the Poisson kernel. We develop the Calderón-Zygmund theory on hpc(Rd,M), and study the hpc-bmocq duality and the interpolation. Based on these results, we obtain general characterization of hpc(Rd,M) which states that the Poisson kernel can be replaced by any reasonable test function. This characterization plays an important role in the smooth atomic decomposition of h1c(Rd,M). We also investigate the operator-valued inhomogeneous Triebel-Lizorkin spaces Fpα,c(Rd,M). Like in the classical case, these spaces are connected with the operator-valued local Hardy spaces via Bessel potentials. Then by the aid of the Calderón-Zygmund theory, we obtain the Littlewood-Paley type and the Lusin type characterizations of Fpα,c(Rd,M) by more general kernels. These characterizations allow us to study various properties of Fpα,c(Rd,M), in particular, the smooth atomic decomposition. This is an extension and an improvement of the previous atomic decomposition of h1c(Rd,M). As an important application of this smooth atomic decomposition, we show the boundedness of pseudo-differential operators with regular operator-valued symbols on Triebel-Lizorkin spaces Fpα,c(Rd,M), for α ∈ R and 1 ≤ p ≤ ∞. Finally, by virtue of transference, we obtain the Fpα,c-boundedness of pseudo-differential operators on quantum tori
Vogel, Martin. "Propriétés spectrales des opérateurs non-auto-adjoints aléatoires." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS018/document.
Full textIn this thesis we are interested in the spectral properties of random non-self-adjoint operators. Weare going to consider primarily the case of small random perturbations of the following two types of operators: 1. a class of non-self-adjoint h-differential operators Ph, introduced by M. Hager [32], in the semiclassical limit (h→0); 2. large Jordan block matrices as the dimension of the matrix gets large (N→∞). In case 1 we are going to consider the operator Ph subject to small Gaussian random perturbations. We let the perturbation coupling constant δ be e (-1/Ch) ≤ δ ⩽ h(k), for constants C, k > 0 suitably large. Let ∑ be the closure of the range of the principal symbol. Previous results on the same model by M. Hager [32], W. Bordeaux-Montrieux [4] and J. Sjöstrand [67] show that if δ ⪢ e(-1/Ch) there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the pseudospectrumup to a distance ⪢ (-h ln δ h) 2/3 to the boundary of ∑. We will study the one- and two-point intensity measure of the random point process of eigenvalues of the randomly perturbed operator and prove h-asymptotic formulae for the respective Lebesgue densities describing the one- and two-point behavior of the eigenvalues in ∑. Using the density of the one-point intensity measure, we will give a complete description of the average eigenvalue density in ∑ describing as well the behavior of the eigenvalues at the pseudospectral boundary. We will show that there are three distinct regions of different spectral behavior in ∑. The interior of the of the pseudospectrum is solely governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a tunneling effect followed by a region where the density decays rapidly. Using the h-asymptotic formula for density of the two-point intensity measure we will show that two eigenvalues of randomly perturbed operator in the interior of ∑ exhibit close range repulsion and long range decoupling. In case 2 we will consider large Jordan block matrices subject to small Gaussian random perturbations. A result by E.B. Davies and M. Hager [16] shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle. They, however, only state a logarithmic upper bound on the number of eigenvalues in the interior of that circle. We study the expected eigenvalue density of the perturbed Jordan block in the interior of thatcircle and give a precise asymptotic description. Furthermore, we show that the leading contribution of the density is given by the Lebesgue density of the volume form induced by the Poincarémetric on the disc D(0, 1)
Debbi, Latifa. "Equations aux dérivées partielles déterministes et stochastiques avec opérateurs fractionnaires." Nancy 1, 2006. http://www.theses.fr/2006NAN10046.
Full textThis thesis treats application of fractional calculus in stochastic analysis. In the first part, the definition of the the multidimensional Riesz-Feller fractional differential operator is extended to higher order. The operator obtained generalizes several known fractional differential and pseudodifferential operators. High order fractional Fokker-Plank equations are studied in both the probabilistic and the quasiprobabilistic approaches. In particular, the solutions are represented via stable Lévy processes and generalization of Airy's function. In the second part, onedimensional stochastic fractional partial differential equations perturbed by space-time white noise are considered. The existence and the uniqueness of field solutions and of L2solutions are proved under different Lipschtz conditions. Spatial and temporal Hölder exponents of the field solutions are obtained. Further, equivalence between several definitions of L2solutions is proven. In particular, Fourier transform is used to give meaning to some stochastic fractional partial differential equations
Cosson, Pascal. "Contribution à la modélisation du comportement mécanique des solides viscoélastiques par des opérateurs différentiels d'ordre non entier." Nantes, 1995. http://www.theses.fr/1995NANT2114.
Full textTRONG, DANG DUC. "Etude asymptotique de quelques problemes nonlineaires d'evolution issus de la mecanique." Palaiseau, Ecole polytechnique, 1996. http://www.theses.fr/1996EPXX0044.
Full textHeraoua, Mériem. "Cogèbre binomiale et calcul ombral des opérateurs différenciels." Limoges, 2004. http://aurore.unilim.fr/theses/nxfile/default/d3221f63-73ae-407e-b13f-1dbc28f93300/blobholder:0/2004LIMO0011.pdf.
Full textThis thesis is composed of two parts whose subjects are closely dependent. The first part builds an umbral calculus of differential operators. This new calculus extends traditional umbral calculus in two directions : on the one hand, one frees oneself from any restrictive assumption on the characteristic and the base field is replaced by an associative, commutative ring with identity R of unspecified characteristic ; on the second hand, the ring of the polynomials is replaced by a ring of formal differential operators built using a derivation ? of R. When the derivation ? is trivial, the associated ring of the formal differential operators is no other that the algebra R[x], so that our work strictly contains the traditional case of Roman and Rota. As an application of this new calculation, one obtains differential identities and formulas for the reversion of the formal series of Hurwitz. In the second part, one determines, if the base ring is a reduced ring of characteristic a prime number p, all the continuous endomorphisms of the algebra of Hurwitz HR, or, which is equivalent, the endomorphisms of the univariate binomial coalgebra B1. One establishes the link with other methods which allow to build endomorphisms of B1. These methods, already present in the literature, do not enable to determine all the endomorphisms of B1, as concrete examples show
Fares, Ali. "Contribution à l'étude des opérateurs dans des espaces de suites et applications à l'optimisation et aux systèmes différentiels." Phd thesis, Université du Havre, 2009. http://tel.archives-ouvertes.fr/tel-00418533.
Full textFarés, Ali. "Contribution à l'étude des opérateurs dans des espaces de suites et applications à l'optimisation et aux systèmes différentiels." Le Havre, 2009. http://www.theses.fr/2009LEHA0006.
Full textIn this thesis we deal with linear operators between sequence spaces. We are led to studying matrix transformations and solving linear systems of infinitely many equations in infinitely many unknowns. We give some applications to solving differential systems involving special matrices. Then we are interested in solving sequence space equations (SSE), which are identities in which each term is a sum or product of sets of sequences of the form s_a and s_{\phi(x)} where \phi is a map from U^+ into itself and x is the unknown sequence. Then, we study the spectrum of the operator of the first difference \Delta in the new sequence spaces. Finally we consider direct applications of the theory of infinite matrices in optimization problems where we present some results given by B. Of Malafosse and A. Yassine to determine the number of ways having N arcs and connecting any two points in the plane with an infinite Boolean Toeplitz matrix
Bouarroudj, Sofiane. "Les cocycles sur le groupe des difféomorphismes généralisant la dérivée de Scharwz et la géométrie des opérateurs différentiels." Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11002.
Full textAubin, Bérenger. "Opérateurs Fourier-Intégraux sur des espaces de représentations." Clermont-Ferrand 2, 2006. http://tel.archives-ouvertes.fr/docs/00/70/33/66/PDF/2006CLF21688.pdf.
Full textLévesque, Jean-Sébastien. "Discrétisation par éléments finis de l'opérateur de Laplace-Hodge." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29778/29778.pdf.
Full text