To see the other types of publications on this topic, follow the link: Operational and Experimental Modal Analysis.

Dissertations / Theses on the topic 'Operational and Experimental Modal Analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Operational and Experimental Modal Analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Grundström, Ulrika. "Operational Modal Analysis of the Stockholm Waterfront Congress Centre." Thesis, KTH, Bro- och stålbyggnad, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-36361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nilsson, Oscar. "Experimental Procedures for Operational Modal Analysis of a Power Pack on a Drill Rig." Thesis, Linköpings universitet, Mekanik och hållfasthetslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143046.

Full text
Abstract:
All structures have modal properties such as natural frequencies and damping. In engineeringit is often of interest to estimate these modal properties for certain structures, to be used whenmodelling for example fatigue. This is done by computing them from finite element models, by using experimental measurements or both. In the case of doing both, a finite elementmodel is usually established first and adjusted to fit measurements from experiments. Atlas Copco Rock Drills AB is the company where this thesis has been performed and the subject is experimental procedures related to estimating modal properties of the so calledpower pack, which essentially is a modularised engine and hydraulic power source of an Atlas Copco drill rig. Their current method for estimating these properties is a classical procedure which makes use of an impact hammer that an operator strikes the power pack with to induce excitation. Due to concealment of behind other parts the power pack when mounted inside the drill rig, the number of places where the operator is able to strike the power pack in is limited. Another problem with the current procedure is that it can be difficult to strike the power pack with a strong enough impulse to generate reliable results. In this thesis a new experimental procedure for Atlas Copco to use is suggested. It is based on operational modal analysis (OMA), which uses the machinery's excitation from its operational conditions to compute modal estimates. A comparison between different experimental procedures have been done and the suggested procedure is the following: excitation by engine sweep; modal identifcation by the PolyMAX method and mode shape scaling by the harmonic scaling method. An experiment was performed to compare two OMA procedures.The suggested procedure is the one that generated the better results of the two.
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Baiyi. "Evaluate Operational Modal Analysis and Compare the Result to Visualized Mode Shapes." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15599.

Full text
Abstract:
The prototypes vibration test carried out for obtaining reliable information concerning machine’s dynamic properties in development process. Analysis results should be able to correlate with FE model to determine if some underlying assumptions (material properties & boundary conditions) were correct. EMA used for extracting structure modal parameter under laboratory condition. However, EMA can generally not provide all required information concerning machine dynamic property. To simulate vibration in operating, it commonly requires the model based on dynamic properties of the machine under operating. Thus, vibration tests need carried out under operational condition. OMA is a useful tool for extracting information concerning dynamic properties of operating machine. This report concerns vibration test of part of mining machine under operating condition. Modal parameters extracted by two kinds of OMA methods. Results from OMA was compared with corresponding EMA results, illustrates reader the advantages of OMA.
APA, Harvard, Vancouver, ISO, and other styles
4

Sharma, Balaji R. "Feasibility of use of four-post road simulators for automotive modal applications." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1277133229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mejri, Seifeddine. "Identification et modélisation du comportement dynamique des robots d'usinage." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22688/document.

Full text
Abstract:
La robotisation des procédés d’usinage suscite l’intérêt des industriels en raison du grand espace de travail et le faible coût des robots par rapport aux machines-outils conventionnelles et la possibilité d’usiner des pièces de formes complexes. Cependant, la faible rigidité de la structure robotique favorise le déclenchement de phénomènes dynamiques liés à l’usinage sollicitant le robot en bout de l’outil qui dégradent la qualité de surface de la pièce usinée. L’objectif de ces travaux de thèse est de caractériser le comportement dynamique des robots en usinage. Ces travaux ont suivi une démarche en trois étapes : La modélisation d’un premier modèle considéré de référence où le robot est au repos. Ensuite l’identification du comportement dynamique du robot en service. Enfin, l’exploitation des modèles dynamiques du robot en vue de prédire la stabilité de coupe. L’originalité de ces travaux porte sur le développement des méthodes d’identification modale opérationnelles. Elles permettent d’intégrer les conditions réelles d’usinage et d’élaborer des modèles plus précis que le premier modèle de connaissance sans être biaisés par l’effet des harmoniques de rotation de l’outil. Enfin, des préconisations sur le choix de configurations du robot et sur la direction des forces d’excitation sont proposées pour assurer la stabilité de la coupe lors de l’usinage robotisé
Machining robots have major advantages over cartesian machine tools because of their flexibility, their ability to reach inaccessible areas on a complex part, and their important workspace. However, their lack of rigidity and precision is still a limit for precision tasks. The stresses generated by the cutting forces and inertia are important and cause static and dynamic deformations of the structure which result in problems of workpiece surface. The aim of the thesis work is to characterize the dynamic behavior of robots during machining operation. This work followed a three-step approach : Modeling a first model considered as a reference where the robot is at rest. Then the identification of the dynamic behavior in service. Finally, the prediction of the cutting stability using the robot dynamic model. The originality of this work is the development of new operational modal identification methods. They integrate the machining conditions and result into a more accurate model than the first model of reference without being biased by harmonics. Finally, guidlines of robot’s configurations and excitation forces’ direction are proposed to ensure the robotic machining stability
APA, Harvard, Vancouver, ISO, and other styles
6

Blecha, Martin. "Laboratorní demonstrátor pro vibrační diagnostiku." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400643.

Full text
Abstract:
This thesis deals with a vibration diagnostics of objects, structures and machines. The theoretical part is divided into three chapters according to type of the measurement. The first part called Modal Analysis discusses the basis of vibration, methods of measurement, relevant technical equipment and principle of experimental modal analysis. The second and third chapters of the thesis are focused on the diagnosis of defects. Each chapter mentioned above describes diagnosed defects, used methods and procedure for the diagnosis. Another part of the thesis summarizes practical issues and results gained in the laboratory experiments. It begins with discovering parameters of the measured object using technical diagnostics – experimental modal analysis. In the next step the hardware concept design was created, including custom measuring application programmed in LabVIEW. One part of the design is the laboratory model which includes a structure for free mounting and a possibility of excitation by an electrodynamic exciter. The application is also modified to enable measurements with shaker excitation. Finally, applications cooperating with professional software ModalVIEW and BK Connect were developed in order to simplify the operation and increase the comfort.
APA, Harvard, Vancouver, ISO, and other styles
7

Maamar, Asia. "Identification modale opérationnelle des robots d'usinage en service." Thesis, Université Clermont Auvergne‎ (2017-2020), 2019. http://www.theses.fr/2019CLFAC013/document.

Full text
Abstract:
L’identification des paramètres modaux des machines-outils et des robots d’usinage, en service, constitue un levier d’optimisation des performances de coupe. En effet, la connaissance en continue du comportement dynamique d’une machine permet une prédiction fine des conditions de stabilité, bases d’un pilotage intelligent des paramètres du procédé. Cependant, la présence de fortes excitations harmoniques, dues à la rotation de la broche et de l’outil coupant, rend les techniques classiques d’Analyse Modale Opérationnelle (AMO) inapplicables. Le premier objectif de cette thèse consiste à déterminer une méthode d’AMO adéquate pour une application en présence des harmoniques. Une étude comparative des méthodes existantes est conduite, à savoir : la méthode de décomposition dans le domaine fréquentiel (EFDD), la méthode d’identification dans le sous-espace stochastique (SSI), la méthode PolyMAX et la méthode basée sur la fonction de transmissibilité (TFB). La méthode TFB est choisie afin de réaliser une identification modale opérationnelle des robots d’usinage. Cette technique est tout d’abord investiguée sur une machine-outil cartésienne. Cette étape est justifiée par le fait qu’une machine-outil est une structure plus rigide qui présente moins de variations des propriétés dynamiques par rapport à un robot d’usinage. Les résultats montrent la pertinence de la méthode TFB pour identifier les paramètres modaux de la machine-outil en usinage, même en présence des composantes harmoniques fortement dominantes. Ensuite, l’identification modale opérationnelle du robot d’usinage ABB IRB 6660, qui présente une structure moins rigide par rapport à une machine-outil, est menée sur une trajectoire d’usinage. Les résultats obtenus permettent d’établir une base modale du robot montrant l’évolution de son comportement modal en service. L’originalité des travaux présentés réside dans le développement d’une procédure robuste d’identification modale opérationnelle qui permet de suivre l’évolution du comportement modal du robot en cours d’usinage dans son espace de travail
The identification of the modal parameters of machining robots in service has a significant adverse influence on machining stability, which will, therefore, decrease the quality of the workpiece and reduce the tool life. However, in presence of strong harmonic excitation, the application of Operational Modal Analysis (OMA) is not straightforward. Firstly, the issue of choosing the most appropiate OMA method for an application in presence of harmonic components, is handled. For a comparison purpose, the modified Enhanced Frequency Domain Decomposition (EFDD) method, the Stochastic Subspace Identification (SSI) method, the PolyMAX method and the Transmissibility Function Based (TFB) method are investigated. The obtained results lead to the adoption of the Transmissibility Function Based (TFB) method for an OMA of machining robots. For an accurate modal identification procedure, the OMA of a machine tool is, initially, conducted. It is a preparation step in order to verify the performance of the chosen method under machining conditions as well as a machine tool is a rigid structure, thus, it has less variation in its dynamic behavior compared to a machining robot. Results demonstrate the efficiency of the TFB method to identify the machine tool modal parameters even in the presence of preponderant harmonic components. Finally, the OMA of the machining robot ABB IRB 6660, which has a flexible structure compared to a machine tool, is carried out for a machining trajectory. The obtained results allow the identification of a modal basis of the machining robot illustrating the evolution of its modal behavior, in service. The main novelty of this thesis lies in the development of a robust procedure for an operational modal identification of machining robots, in service, which makes it possible to continuously follow the variations in the modal parameters of machining robots
APA, Harvard, Vancouver, ISO, and other styles
8

Nicoletti, Vanni. "Experimental Evaluation of Infill Masonry Walls Stiffness for the Modelling of Non-Structural Components in R.C. Frame Buildings." Doctoral thesis, Università Politecnica delle Marche, 2018. http://hdl.handle.net/11566/253124.

Full text
Abstract:
Solitamente le tamponature vengono trascurate nella modellazione delle strutture a telaio in cemento armato e solamente il loro contributo in termini di massa viene preso in considerazione, assumendo che la resistenza e la rigidezza delle stesse non influiscano sulla risposta strutturale. Questa pratica è supportata dal fatto che (i) generalmente allo stato limite ultimo le tamponature si considerano completamente danneggiate e, quindi, il loro contributo in termini di rigidezza è trascurabile, mentre (ii) allo stato limite di danno il valore dello spostamento di interpiano, ottenuto trascurando il contributo di rigidezza delle tamponature, può essere considerato a favore di sicurezza. Tuttavia, per edifici di importanza strategica, quali scuole, ospedali, caserme delle forze dell’ordine e dei Vigili del Fuoco, è cruciale preservare le tamponature da qualsiasi danno, anche per terremoti di entità severa, in modo da garantire il normale utilizzo dell’edificio durante la gestione dell’emergenza. Inoltre, questi edifici a volte sono sismicamente protetti con sistemi e dispositivi (smorzatori, isolatori, ecc…) il cui progetto richiede che sia tenuto in considerazione il reale comportamento dinamico della struttura (in termini di frequenze e/o spostamenti e/o velocità). Per questo diventa cruciale modellare accuratamente l’intera struttura, includendo le tamponature, e validare questo modello così ottenuto sulla base dell’evidenza sperimentale. La tipologia delle pareti e le loro procedure costruttive sono fonte di incertezze nella modellazione delle interazioni tra la struttura e gli elementi non strutturali. Quindi, una valutazione sperimentale delle proprietà di rigidezza dei pannelli di tamponatura potrebbe essere molto utile per valutare, all’interno del modello strutturale adottato per il progetto, il contributo in termini di rigidezza fornito alla struttura in c.a. da questi elementi non strutturali. In questa tesi viene presentata una procedura per realizzare modelli globali agli elementi finiti accurati di edifici a telaio in c.a. tamponati, basandosi su risultati ottenuti da analisi modali sperimentali e operative sviluppate rispettivamente su elementi non strutturali e sull’intero edificio. In particolare, sono stati eseguiti test di impatto con martello strumentato su pareti omogenee per identificarne i parametri modali (frequenze e forme modali) e per stimarne le proprietà meccaniche. Dopo di che, le tamponature sono state inserite nel modello strutturale globale agli elementi finiti, i cui parametri modali vengono confrontati con quelli derivanti da analisi modali operative basate su misurazioni di vibrazioni ambientali per valutarne l’accuratezza. In seguito, è stata condotta una campagna sperimentale su tre provini di tamponatura costruiti all’interno del Laboratorio di Prove di Materiali e Strutture della Facoltà di Ingegneria dell’Università Politecnica delle Marche. Questi provini sono stati realizzati con l’intento di riprodurre le caratteristiche di alcune delle tamponature testate in sito e su di essi vengono svolte prove sia dinamiche che statiche. Innanzi tutto, sono stati effettuati test ad impatto con martello strumentato per investigarne il comportamento dinamico fuori dal piano; successivamente sono state svolte prove di spinta laterale per investigare il comportamento statico nel piano dei pannelli soggetti a bassi livelli di forze orizzontali. I risultati sperimentali ottenuti sono stati utilizzati per calibrare modelli agli elementi finiti dei provini al fine di valutare l’esattezza delle proprietà meccaniche delle tamponature stimate in precedenza e secondo diversi approcci.
Infill walls are commonly disregarded in the modelling of reinforced concrete (r.c.) frame structures and only their contribution in terms of mass is taken into account assuming that resistance and stiffness do not affect the structural response. This practice is supported by the fact that (i) at ultimate limit state infill walls are usually considered to be completely damaged, so that their contribution is negligible in terms of stiffness, while (ii) at the damage limitation limit state the value of the interstorey drift, obtained by neglecting the infill walls stiffness contribution, is commonly considered to be conservative. However, for strategic buildings, such as schools, hospitals, police and fire stations, it is crucial to preserve the infill walls from any damage, even for severe earthquake, in order to guarantee the building occupancy during the emergency management. Furthermore, these buildings are sometimes seismically protected with system and devices (dampers, isolators, etc…) whose design requires the real dynamic behaviour of the structure (in terms of frequencies and/or displacements and/or velocities) to be considered. To this purpose, it becomes crucial to accurately model the entire structure, including infill walls, and to validate this model on the basis of experimental evidences. The wall typology and the construction procedures are source of uncertainties in modelling interactions between structural and non-structural components. Thus, an experimental evaluation of the stiffness properties of the wall infill panel could be very useful to assess the stiffening contribution added by the infill masonry walls to the concrete frame in the structural model adopted for the design. In this thesis is presented a procedure for developing accurate global finite element (f.e.) models of infilled r.c. frame buildings based on results of experimental an operational modal analysis of non-structural components and of the whole buildings. In particular, impact load tests with an instrumented hammer are performed on homogeneous wall panels to identify the modal parameters (frequency and mode shapes) and to estimate the mechanical properties of the masonry walls. Afterwards, the infill walls are included in the f.e. structural model, whose modal parameters are compared with those derived with operational modal analysis based on ambient vibration measurements. Furthermore, an experimental campaign on three specimens of infill masonry walls built in the Laboratory of Materials and Structures of the Faculty of Engineering at the Università Politecnica delle Marche is conducted. These specimens are built with the target to reproduce the features of some of the in situ investigated infill walls and are tested both dynamically and statically. First of all, impact load tests with an instrumented hammer are performed to investigate the out of plane dynamic behaviour of these walls; then, lateral load tests are carried out to investigate the in plane static behaviour of the panel under low level of lateral forces. The experimental results obtained are used to calibrate f.e. models of the specimens with the aim to evaluate the reliability of the masonry mechanical properties estimated through different approaches.
APA, Harvard, Vancouver, ISO, and other styles
9

Martell, Raymond F. "Investigation of Operational Modal Analysis Damping Estimates." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1291147391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SPERANZA, ELISA. "The Importance of Calibration and Modelling Non-Structural Elements in the Evaluation of Seismic Vulnerability Index of Strategic Buildings Before and After Retrofitting." Doctoral thesis, Università Politecnica delle Marche, 2020. http://hdl.handle.net/11566/274486.

Full text
Abstract:
Questa tesi si propone di indagare sulla modellazione degli elementi non strutturali relativi alle pareti di tamponamento interne ed esterne, cercando di quantificare la differenza indotta dalle diverse strategie di modellazione sul valore dell'indice di vulnerabilità sismica con riferimento a edifici strategici. A tale scopo vengono analizzati due casi studio: il liceo Benedetto Croce di Avezzano e il liceo Varano di Camerino, entrambi edifici a telaio in c.a. oggetto di adeguamento sismico tramite torri dissipative esterne dotate di dissipatori viscosi alla base. Per entrambi i casi di studio, sono stati implementati tre modelli sia prima che dopo l'adeguamento, caratterizzati da un livello crescente di dettaglio: modello A con solo le componenti strutturali, modello B con tamponature esterne modellate come puntoni equivalenti secondo letteratura e modello C con pareti di tamponamento esterne ed interne calibrate attraverso i risultati dei test dinamici in situ. Per quanto riguarda la fase di pre-retrofitting, il calcolo dell'indice di vulnerabilità sismica è stato effettuato mediante analisi statica non lineare (pushover). Per quanto riguarda la fase post-retrofitting, il calcolo dell'indice di vulnerabilità sismica è stato effettuato mediante analisi dinamica non lineare (I.D.A). I risultati sono mostrati in termini di confronto tra le curve di capacità ottenute con analisi push over (pre-retrofitting) e con analisi dinamiche incrementali, per i diversi modelli implementati. Inoltre, i risultati sono mostrati anche in termini di livello di intensità dell'azione sismica necessaria per raggiungere uno stato limite predeterminato per il modello A, il modello B e il modello C.
This thesis aims to investigate on the modelling of the non-structural elements related to internal and external infill walls, trying to quantify the difference induced by different modelling strategies on the value of the seismic vulnerability index with reference to strategic buildings. On this purpose, two case studies are analysed: the Benedetto Croce high school in Avezzano and the Varano high school in Camerino, r.c. frame buildings retrofitted with external steel towers equipped with viscous dampers at the basis. For both case studies, three models are implemented, before and after the retrofitting, which are characterized by an increasing level of detail: model A with only structural components, model B with external infill panels modelled as equivalent connecting struts according to literature, and model C with external and internal infill walls calibrated through the results of in-situ dynamic tests. As regards the pre-retrofitting phase, the calculation of the seismic vulnerability index was carried out by means of nonlinear static analysis (pushover). As for the post-retrofitting phase, the calculation of the seismic vulnerability index was carried out by means of non-linear dynamic analysis (I.D.A). The results are shown in terms of comparison between the capacity curves obtained with push over analyses (pre-retrofitting) and with incremental dynamic analyses for the different model. In addition, the outcomes are shown also in terms of intensity level of the seismic action necessary to reach a predetermined limit state for model A, model B and model C.
APA, Harvard, Vancouver, ISO, and other styles
11

Swaminathan, Balakumar. "Operational Modal Analysis Studies on an Automotive Structure." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1277155789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Buke, Fatih. "An Investigation On The Application Of Operational Modal Analysis." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607529/index.pdf.

Full text
Abstract:
Modal parameter identification of a structure is done through modal testing and modal analysis using various system identification methods. These methods employ linear input-output relationships to extract the modes of a structure. There are cases where laboratory testing of a structure is not possible or information about the structure under operating conditions is seeked. A set of techniques called Operational Modal Analysis have been developed for modal parameter identification in operating conditions of a structure. These techniques use only response measurements to extract the modes. The aim of this study is to investigate the applicability and use of three selected time-domain methods adapted to operational modal analysis. The algorithms are programmed in Matlab©
environment, and various cases are evaluated using computer simulations for each method. Two of the selected methods are evaluated on a laboratory scale test setup.
APA, Harvard, Vancouver, ISO, and other styles
13

Capraro, Ilaria. "Operational Modal Analysis: the CEME Skywalk at UBC, Vancouver." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4240/.

Full text
Abstract:
Slender and lighter footbridges are becoming more and more popular to meet the transportation demand and the aesthetical requirements of the modern society. The widespread presence of such particular structures has become possible thanks to the availability of new, lightweight and still capable of carrying heavy loads material . Therefore, these kind of structure, are particularly sensitive to vibration serviceability problems, especially induced by human activities. As a consequence, it has been imperative to study the dynamic behaviour of such slender pedestrian bridges in order to define their modal characteristics. As an alternative to a Finite Element Analysis to find natural frequencies, damping and mode shape, a so-called Operational Modal Analysis is a valid tool to obtain these parameters through an ambient vibration test. This work provides a useful insight into the Operational Modal Analysis technique and It reports the investigation of the CEME Skywalk, a pedestrian bridge located at the University of British Columbia, in Vancouver, Canada. Furthermore, human-induced vibration tests have been performed and the dynamic characteristics derived with these tests have been compared with the ones from the ambient vibration tests. The effect of the dynamic properties of the two buildings supporting the CEME Skywalk on the dynamic behaviour of the bridge has been also investigated.
APA, Harvard, Vancouver, ISO, and other styles
14

Hanson, David Mechanical &amp Manufacturing Engineering Faculty of Engineering UNSW. "Operational modal analysis and model updating with a cyclostationary input." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2006. http://handle.unsw.edu.au/1959.4/31199.

Full text
Abstract:
This thesis addresses the problem of identifying the modal properties of a system based only on measurements of the system responses. This situation is frequently encountered in structural dynamics and is particularly relevant for systems where the in-service excitation is not artificially reproducible. The inherent non-linearities in these systems mean that the modal properties estimated using traditional input/output techniques will be different to those exhibited in operation. A common example from the literature is an aircraft in flight where the modal properties are heavily influenced by the operating point, i.e. the combination of load, speed, altitude etc., at which the aircraft is travelling. The process of identifying the modal properties of systems in-service is called Operational Modal Analysis (OMA). Not knowing the input complicates the analysis. Most of the techniques in the literature overcome the lack of knowledge about the unmeasured excitations by assuming they are both spatially and frequentially white, i.e. of equal magnitude and with a flat autospectrum. This thesis presents a new technique for OMA which relaxes these constraints, requiring only that the system is excited by a so called cyclostationary input with a unique cyclic frequency, and that the log spectrum of the second order component of this input is frequentially smooth, as will be explained. Such systems include vehicles with internal combustion engines as the vibration from such an engine exhibits cyclostationary statistics. In this thesis, the technique is applied to a laboratory test rig and a passenger train both using an artificial input, and to a race car using the engine as the excitation. By combining cyclostationary signal processing and the concept of the cepstrum, the technique identifies the resonances and anti-resonances in the transfer functions between each response and the cyclostationary source. These resonances and antiresonances can be used to regenerate Frequency Response Functions (FRFs) and it is shown how the unknown scaling of the system can be recovered by employing finite element model updating in conjunction with this regeneration. In addition, the contribution made to model updating by the anti-resonances is also investigated. Finally, the potential of OMA to inform a model updating process is demonstrated using an experimental case study on a diesel railcar.
APA, Harvard, Vancouver, ISO, and other styles
15

CHAUHAN, SHASHANK. "Parameter Estimation and Signal Processing Techniques for Operational Modal Analysis." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204829186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zhou, Shi Huang. "Operational modal decomposition approach for MDOF structures using multi-channel response measurements." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

McDonald, Steven. "Operational modal analysis, model updating, and seismic analysis of a cable-stayed bridge." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/56633.

Full text
Abstract:
The Port Mann Bridge is currently one of the longest cable-stayed bridges in North America and the second widest bridge in the world. It is a cable-stayed bridge consisting of 288 cables, two approach spans made of concrete box girders and precast deck panels, and a main span consisting of steel girders and cross beams with precast deck panels. This work sets out to accomplish three main goals: study the dynamic behaviour of the Port Mann Bridge, calibrate the finite element model, and study the effects of model updating using a seismic analysis. The dynamic behaviour of the Port Mann Bridge’s main span is studied using experimental data from field ambient vibration tests and from a structural health monitoring network. A finite element model is created by importing a version of the structural designer’s model and editing it based on design drawings. In order to assess what parameters would be feasible to calibrate, a sensitivity analysis is carried out using various material properties and boundary conditions. The model is then updated to match the experimental analysis results by varying multiple parameters. Finally, the calibrated model is compared to the original model by completing a linear time history analysis. A suite of ground motions were selected and scaled to match specific points on the response spectrum corresponding to the first few periods of the structure. Multiple critical locations are monitored in the time history analysis, and data from these locations are compared before and after calibration to examine the effect of model updating. The study concludes that model updating has a large effect on the predicted seismic behaviour of the bridge, which proves the importance of calibrating finite element models and maintaining physically meaningful parameters. It also shows that having a structural health monitoring program is very important for current and future research endeavours.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
18

Kaya, Huseyin. "Experimental Modal Analysis Of A Steel Grid Frame." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12604710/index.pdf.

Full text
Abstract:
In this study, experimental modal analysis was studied. Experimental modal analysis includes modal testing, modal parameter estimation and calibration. For this purpose a 4 span skewed steel frame was constructed in Structural Mechanics Laboratory of Civil Engineering Department of METU. The model was transported to Vibration and Acoustic Laboratory of Mechanical Engineering Department of METU. The tests were conducted by cooperation with Vibration and Acoustics Laboratory. Due to lack of experimental modal analysis software in Structural Mechanics Laboratory, modal parameter estimation and finite element updating softwares were written in Matlab platform. The written softwares were executed on the data obtained from modal testing. 15 reasonable modes are extracted from the FRFs that are obtained from modal testing. 59.23 percent consistency is found for the nominal modal comparison. At the end of calibration process 76.14 percent consistency is achieved between the experimental results and analytical results.
APA, Harvard, Vancouver, ISO, and other styles
19

Uwajambo, Pacifique, and Nisha Thakur. "Numerical and Experimental Modal Analysis of CNC Machine." Thesis, Blekinge Tekniska Högskola, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21652.

Full text
Abstract:
Numerical and Experimental Modal Analysis of RAW CNC milling machine was performed in this project. The RAW CNC machine's lightweight, easy assembling, and operation features make it a good choice for hobbyists and professionals. As the machine is subjected to vibration during the milling process, the work is intended to study the machine's dynamic behaviour through Finite Element Method (FEM) in the first stage, followed by validating it with Experimental Modal Analysis (EMA). The simulation and experimentation are focused on X and Y-axis. In the first stage, the inventor model of the machine was created and then simulated in COMSOL Multi-physics and Nastran by extracting mode shapes and frequencies. In the second stage, experimentation was carried out in the laboratory for both axes separately. Through the EMA, the four resonance frequencies and their mode shape were determined and compared with the simulated FEM modal. The result showed the first lowest frequency for the x-axis in experimental modal had a bit more deviations than finite element simulation, which raised the need for estimation of possible causes of error.  However, the deviation range between experimental and FEM simulation is below 16.68%, which was acceptable for all other modes. From the analysis, the Y-axis beams were the weakest part of the machine. Finally, methods for improving the model was recommended, which could be applied in future models to increase the stiffness of the machine.
APA, Harvard, Vancouver, ISO, and other styles
20

Fu, Gen. "Full Field Reconstruction Enhanced With Operational Modal Analysis and Compressed Sensing for General Dynamic Loading." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103741.

Full text
Abstract:
In most applications, the structure components have to be tested under different loading conditions before being placed in operation. A reliable and low cost measuring technique is desirable. However, most currently employed measuring approaches can only provide the structural response at several discrete locations. The accuracy of the measurements varies with the location and orientation of the sensors. Practically, it is not possible to place sensors at all the critical locations for different excitations. Therefore, an approach that derives the full field response using a limited set of measured data is desirable. In contrast to experimental full field measurement techniques, the expansion approach involves analytically expanding the limited measurements to all the degrees of freedom of the structure. Among all the analytical methods, the modal expansion method is computationally efficient and thus more suitable for real time expansion of measured data. In this method, the full-field response is approximated by the linear combination of mode shapes. In previous studies, the modal expansion method is limited by errors from mode aliasing, inaccuracy of the calculated mode shapes and the noise in measurements. In order to overcome these limitations, the modal expansion method is enhanced by mode selection and error compensation in this study. First, the key parameters used in modal expansion method were analyzed using a cantilever beam model and a method for optimal placement of sensors was developed. A mode selection method and error compensation method based on operation modal analysis and adaptive compressed sensing techniques were then developed to reduce the effects of mode aliasing, mode shape inaccuracy and measurement noise. The developed approach was further tested virtually using a numerical model of rotor 67. The numerical model was created using a two-way coupled fluid structure interaction technique. By developing these methods, the enhanced modal expansion approach can provide full field response for structures under different load conditions. Compared to the traditional modal expansion method, it can expand the data with high noise and under general dynamic loading.
Doctor of Philosophy
Accurate knowledge of the strain and stress at critical locations of a given structure is crucial when assessing its integrity. However, currently employed measuring approaches can only provide the structural response at several discrete locations. Practically, it is not possible to place sensors at all the critical locations for different excitations. Therefore, an approach that derives the full field response using a limited set of measured data is desirable. Compared to experimental full field measurement techniques, the expansion approach is focused on analytically expanding the limited measurements to all the degrees of freedom of the structure. Among all the analytical methods, the modal expansion method is computationally efficient and thus more suitable for real-time expansion of measured data. The current modal expansion method is limited by errors from mode aliasing, inaccuracy of the mode shapes, and the noise in measurements. Therefore, an enhanced method is proposed to overcome these shortcomings of the modal expansion. The following objectives are accomplished in this study: 1) Develop a method for optimal placement of sensors for modal expansion; 2) Eliminate the mode aliasing effects by determining the significance of participated modes using operational modal analysis techniques; 3) Compensate for the noise in measurements and computational model by implementing the compressed sensing approach. After accomplishing these goals, the developed approach is able to provide full field response for structures under different load conditions. Compared to the traditional modal expansion method, it can expand the data under dynamic loading; it also shows promise in reducing the effects of noise and errors. The developed approach is numerically tested using fluid-structure interaction model of rotor 67 fan blade.
APA, Harvard, Vancouver, ISO, and other styles
21

Sarlo, Rodrigo. "High-Resolution, High-Frequency Modal Analysis for Instrumented Buildings." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/84477.

Full text
Abstract:
Civil infrastructure failure is hard to predict, both in terms of occurrence and impact. This is due to combination of many factors, including highly variable environmental and operational conditions, complex construction and materials, and the sheer size of these structures. Often, the mitigation strategy is visual inspection and regular maintenance, which can be time-consuming and may not address root causes of failure. One potential solution to anticipating infrastructure failure and mitigating its consequences is the use of distributed sensors to monitor the physical state of a structure, an area of research known commonly as structural health monitoring, or SHM. This approach can be applied in a variety of contexts: safety during and after natural disasters, evaluation of building construction quality and life-cycle assessment for performance based design frameworks. In one way or another, SHM methods always require a ``baseline,'' a set of physical features which describes the behavior of a healthy structure. Often, the baseline is defined in terms of modal parameters: natural frequencies, damping ratios, and mode shapes. Although changes in modal parameters are indicative of structural damage, they are also indicative of a slew of non-damage factors, such as signal-to-noise ratio, environmental conditions, and the characteristics of forces exciting the structure. In many cases, the degree of observed modal parameter changes due to non-damage factors can be much greater than that due to damage itself. This is especially true of low-frequency modal parameters. For example, the fundamental frequency of a building is more sensitive to global influences like temperature than local structural changes like a cracked column. It has been proposed that extracting modal parameters at higher frequencies may be the key to improving the damage-sensitivity of SHM methods. However, for now, modal analysis of civil structures has been limited to low frequency ambient excitation and sparse sensor networks, due to practical limitations. Two key components for high-frequency modal analysis have yet to be studied: 1) Sufficient excitation at high frequencies and 2) high-resolution (high sensor density) measurements. The unifying goal of this work is to expand modal analysis in these two areas by applying novel instrumentation and experimental methods to two full-scale buildings, Goodwin Hall and Ernest Cockrell Jr. Hall. This enables realistic, practical insights into the limitations and benefits of the high-frequency SHM approach. Throughout, analyses are supported through the novel integration of uncertainty quantification techniques which so far has been under-utilized in the field. This work is divided into three experimental areas, with approaches centering on the identification of modal parameters. The first area is the application of high spacial resolution sensor networks in combination to ambient vibration testing. The second is the implementation of a robust automation and monitoring strategy for complex dynamic structures. The third is the testing of a novel method for performing experimental modal analysis on buildings emph{in situ}. The combination of results from these experiments emphasizes key challenges in establishing reliable high-frequency, high-resolution modal parameter ``baselines'' for structural health monitoring (SHM) of civil infrastructure. The first study presented in this work involved the identification of modal parameters from a five-story building, Goodwin Hall, using operational modal analysis (OMA) on ambient vibration data. The analysis began with a high spacial density network of 98 accelerometers, later expanding this number to 117. A second extensional study then used this data as reference to implement a novel automation method, enabling the identification of long-term patterns in the building's response behavior. Three dominant sources of ambient excitation were identified for Goodwin Hall: wind, human-induced loading, and consistent low-level vibrations from machinery, etc. It was observed that the amplitude of excitation, regardless of source, had significant effects on the estimated natural frequencies and damping ratios. Namely, increased excitation translated to lower natural frequencies and higher damping. In addition, the sources had different characteristics in terms of excitation direction and bandwidth, which contributed to significantly different results depending on the ambient excitation employed. This has significant implications for ambient-based methods that assume that all ambient vibrations are broadband random noise. The third and final study demonstrated the viability of emph{in situ} seismic testing for controlled excitation of full-scale civil structures, also known as experimental modal analysis (EMA). The study was performed by exciting Ernest Cockrell Jr. Hall in Austin, Texas with both vertical and lateral ground waves from seismic shaker truck, T-Rex. The EMA results were compared to a standard operational modal analysis (OMA) procedure which relies on passive ambient vibrations. The study focused on a frequency bandwidth from 0 to 11 Hz, which was deemed high frequency for such a massive structure. In cases were coherence was good, the confidence comparable or better than OMA, with the added advantage that the EMA tests took only a fraction of the time. The ability to control excitation direction in EMA enabled the identification of new structural information that was not observed OMA. It is proposed that the combination of high spacial resolution instrumentation and emph{in situ} excitation have the potential to achieve reliable high-frequency characterization, which are not only more sensitive to local damage but also, in some cases, less sensitive to variations in the excitation conditions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
22

Owolabi, Gbadebo Moses. "Crack identification procedures in beams using experimental modal analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0034/MQ62411.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Potgieter, Brendon Ryan. "Experimental modal analysis and model validation of antenna structures." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5423.

Full text
Abstract:
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Numerical design optimisation is a powerful tool that can be used by engi- neers during any stage of the design process. Structural design optimisation is a specialised usage of numerical design optimisation that has been adapted to cater speci cally for structural design problems. A speci c application of structural design optimisation that will be discussed in the following report is experimental data matching. Data obtained from tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure, focusing on the mode shapes and modal frequencies. The structure used was a scaled, simpli ed model of the Karoo Array Telescope-7 (KAT-7) antenna structure. Experimental data matching is traditionally a di cult and time-consuming task. This report illustrates how optimisation can assist an engineer in the process of correlating a nite element model with vibration test data.
AFRIKAANSE OPSOMMING: Numeriese ontwerp-optimisering is 'n kragtige ingenieurshulpmiddel wat ty- dens enige stadium in die ontwerpsproses ingespan kan word. Strukturele ontwerp-optimisering is 'n gespesialiseerde gebruik van numeriese ontwerp- optimisering wat aangepas is om spesi ek van diens te wees by die oplos van strukturele ontwerpsprobleme. 'n Spesi eke toepassing van strukturele ontwerp-optimisering wat in hierdie verslag bespreek sal word, is eksperi- mentele datakorrelasie. Data afkomstig van toetse op 'n siese struktuur sal gekorreleer word met data afkomstig van 'n numeriese model van die selfde struktuur. Die data van belang is die dinamiese eienskappe van 'n anten- nastruktuur, spesi ek die modusvorme en modale frekwensies. Die betrokke struktuur wat gebruik is, is 'n vereenvoudigde skaalmodel van die Karoo Array Telescope-7 (KAT-7) antennastruktuur. Eksperimentele datakorrelasie is, tradisioneel gesproke, 'n moeilike en tydro- wende taak. Hierdie verslag sal illustreer op watter wyse optimisering 'n inge- nieur van hulp kan wees in die proses om 'n eindige elementmodel met vibrasietoetsdata te korreleer.
APA, Harvard, Vancouver, ISO, and other styles
24

Petersson, Viktor, and Andreas Svanberg. "Operational modal analysis and finite element modeling of a low-rise timber building." Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105208.

Full text
Abstract:
Timber is a building material that is becoming more common and of interest for use in high-rise buildings. One of the reasons is that timber requires less energy input for the manufacturing process of the material compared to non-wood based materials. When designing high- rise timber buildings it is of great significance to understand the dynamic behavior of the structure. One method to obtain the dynamic properties is to use Operational Modal Analysis, which is based on the structural response from operational use. Finite element (FE) analysis is a tool which can be used for dynamic analysis for large structures. In this study an Operation Modal Analysis (OMA) was conducted on a four-story timber building in Växjö. A finite element model was created of the same building using commercial FE packages. Based on the mode shapes and natural frequencies obtained from the OMA, the FE model was fine-tuned. The purpose of this thesis is to gain knowledge of which parameters that might have a significant role in finite element modelling for a structural dynamic analysis. The aim is to develop a finite element model that accurately simulates the dynamic behavior of the tested building. It was shown from the result that is possible with an enough detailed FE model to capture the dynamic behaviour of a structure. The parameters that had the largest effect on the result can be pointed to the mass and the stiffness of the structure.
Trä är ett byggnadsmaterial som börjar bli allt mer vanligt och är av intresse att använda som stommaterial för höga byggnader. En anledning till detta är att det krävs mindre energi i tillverkningsfasen för trä jämfört med stål och betong. Vid dimensionering av höga träbyggnader är det essentiellt att förstå byggnadens dynamiska egenskaper. För att ta fram en byggnads dynamiska egenskaper kan en metod som benämns Operational Modal Analysis (OMA) tillämpas vilken baseras på byggnadens rörelser vid daglig användning. Finita element (FE) metoden är ett verktyg som kan användas vid dynamisk analys för större byggnader. I detta arbete genomfördes en OMA för ett fyravåningshus med trästomme beläget i Växjö. Genom användning av kommersiella FE-mjukvaror togs en finita element modell av samma byggnad fram. Baserat på de egenfrekvenser och egenmoder erhållna från OMA, uppdaterades FE-modellen därefter. Syftet med detta arbete är att erhålla kunskap kring vilka parametrar som har betydelse vid FE-modellering med hänsyn till dynamisk analys. Syftet är även att validera den prototyp av datainsamlingsenhet som använts vid fältmätningen. Målet med arbetet är att ta fram en FE-modell som på ett korrekt sätt beskriver den testade byggnadens dynamiska beteende. Resultatet av arbetet påvisar att med en tillräckligt detaljerad FE-modell är det möjligt att erhålla en byggnads dynamiska egenskaper. De parametrar som har störst inverkan på resultatet är byggnadens styvhet och inkluderad massa.
APA, Harvard, Vancouver, ISO, and other styles
25

Santos, Fabio Luis Marques dos. "Strain-based experimental modal analysis: advances in theory and practice." Instituto Tecnológico de Aeronáutica, 2015. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3386.

Full text
Abstract:
The most common and established way of performing experimental modal analysis is to use acceleration based transducers that lead to the calculation of the displacement mode shapes. However, the use of strain measurements for use in experimental modal analysis has gained a lot of popularity in the last couple of years. Not only there are applications where the use of strain measurements makes for a more attractive and interesting option, such as structural health monitoring methods, but there are also applications where sensor size and placement might be critical and therefore strain sensors are the most eligible candidate. This thesis has as the main focus of research the use of strain sensors for experimental modal analysis. In this sense, experimental methodologies and improvements on the current ways of carrying out strain modal analysis are presented, paying particular attention to the relationship between strain and displacement modes. This study of the strain displacement relationship led to the development of a scaling methodology for strain modes and is used to demonstrate the presence of reciprocity under certain conditions. Overall, there are many experimental cases presented in this work, with the main objective of not only validating the theoretical aspects presented in the thesis, but also to provide guidance through the many steps and difficulties associated with experimental strain modal analysis.
APA, Harvard, Vancouver, ISO, and other styles
26

Lejerskog, Erik. "Theoretical and Experimental Analysis of Operational Wave Energy Converters." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-274635.

Full text
Abstract:
This thesis studies wave energy converters developed at Uppsala University. The wave energy converters are of point absorbing type with direct driven linear generators. The aim has been to study generator design with closed stator slots as well as offshore experimental studies. By closing the stator slots, the harmonic content in the magnetic flux density is reduced and as a result the cogging forces in the generator are reduced as well. By reducing these forces, the noise and vibrations from the generator can be lowered. The studies have shown a significant reduction in the cogging forces in the generator. Moreover, by closing the slots, the magnetic flux finds a short-cut through the closed slots and will lower the magnetic flux linking the windings. The experimental studies have focused on the motion of the translator. The weight of the translator has a significant impact on the power absorption, especially in the downward motion. Two different experiments have been studied with two different translator weights. The results show that with a higher translator weight the power absorption is more evenly produced between the upward and downward motion as was expected from the simulation models. Furthermore, studies on the influence of the changing active area have been conducted which show some benefits with a changing active area during the downward motion. The experimental results also indicate snatch-loads for the wave energy converter with a lower translator weight. Within this thesis results from a comparative study between two WECs with almost identical properties have been presented. The generators electrical properties and the buoy volumes are the same, but with different buoy heights and diameters. Moreover, experimental studies including the conversion from AC to DC have been achieved. The work in this thesis is part of a larger wave power project at Uppsala University. The project studies the whole process from the energy absorption from the waves to the connection to the electrical grid. The project has a test-site at the west coast of Sweden near the town of Lysekil, where wave energy systems have been studied since 2004.
APA, Harvard, Vancouver, ISO, and other styles
27

Ciloglu, Suleyman Korhan Aktan Ahmet Emin. "The impact of uncertainty in operational modal analysis for structural identification of constructed systems /." Philadelphia, Pa. : Drexel University, 2006. http://hdl.handle.net/1860/1117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Alcazar, Pastrana Omar. "Operational modal analysis, model updating and response prediction bridge under the 2014 Napa Earthquake." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59197.

Full text
Abstract:
Bridges constitute a critical and important part of the infrastructure of many cities’ transportation network. They are expensive to build and maintain, and the consequences of a sudden failure are very severe. Therefore, bridges are expected to have a high degree of reliability, which means that they have to perform above a life safety criterion under earthquake excitations. In a continuous effort to improve design guidelines, it is imperative to understand the behavior of existing bridges that are subjected to severe shaking. For this reason, continuous monitoring of bridges has become essential: not only to help determine if a bridge has been damaged but also to understand their response to strong earthquake motions. The work reported here includes an in-depth analysis of the behavior of the Vallejo- Hwy 37 Napa River Bridge during the 2014 California, Napa earthquake (M 6.0). The bridge located in Vallejo California connects Sears Point Road and Mare Island to Vallejo. It was built in 1967. The bridge was instrumented with 12 accelerometers on the superstructure and 3 accelerometers at a free-field site. An analysis of the recorded data of the accelerometers on the superstructure was carried out to determine the maximum displacement at mid-span, and to get the fundamental frequencies of the bridge during the excitation. A finite element (FE) model was developed based on the as-built drawings and model updaitng was perform. Finally, the updated model was used with the recorded ground motion of the 2014 Napa Earthquake to perform a time history analysis. The results were compared to the recorded data of the sensors located on the bridge. The peak displacement at mid-span in the longitudinal and transverse directions of the FE had a good match to the recorded peak displacement. It can be concluded that the updated FE model can capture the peak displacement at the bridge mid-span. It also shows that having a strong motion network can help engineers to better understand the behavior of structures under earthquake loading, by looking at the recorded data and identifying peak values of acceleration, velocity and displacement.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
29

WAGNER, GUSTAVO BRATTSTROEM. "OPERATIONAL MODAL ANALYSIS IN THE TIME DOMAIN: A CRITICAL REVIEW OF THE IDENTIFICATION METHODS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32324@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
BOLSA NOTA 10
Análise modal consiste na caracterização de um sistema através dos seus parâmetros modais. Quando a principal excitação é causada pelo ambiente em que o sistema está inserido, essa caracterização é definida como análise modal operacional (OMA). Nestes casos, os forçamentos não são conhecidos (mensuráveis) e apenas as respostas são monitoradas. Por terem natureza aleatória, esses sinais precisam ser incorporados ao modelo numérico através de processos estocásticos. O principal objetivo desta dissertação consiste em descrever as técnicas de identificação em OMA. Para isso, duas vertentes foram criadas, uma teórica e outra experimental. Na parte teórica, as hipóteses necessárias para a identificação de um sistema por OMA são apresentadas. Uma análise dos erros causados por sinais ruidosos também é feita, permitindo que a sensibilidade dos métodos seja avaliada. Além de contemplar os principais métodos de identificação, dois novos métodos são propostos. Ambos foram desenvolvidos a partir da Decomposição Ortogonal Própria (POD) e combinam uma eficiência computacional com a possibilidade de quantificar as incertezas dos parâmetros. Na vertente experimental, o objetivo é ilustrar e validar a identificação de estruturas. Para isso, três diferentes bancadas foram criadas: um prédio de dois andares, uma pá eólica e uma ponte suspensa. Após a construção, essas estruturas foram devidamente instrumentadas por diferentes sensores. Um sistema de aquisição dados foi montado através de hardwares comerciais e analisados através de uma interfase gráfica desenvolvida especialmente para OMA pelo Laboratório de Vibrações.
Modal analysis consists in the characterization of a system through its modal parameters. When the main excitation source is the system s environment, this characterization is defined as operational modal analysis (OMA). On those cases, the forces are unknown (not measured) and only the responses are monitored. Because of there random nature, those signals are incorporated into the numerical model as stochastic processes. The main goal of this dissertation is to describe the identification techniques in OMA. Therefore, two different approaches were created: a theoretical one and an experimental one. In the theoretical part, the required hypotheses for system s identification with OMA are presented. An analysis of the errors caused by noisy signals are also performed, allowing the method s sensibility to be evaluated. Besides the standard identification methods, two new ones are proposed. They both has been developed as extension of the Proper Orthogonal Decomposition (POD) and combine an efficient computational process with the possibility of quantify the parameters uncertainties. In the experimental approach, the goal is to illustrate and validate the identification of structures. Therefore, three different test bench were created: a two floor building, a wind turbine blade and a cable-stayed bridge. After their construction, those structures were proper instrumented with different sensors. A data acquisition system were built using commercial hardwares and analyzed through a graphic interface specially made for OMA and developed in the vibration laboratory.
APA, Harvard, Vancouver, ISO, and other styles
30

Ojeda, Alejandro P. "MATLAB implementation of an operational modal analysis technique for vibration-based structural health monitoring." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74412.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 72-73).
Vibration-based structural health monitoring (SHM) has become an attractive solution for the global monitoring and evaluation of damage in structures. Numerous damage detection schemes used in vibration-based SHM require knowledge of the modal properties of the structure under evaluation in its current state. The technique of operational modal analysis allows for these modal properties to be obtained by using the structure's dynamic response to ambient excitation. Using MATLAB, a type of operational modal analysis technique called time domain decomposition (TDD) based on [15] was implemented. The MATLAB TDD implementation was applied to the dynamic responses from two finite element models of simply-supported beams and their modal frequencies and shapes were extracted. The first three modal frequencies were obtained with less than 6 percent error from the actual values and the fundamental mode shape values obtained contained negligible deviations from the actual mode shape values. However, the higher order mode shapes obtained were more inaccurate, suggesting limitations to the current MATLAB TDD implementation. Lastly, changes to the moment of inertia of the simply-supported beam models were used to simulate damage in the finite element models and cause their fundamental mode frequency to change. The MATLAB TDD implementation was able to distinguish changes in the fundamental frequency of both finite element models with a resolution of approximately 1.7 radians per second (7.2 percent).
by Alejandro P. Ojeda.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
31

Marudachalam, Kannan. "An attempt to quantify errors in the experimental modal analysis process." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-08142009-040508/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rossetto, Gustavo Dalben. "Contribuição a teoria e pratica da analise modal acustica experimental." [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265319.

Full text
Abstract:
Orientador: Jose Roberto de França Arruda
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-07-31T18:15:00Z (GMT). No. of bitstreams: 1 Rossetto_GustavoDalben_M.pdf: 4484828 bytes, checksum: b149e9723524115d4c39c2ea81d0c5bc (MD5) Previous issue date: 2001
Resumo: Neste trabalho uma geometria simples (cavidade retangular) é usada para o estudo da metodologia aplicada na análise modal acústica. Modelos analítico e numérico são desenvolvidos para a comparação com os resultados experimentais. Três tipos de dispositivos de excitação do sistema acústico foram construídos. Um baseado num pistão conectado a um shaker, e outros dois usando um alto-falante do tipo driver. O primeiro atuador usando o driver é similar ao modelo desenvolvido por um projeto europeu, onde um tubo flexível com uma terminação instrumentada com um microfone é usado para a condução da excitação acústica. O segundo atuador baseado no uso do driver também usa um tubo flexível, mas este é instrumentado com dois microfones em sua terminação. O comportamento destes dois últimos atuadores em termos de aceleração de volume (essencial para a análise modal acústica experimental) e de potência ativa (necessária para Análise Estatística de Energia Experimental) sendo injetados no meio são investigados. A análise modal experimental da cavidade retangular é realizada e um método que utiliza a transformada de Fourier espacial multidimensional do campo de pressão medido é proposto para-a construção do campo de deslocamento de partícula para a visualização do modo acústico
Abstract: In the present work, a simple geometry (rectangular shallow cavity) is used to investigate the acoustic modal analysis methodology. Analytical and numerical models are developed for the comparison with the experimental results. Three types of excitation devices were constructed. One based on a shaker-driven piston and the other two using a driver loudspeaker. The first actuator based on a driver loudspeaker is similar to a model developed by an EEC project, where a flexible tube with a socket, instrumented with one microphone, at its termination is used to conduct the sound excitation. The second actuator based on a driver loudspeaker alse uses a flexible tube, but it is instrumented with two microphones in its socket instead of one. The behavior of these last two actuators in terms of volume acceleration (essential in the acoustic modal analysis) and active power (necessary for the Experimental Statistical Energy Analysis) being injected into the medium are investigated. The experimental modal analysis of the rectangular cavity is performed and a method using multi-dimensional spatial Fourier transforms of the array of pressure measurements is proposed for the construction of the partic1e displacement field for acoustic mode shape visualization
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
33

Aluri, Srinivas. "Updating low-profile FRP deck FE model using experimental modal analysis." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4656.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains vi, 76 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 60-61).
APA, Harvard, Vancouver, ISO, and other styles
34

Baver, Brett C. "Property Identification of Viscoelastic Coatings Through Non-contact Experimental Modal Analysis." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1459438426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Braunwart, Paul R. "Experimental and Analytical Examination of Golf Club Dynamics." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/31506.

Full text
Abstract:
To provide the average golfer with more consistent results, manufacturers have continued to improve the available equipment. This has led to larger club-heads, with larger ?sweet spots?, different shaft thickness for different swing styles, and the use of advanced materials, such as graphite and titanium, for the construction. The development of improved equipment, which utilizes advanced materials, has spurred the need for advanced scientific analysis using a variety of techniques. Among the most prevalent of these methods are finite element analysis and experimental modal analysis, and use of these techniques in examining a golf club is the focus of this research. The primary goals of this work are the development and correlation of an appropriate finite element model, the characterization of the hands-free boundary condition and the examination of the club golf dynamic response. To accomplish these objectives, the physical parameters of the golf club are determined to develop the finite element model. The analysis of natural frequencies and mode shapes correlate well with the results extracted from experimental modal analysis for the free-free and clamped-free boundary conditions. With the correlation established, a third boundary condition, hands-free, is tested experimentally to ascertain the effects of the golfer?s grip on the boundary conditions. With the FEA model confirmed, a nonlinear dynamic response of the club during the down-swing is investigated using the nonlinear solver in Algor, and the club-head position relative to the shaft is predicted.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
36

Afolayan, Fatai Olayemi. "Modal Analysis of Simple Structures: Comparison Between Analytical, Numerical, and Experimental Methods." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22486/.

Full text
Abstract:
Better understanding of the dynamic behavior of structures is as important as using reliable methods to determine the dynamic behaviour. This study started by describing the importance of dynamic analysis in structures, and further exploring what is meant by “Modal Analysis” and the different methods used in obtaining the Modal properties of a simple structure. First, using “Mathematical Methods”, a “Simple Beam Element” was analyzed with Analytical analysis and Numerical modelling. In the Numerical model, the beam was modelled twice with different boundary conditions. The results of the mathematical methods were compared. Second, using “Experimental Methods”, the same simple beam element was analyzed using “Impact Testing” methods of experimental modal analysis. The results gotten with experimental methods were compared with both the analytical and numerical methods, and the comparison between these results shows that the errors are within reasonable range, and it will help future engineers to better design and develop engineering components.
APA, Harvard, Vancouver, ISO, and other styles
37

Han, Man-Cheol. "Improved approaches to the indirect force determination problems via experimental modal analysis." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39412.

Full text
Abstract:
Solving the inverse problem, finding the applied forces knowing the system characteristics and the response, has been a difficult problem in structural dynamics. Insufficient accuracy in the system identification and uncorrelated content in the response exacerbate the ill-conditioned nature of the indirect-force-determination problem. Numerical techniques for performing the force determination are exploited and compared. The characteristics of the force determination problems are investigated through least squares solution procedures and numerical examples. The credibility of the estimated forces are studied in the numerical examples using the correlations of the matrix condition number and the mode contribution factor with the resulting error. The focus of this research is the improved estimation of the applied forces. The two important factors in reducing the force determination error are accurate system identification and improved conditioning of the system matrix. A variety of techniques are examined to reduce the system identification error and control the response measurement uncertainty. The use of rotational or curvature degrees of freedom as an alternative to the translational degrees of freedom for the response measurements and for the structural dynamics model yields a quite differently conditioned system matrix. The choice of a particular degrees of freedom is shown to depend on the frequency contents of the applied forces.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
38

Koricherla, Manindra Varma. "An experimental modal analysis of an Lithium-ion Battery using Dynamic Excitation." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1502476407014686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Libardi, Ana Lúcia. "Técnicas de cancelamento de massa em análise modal experimental." Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-11072018-120016/.

Full text
Abstract:
Esta dissertação tem como objetivo principal o estudo das técnicas de cancelamento de massa, bem como suas aplicações em análise modal experimental. Estas técnicas são utilizadas na redução de determinados erros nos dados de resposta em frequência da estrutura sob estudo. Estes erros são por sua vez causados por fontes adicionais de inércia, tais como acelerômetros e transdutores de força, que são frequentemente utilizados nos ensaios para o levantamento das características dinâmicas da estrutura. As técnicas de cancelamento de massa estudadas neste trabalho são desenvolvidas a partir de uma modelagem das relações de entrada e saída no domínio da frequência, utilizando-se para tanto as Funções de Resposta em Frequência (FRF), bem como conceitos de subestruturação. Os modelos analíticos utilizados no problema de cancelamento de massa são também aplicados na geração de FRFs desconhecidas para a estrutura sob estudo, a partir de um subconjunto de FRFs medidas com massas adicionais acopladas à estrutura. Os métodos estudados são aplicados a dados obtidos através de simulações numéricas em sistemas discretos, bem como a dados experimentais provenientes de ensaios em estruturas simples. Resultados satisfatórios foram obtidos tanto a partir das simulações numéricas quanto na análise experimental para o problema de cancelamento de massa. Na obtenção de FRFs desconhecidas, verificou-se que os modelos teóricos conduzem a resultados satisfatórios em determinadas situações, e que o ruído encontrado em dados experimentais representa um fator detrimental na utilização das técnicas de cancelamento de massa para o propósito de gerar-se FRF desconhecidas a partir de FRF efetivamente medidas na estrutura sob estudo.
The goal of this dissertation is to develop a study on mass cancellation techniques and their applications in experimental modal analysis. These techniques are commonly employed in the reduction of experimental errors on the structure\'s measured frequency response data. Such errors are in turn caused by extra masses such as accelerometer and force transducers, that are utilized on the measurement of the system\'s Frequency Response Functions (FRF). The mass cancellation techniques studied here are developed through frequency domain input and output relationships as well as substructuring concepts. The analytical models employed in the mass cancellation problem are also applied in obtaining unknown FRF from a subset of measured FRF that are measured with extra masses attached to the structure. The methods studied are applied to numerically simulated data from discrete systems, as well as to experimental data coming from modal tests performed on simple structures. Reasonably good results are obtained in either the numerical and experimental analysis for the mass cancellation problem. In obtaining unknown FRF data, it was verified that the models generated reasonable results in some circumstances, and that experimental noise is a major source of error in using these mass cancellation techniques for the purpose of obtaining unmeasured data from a subset of measured FRF.
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Xinzuo William. "A precision laser scanning system for experimental modal analysis : its test and calibration /." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-08222009-040335/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bolmsvik, Åsa. "Structural-acoustic vibrations in wooden assemblies: : Experimental modal analysis and finite element modelling." Doctoral thesis, Linnéuniversitetet, Institutionen för bygg- och energiteknik (BE), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-24562.

Full text
Abstract:
This doctoral thesis concerns flanking transmission in light weight, wooden multi-storey buildings within the low frequency, primarily 20-120 Hz. The overall aim is to investigate how the finite element method can contribute in the design phase to evaluate different junctions regarding flanking transmission. Two field measurements of accelerations in light weight wooden buildings have been evaluated. In these, two sources; a stepping machine, and an electrodynamic shaker, were used. The shaker was shown to give more detailed information. However, since a light weight structure in field exhibit energy losses to surrounding building parts, reliable damping estimates were difficult to obtain. In addition, two laboratory measurements were made. These were evaluated using experimental modal analysis, giving the eigenmodes and the damping of the structures. The damping for these particular structures varies significantly with frequency, especially when an elastomer is used in the floor-wall junction. The overall damping is also higher when elastomers are used in the floor-wall junction in comparison to a screwed junction. By analysing the eigenmodes, using the modal assurance criterion, of the same structure with two types of junctions it was concluded that the modes become significantly different. Thereby the overall behavior differs. Several finite element models representing both the field and laboratory test setups have been made. The junctions between the building blocks in the models have been modeled using tie or springs and dashpots. Visual observation and the modal assurance criterion show that there is more rotational stiffness in the test structures than in the models. The findings in this doctoral thesis add understanding to how modern joints in wooden constructions can be represented by FE modelling. They will contribute in developing FE models that can be used to see the acoustic effects prior to building an entire house. However, further research is still needed.
Denna doktorsavhandling behandlar flanktransmission i flervåningshus med trästomme, inom det lågfrekventa området, främst 20-120 Hz. Det övergripande målet är att undersöka hur finita elementmetoden kan bidra i konstruktionsfasen för att utvärdera olika knutpunkters inverkan på flanktransmissionen. Två fältmätningar av accelerationer i trähus har utvärderats. I dessa har två olika lastkällor använts, i den första en stegljudsapparat och i den andra en elektrodynamisk vibrator (shaker). Det visades att shakern kan ge mer detaljerad information, men eftersom vibrationerna även sprider sig till omgivande byggnadsdelar vid fältmätningarna var det svårt att estimera tillförlitliga dämpningsdata även då shaker användes. Fältmätningarna följdes av två mätningar i laborationsmiljö. Dessa två experiment utvärderades med experimentell modalanalys, vilket ger egenmoder och dämpning hos strukturerna. Dämpningen för dessa trähuskonstruktioner varierar kraftigt med frekvens. Extra stora variationer registreras då en elastomer användes i knutpunkten mellan golv och vägg. Den totala dämpningen är generellt högre när elastomerer används i knutpunkten mellan golv och vägg i jämförelse med då knutpunkten är skruvad. Genom att analysera egenmoder och deras korrelationer (MAC), för samma trästruktur men med olika typer av knutpunkter, drogs slutsatsen att knutpunkten drastiskt förändrar strukturens dynamiska beteende. Flera finita elementmodeller av både fält- och laboratorieuppställningar har gjorts. I dessa har knutpunkterna mellan byggnadsdelar modellerats helt styvt eller med hjälp av fjädrar och dämpare. Visuella observationer av egenmoder och korrelationen dem emellan visar att det finns mer rotationsstyvhet i försöken än i finita elementmodellerna. Resultaten i denna doktorsavhandling har gett förståelse för hur knutpunkter i träkonstruktioner beter sig och kan simuleras med finit elementmodellering. Vidare kan resultaten bidra till utvecklingen av FE-modeller som kan användas för att kunna se de akustiska effekterna redan under konstruktionsstadiet. Dock behövs ytterligare forskning inom området.
APA, Harvard, Vancouver, ISO, and other styles
42

You, You, and Daxin Chen. "Modal Analysis on a MIMO System : For an asphalt roller CC1200." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-10998.

Full text
Abstract:
Impact hammer is the current modal testing way in Dynapac testing department. Due to highly damped characteristic of big construction machines, there are a few weaknesses for modal testing when using hammer, such as short response time, limited frequency resolution, poor quality of frequency response functions. Therefore, a more advanced excitation equipment is needed to improve the measurement quality. The object for this study is to compare two different measuring methods. The thesis will show a comparison between the hammer testing and the shaker MIMO testing compared with analytical model in a highly damped system. It will also give a reference for further highly damped modal analysis and budgetary assessment to decide the budget expenditure. Result from shaker testing shows a little better correlation than hammer testing compared with FEM model. While the correlation between FEM model and measurement is bad due to many reasons, such as many local modes that can not excited, lack of excitation points, unexpected noise and error from the measurement. While considering the compared results obtained from this machine for now, a simpler structure experiment is suggested to be carried on in the future. Shorter length of stinger can be used to enable higher amplitude of force to excite the property on this machine.
APA, Harvard, Vancouver, ISO, and other styles
43

Venkataraman, Siddharth. "Analytic, Simulation and Experimental Analysis of Fluid-Pipe Systems." Thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249996.

Full text
Abstract:
Inviscid fluid inside thin pipe system is first analytically solved for eigenfrequencies and eigenmodes using Modal Interaction Model method with fluid-structure interaction condition at boundary. Shear-diaphragm boundary condition is used for comparing and validating Analytic results with Simulation using COMSOL Multiphysics. Effect of viscosity is also compared using Newtonian fluid model. Experiment is performed using simple pipe geometry and fluid to measure transfer accelerance which is post-processed to extract cirumferential modes up to order 4; this is used to compare and validate Experiemental results with Simulation. Good correlation is obtained between Analytic, Experiment and Simulation results with n=0 breathing modes requiring modification of governing equations to incorporate compressibility effects due to changing pipe cross-section area.
En analytisk lösning för egenfrekvenser och egenmoder för en icke-viskös fluid inuti ett tunt rörsystem är först framtagen med användning av en modbaserad modell för interaktion mellan fluid och struktur som randvillkor. Idealiserad randvillkor används för att jämföra och validera analytiska resultat med simulationer i COMSOL Multiphysics. Effekten av viskositet jämförs också med hjälp av en Newtonsk fluidmodell. Experiment genomförs med simpel rörgeometri samt fluid för att mäta acceleransen som är analyserad för till att få ut mo-der i omkretsled upp till fjärde ordningen; detta i sin tur används för att jämföra och validera de experimentella resultaten med simulering-ar. Det erhålls bra korrelation mellan de analytiska-, simulerade- samt experimentella resultaten. Undantaget för n=0 grundmoder då krävs modifikation av differentialekvationerna till att inkorporera kompressibilitetseffekter
APA, Harvard, Vancouver, ISO, and other styles
44

Rice, Glenn E. III. "A Feasibility Study of the Use of Experimental Modal Analysis for Industrial Quality Assurance." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1583154455792767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Maurini, Corrado. "Piezoelectric composites for distributed passiv electric control : beam modelling modal analysis, and experimental implementation." Paris 6, 2005. https://tel.archives-ouvertes.fr/tel-00011252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Deshpande, Shrirang. "Improving observability in experimental analysis of rotating systems." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1414750479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Berg, Richard Hiram. "Application of sensors in an experimental investigation of mode dampings /." Online version of thesis, 1993. http://hdl.handle.net/1850/11046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Peter, Simon [Verfasser]. "Nonlinear Experimental Modal Analysis and its Application to the Identification of Nonlinear Structures / Simon Peter." Aachen : Shaker, 2018. http://d-nb.info/1188548220/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Giorelli, Massimo. "Methodology for correlating experimental and finite element modal analyses on valve trains." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0426102-130749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shepenkov, Valeriy. "Vibration Modal Analysis of a Deployable Boom Integrated to a CubeSat." Thesis, KTH, Strukturmekanik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122076.

Full text
Abstract:
CubeSat or Cubic Satellite is an effective method to study the space aroundthe Earth thanks to its low cost, easy maintenance and short lead time. However, a great challenge of small satellites lies in achieving technicaland scientific requirements during the design stage. In the present workprimary focus is given to dynamic characterization of the deployable tapespringboom in order to verify and study the boom deployment dynamiceffects on the satellite. The deployed boom dynamic characteristics werestudied through simulations and experimental testing. The gravity offloadingsystem was used to simulate weightlessness environment in theexperimental testing and simulations showed that the deployment of thesystem influence the results in a different way depending on the vibrationmode shape.
En CubeSat eller kubisk satellit är effektivt för att studera rymden runtjorden på grund av dess låga kostnad, enkla underhåll och korta ledtid. Enstor utmaningen i utformningen av små satelliter är att uppnå de tekniskaoch vetenskapliga kraven. Detta arbete har analyserat de dynamiska egenskapernahos en utfällbar band-fjäder bom i syfte att verifera och för attstudera bommens utfällningsdynamiska effekter på satellitens bana och attityd.Den utfällda bommens dynamiska egenskaper har studerats genomsimuleringar och experimentella tester. Ett tyngdkraftskompenserande systemhar använts för att simulera tyngdlöshet i de experimentella testernaoch simuleringar visar att utformningen av detta system påverkar resultatenolika beroende på svängingsmodens form.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography