Academic literature on the topic 'Operator equations, Nonlinear'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Operator equations, Nonlinear.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Operator equations, Nonlinear"
Burýšková, Věra, and Slavomír Burýšek. "On solvability of nonlinear operator equations and eigenvalues of homogeneous operators." Mathematica Bohemica 121, no. 3 (1996): 301–14. http://dx.doi.org/10.21136/mb.1996.125984.
Full textTakači, Djurdjica. "Nonlinear operator differential equations." Nonlinear Analysis: Theory, Methods & Applications 30, no. 1 (December 1997): 47–52. http://dx.doi.org/10.1016/s0362-546x(97)00404-5.
Full textRyazantseva, Irina P. "Simplification method for nonlinear equations of monotone type in Banach space." Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 23, no. 2 (June 30, 2021): 185–92. http://dx.doi.org/10.15507/2079-6900.23.202102.185-192.
Full textBinh, Tran Quoc, and Nguyen Minh Chuong. "APPROXIMATION OF NONLINEAR OPERATOR EQUATIONS*." Numerical Functional Analysis and Optimization 22, no. 7-8 (November 30, 2001): 831–44. http://dx.doi.org/10.1081/nfa-100108311.
Full textMarchenko, V. A. "Nonlinear equations and operator algebras." Physica D: Nonlinear Phenomena 28, no. 1-2 (September 1987): 227. http://dx.doi.org/10.1016/0167-2789(87)90152-7.
Full textMotsa, S. S. "On the Optimal Auxiliary Linear Operator for the Spectral Homotopy Analysis Method Solution of Nonlinear Ordinary Differential Equations." Mathematical Problems in Engineering 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/697845.
Full textArgyros, Ioannis K., Santhosh George, and P. Jidesh. "Inverse Free Iterative Methods for Nonlinear Ill-Posed Operator Equations." International Journal of Mathematics and Mathematical Sciences 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/754154.
Full textHofmann, Bernd, and Robert Plato. "On ill-posedness concepts, stable solvability and saturation." Journal of Inverse and Ill-posed Problems 26, no. 2 (April 1, 2018): 287–97. http://dx.doi.org/10.1515/jiip-2017-0090.
Full textÇavuş, Abdullah, Djavvat Khadjiev, and Seda Öztürk. "On periodic solutions to nonlinear differential equations in Banach spaces." Filomat 30, no. 4 (2016): 1069–76. http://dx.doi.org/10.2298/fil1604069c.
Full textARAI, ASAO. "HEISENBERG OPERATORS, INVARIANT DOMAINS AND HEISENBERG EQUATIONS OF MOTION." Reviews in Mathematical Physics 19, no. 10 (November 2007): 1045–69. http://dx.doi.org/10.1142/s0129055x07003206.
Full textDissertations / Theses on the topic "Operator equations, Nonlinear"
Pudipeddi, Sridevi Iaia Joseph A. "Localized radial solutions for nonlinear p-laplacian equation in R[superscript N]." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-6059.
Full textAdhikari, Dhruba R. "Applications of degree theories to nonlinear operator equations in Banach spaces." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002158.
Full textPudipeddi, Sridevi. "Localized Radial Solutions for Nonlinear p-Laplacian Equation in RN." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc6059/.
Full textAbdeljabbar, Alrazi. "Wronskian, Grammian and Pfaffian Solutions to Nonlinear Partial Differential Equations." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/3939.
Full textAli, Jaffar. "Multiple positive solutions for classes of elliptic systems with combined nonlinear effects." Diss., Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-07082008-153843.
Full textAsaad, Magdy. "Pfaffian and Wronskian solutions to generalized integrable nonlinear partial differential equations." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/3956.
Full textLópez, Ríos Luis Fernando. "Two problems in nonlinear PDEs : existence in supercritical elliptic equations and symmetry for a hypo-elliptic operator." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/115530.
Full textEn este trabajo se aborda el problema de encontrar soluciones regulares para algunas EDPs elípticas e hipo-elípticas no lineales y estudiar sus propiedades cualitativas. En una primera etapa, se considera la ecuación $$ -\Delta u = \lambda e^u, $$ $\lambda > 0$, en un dominio exterior con condición de Dirichlet nula. Un esquema de reducción finito-dimensional permite encontrar infinitas soluciones regulares cuando $\lambda$ es suficientemente pequeño. En la segunda parte se estudia la existencia de soluciones de la ecuación no local $$ (-\Delta)^s u = u^{p \pm \epsilon}, u > 0, $$ en un dominio acotado y suave, con condición de Dirichlet nula; donde $s > 0$ y $p:=(N+2s)/(N-2s) \pm \epsilon$ es cercano al exponente crítico ($\epsilon > 0$ pequeño). Para hallar soluciones, se utiliza un esquema de reducción finito-dimensional en espacios de funciones adecuados, donde el término principal de la función reducida se expresa a partir de las funciones de Green y de Robin del dominio. La existencia de soluciones dependerá de la existencia de puntos críticos de este término principal y de una condición de no degeneración. Por último, se considera un problema no local en el grupo de Heisenberg $H$. En particular, se buscan propiedades de rigidez para soluciones estables de $$ (-\Delta_H)^s v = f(v) en H, $$ $s \in (0,1)$. Como paso fundamental, se prueba una desigualdad del tipo Poincaré en conexión con un problema elíptico degenerado en $R^4_+$. Esta desigualdad se usará en un procedimiento de extensión para dar un criterio bajo el cual los conjuntos de nivel de las soluciones del problema anterior son superficies mínimas en $H$, es decir, tienen $H$-curvatura media nula.
Lopez, Rios Luis Fernando. "Two problems in nonlinear PDEs : existence in supercritical elliptic equations and symmetry for a hypo-elliptic operator." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4701/document.
Full textThis work is devoted to nonlinear PDEs. The aim is to find regular solutions to some elliptic and hypo-elliptic PDEs and study their qualitative properties. The first part deals with the supercritical problem $$ -Delta u = lambda e^u,$$ $lambda > 0$, in an exterior domain under zero Dirichlet condition. A finite-dimensional reduction scheme provides the existence of infinitely many regular solutions whenever $lambda$ is sufficiently small.The second part is focused on the existence of bubbling solutions for the non-local equation $$ (-Delta)^s u =u^p, ,u>0,$$in a bounded, smooth domain under zero Dirichlet condition; where $0 0$ small). To this end, a finite-dimensional reduction scheme in suitable functional spaces is used, where the main part of the reduced function is given in terms of the Green's and Robin's functions of the domain. The existence of solutions depends on the existence of critical points of such a main term together with a non-degeneracy condition.In the third part, a non-local entire problem in the Heisenberg group $H$ is studied. The main interests are rigidity properties for stable solutions of $$(-Delta_H)^s v = f(v) in H,$$ $s in (0,1)$. A Poincaré-type inequality in connection with a degenerate elliptic equation in $R^4_+$ is provided. Through an extension (or ``lifting") procedure, this inequality will be then used to give a criterion under which the level sets of the above solutions are minimal surfaces in $H$, i.e. they have vanishing mean $H$-curvature
Hofmann, B., and O. Scherzer. "Local Ill-Posedness and Source Conditions of Operator Equations in Hilbert Spaces." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800957.
Full textYe, Jinglong. "Infinite semipositone systems." Diss., Mississippi State : Mississippi State University, 2009. http://library.msstate.edu/etd/show.asp?etd=etd-07072009-132254.
Full textBooks on the topic "Operator equations, Nonlinear"
Adomian, George. Nonlinear stochastic operator equations. Orlando: Academic Press, 1986.
Find full textAdomian, G. Nonlinear stochastic operator equations. Orlando: Academic Press, 1986.
Find full textA, Marchenko V. Nonlinear equations and operator algebras. Dordrecht: D. Reidel Pub. Co., 1988.
Find full textMarchenko, Vladimir A. Nonlinear Equations and Operator Algebras. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2887-9.
Full textKrasnoselʹskiĭ, A. M. Asymptotics of nonlinearities and operator equations. Basel: Birkhäuser Verlag, 1995.
Find full textAltman, Mieczyslaw. A unified theory of nonlinear operator and evolution equations with applications: A new approach to nonlinear partial differential equations. New York: M. Dekker, 1986.
Find full textKrawcewicz, Wiesław. Contribution à la théorie des équations non linéaires dans les espaces de Banach. Warszawa: Państwowe Wydawn. Nauk., 1988.
Find full textRosen, I. Gary. Convergence of Galerkin approximations for operator Riccati equations--a nonlinear evolution equation approach. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.
Find full textA unified theory of nonlinear operator and evolution equations with applications: A new approach to nonlinear partial differential equations. New York: M. Dekker, 1986.
Find full textBook chapters on the topic "Operator equations, Nonlinear"
Marchenko, Vladimir A. "Classes of Solutions to Nonlinear Equations." In Nonlinear Equations and Operator Algebras, 121–52. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2887-9_4.
Full textMarchenko, Vladimir A. "The General Scheme." In Nonlinear Equations and Operator Algebras, 1–21. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2887-9_1.
Full textMarchenko, Vladimir A. "Realization of General Scheme in Matrix Rings and N-Soliton Solutions." In Nonlinear Equations and Operator Algebras, 22–52. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2887-9_2.
Full textMarchenko, Vladimir A. "Realization of the General Scheme in Operator Algebras." In Nonlinear Equations and Operator Algebras, 53–120. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2887-9_3.
Full textO’Regan, Donal, and Maria Meehan. "Periodic Solutions for Operator Equations." In Existence Theory for Nonlinear Integral and Integrodifferential Equations, 204–15. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4992-1_12.
Full textTikhonov, A. N., A. S. Leonov, and A. G. Yagola. "Variational algorithms for solving nonlinear operator equations." In Nonlinear Ill-Posed Problems, 143–206. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-5167-4_3.
Full textZgurovsky, M. Z., and V. S. Mel’nik. "Differential-Operator Equations and Inclusions." In Nonlinear Analysis and Control of Physical Processes and Fields, 97–147. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18770-4_4.
Full textTaylor, Michael E. "Function Space and Operator Theory for Nonlinear Analysis." In Partial Differential Equations I, 1–104. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7049-7_1.
Full textTaylor, Michael E. "Function Space and Operator Theory for Nonlinear Analysis." In Partial Differential Equations III, 1–88. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-4190-2_1.
Full textSakhnovich, L. A. "Interpolation Problems, Inverse Spectral Problems and Nonlinear Equations." In Operator Theory and Complex Analysis, 292–304. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8606-2_15.
Full textConference papers on the topic "Operator equations, Nonlinear"
Bartsch, Thomas. "Critical equations for the polyharmonic operator." In Proceedings of the ICM 2002 Satellite Conference on Nonlinear Functional Analysis. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704283_0004.
Full textNedzhibov, Gyurhan H., George Venkov, Ralitza Kovacheva, and Vesela Pasheva. "An approach to accelerate iterative methods for solving nonlinear operator equations." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '11): Proceedings of the 37th International Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3664358.
Full textPrecup, Radu, Alberto Cabada, Eduardo Liz, and Juan J. Nieto. "Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications." In MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE: International Conference on Boundary Value Problems: Mathematical Models in Engineering, Biology and Medicine. AIP, 2009. http://dx.doi.org/10.1063/1.3142943.
Full textZhou, Yongquan, and Huajuan Huang. "Hybrid Artificial Fish School Algorithm Based on Mutation Operator for Solving Nonlinear Equations." In 2009 International Workshop on Intelligent Systems and Applications. IEEE, 2009. http://dx.doi.org/10.1109/iwisa.2009.5072896.
Full textXu, Guang, Guocai Hu, and Junfeng Chen. "A New PSO Algorithm LM Operator Embedded in for Solving Systems of Nonlinear Equations." In 2014 6th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2014. http://dx.doi.org/10.1109/ihmsc.2014.137.
Full textROGOSIN, S. V. "ON APPLICATION OF THE MONOTONE OPERATOR METHOD TO SOLVABILITY OF NONLINEAR SINGULAR INTEGRAL EQUATIONS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0119.
Full textChristiansen, Torben B., Harry B. Bingham, Allan P. Engsig-Karup, Guillaume Ducrozet, and Pierre Ferrant. "Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10861.
Full textKurdila, Andrew J., and Glenn Webb. "Identification of Thermal and Hysteretic Response of SMA Embedded Flexible Rods." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0680.
Full textDeshmukh, Venkatesh. "Stability Analysis and Computation of Solutions of Nonlinear Delay Differential Algebraic Equations With Time Periodic Coefficients." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35263.
Full textKurdila, A., and J. Li. "Relaxation Methods for Nonlinear Dynamics and Hysteresis Operators." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8062.
Full textReports on the topic "Operator equations, Nonlinear"
Carasso, Alfred S. Compensating Operators and Stable Backward in Time Marching in Nonlinear Parabolic Equations. National Institute of Standards and Technology, November 2013. http://dx.doi.org/10.6028/nist.ir.7967.
Full text